Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ a1d8db07

History | View | Annotate | Download (8.8 kB)

1 2c0262af bellard
/*
2 5fafdf24 ths
 *  i386 execution defines
3 2c0262af bellard
 *
4 2c0262af bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 2c0262af bellard
 *
6 2c0262af bellard
 * This library is free software; you can redistribute it and/or
7 2c0262af bellard
 * modify it under the terms of the GNU Lesser General Public
8 2c0262af bellard
 * License as published by the Free Software Foundation; either
9 2c0262af bellard
 * version 2 of the License, or (at your option) any later version.
10 2c0262af bellard
 *
11 2c0262af bellard
 * This library is distributed in the hope that it will be useful,
12 2c0262af bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 2c0262af bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 2c0262af bellard
 * Lesser General Public License for more details.
15 2c0262af bellard
 *
16 2c0262af bellard
 * You should have received a copy of the GNU Lesser General Public
17 8167ee88 Blue Swirl
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 2c0262af bellard
 */
19 7d3505c5 bellard
#include "config.h"
20 2c0262af bellard
#include "dyngen-exec.h"
21 2c0262af bellard
22 14ce26e7 bellard
/* XXX: factorize this mess */
23 14ce26e7 bellard
#ifdef TARGET_X86_64
24 14ce26e7 bellard
#define TARGET_LONG_BITS 64
25 14ce26e7 bellard
#else
26 14ce26e7 bellard
#define TARGET_LONG_BITS 32
27 14ce26e7 bellard
#endif
28 14ce26e7 bellard
29 d785e6be bellard
#include "cpu-defs.h"
30 d785e6be bellard
31 2c0262af bellard
register struct CPUX86State *env asm(AREG0);
32 14ce26e7 bellard
33 7d99a001 blueswir1
#include "qemu-common.h"
34 79383c9c blueswir1
#include "qemu-log.h"
35 2c0262af bellard
36 aba1d00a Blue Swirl
#undef EAX
37 2c0262af bellard
#define EAX (env->regs[R_EAX])
38 aba1d00a Blue Swirl
#undef ECX
39 2c0262af bellard
#define ECX (env->regs[R_ECX])
40 aba1d00a Blue Swirl
#undef EDX
41 2c0262af bellard
#define EDX (env->regs[R_EDX])
42 aba1d00a Blue Swirl
#undef EBX
43 2c0262af bellard
#define EBX (env->regs[R_EBX])
44 aba1d00a Blue Swirl
#undef ESP
45 2c0262af bellard
#define ESP (env->regs[R_ESP])
46 aba1d00a Blue Swirl
#undef EBP
47 2c0262af bellard
#define EBP (env->regs[R_EBP])
48 aba1d00a Blue Swirl
#undef ESI
49 2c0262af bellard
#define ESI (env->regs[R_ESI])
50 aba1d00a Blue Swirl
#undef EDI
51 2c0262af bellard
#define EDI (env->regs[R_EDI])
52 aba1d00a Blue Swirl
#undef EIP
53 1e4840bf bellard
#define EIP (env->eip)
54 2c0262af bellard
#define DF  (env->df)
55 2c0262af bellard
56 2c0262af bellard
#define CC_SRC (env->cc_src)
57 2c0262af bellard
#define CC_DST (env->cc_dst)
58 2c0262af bellard
#define CC_OP  (env->cc_op)
59 2c0262af bellard
60 2c0262af bellard
/* float macros */
61 2c0262af bellard
#define FT0    (env->ft0)
62 664e0f19 bellard
#define ST0    (env->fpregs[env->fpstt].d)
63 664e0f19 bellard
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
64 2c0262af bellard
#define ST1    ST(1)
65 2c0262af bellard
66 2c0262af bellard
#include "cpu.h"
67 2c0262af bellard
#include "exec-all.h"
68 2c0262af bellard
69 d9957a8b blueswir1
/* op_helper.c */
70 5fafdf24 ths
void do_interrupt(int intno, int is_int, int error_code,
71 14ce26e7 bellard
                  target_ulong next_eip, int is_hw);
72 5fafdf24 ths
void do_interrupt_user(int intno, int is_int, int error_code,
73 14ce26e7 bellard
                       target_ulong next_eip);
74 a5e50b26 malc
void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75 a5e50b26 malc
void QEMU_NORETURN raise_exception(int exception_index);
76 63a54736 Jason Wessel
void QEMU_NORETURN raise_exception_env(int exception_index, CPUState *nenv);
77 3b21e03e bellard
void do_smm_enter(void);
78 2c0262af bellard
79 b6abf97d bellard
/* n must be a constant to be efficient */
80 b6abf97d bellard
static inline target_long lshift(target_long x, int n)
81 b6abf97d bellard
{
82 b6abf97d bellard
    if (n >= 0)
83 b6abf97d bellard
        return x << n;
84 b6abf97d bellard
    else
85 b6abf97d bellard
        return x >> (-n);
86 b6abf97d bellard
}
87 b6abf97d bellard
88 57fec1fe bellard
#include "helper.h"
89 57fec1fe bellard
90 b8b6a50b bellard
static inline void svm_check_intercept(uint32_t type)
91 b8b6a50b bellard
{
92 b8b6a50b bellard
    helper_svm_check_intercept_param(type, 0);
93 b8b6a50b bellard
}
94 3e25f951 bellard
95 9951bf39 bellard
#if !defined(CONFIG_USER_ONLY)
96 9951bf39 bellard
97 a9049a07 bellard
#include "softmmu_exec.h"
98 9951bf39 bellard
99 9951bf39 bellard
#endif /* !defined(CONFIG_USER_ONLY) */
100 9951bf39 bellard
101 2c0262af bellard
#ifdef USE_X86LDOUBLE
102 2c0262af bellard
/* use long double functions */
103 7a0e1f41 bellard
#define floatx_to_int32 floatx80_to_int32
104 7a0e1f41 bellard
#define floatx_to_int64 floatx80_to_int64
105 465e9838 bellard
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
106 465e9838 bellard
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
107 19e6c4b8 bellard
#define int32_to_floatx int32_to_floatx80
108 19e6c4b8 bellard
#define int64_to_floatx int64_to_floatx80
109 19e6c4b8 bellard
#define float32_to_floatx float32_to_floatx80
110 19e6c4b8 bellard
#define float64_to_floatx float64_to_floatx80
111 19e6c4b8 bellard
#define floatx_to_float32 floatx80_to_float32
112 19e6c4b8 bellard
#define floatx_to_float64 floatx80_to_float64
113 67dd64bf Aurelien Jarno
#define floatx_add floatx80_add
114 13822781 Aurelien Jarno
#define floatx_div floatx80_div
115 67dd64bf Aurelien Jarno
#define floatx_mul floatx80_mul
116 67dd64bf Aurelien Jarno
#define floatx_sub floatx80_sub
117 fec05e42 Aurelien Jarno
#define floatx_sqrt floatx80_sqrt
118 7a0e1f41 bellard
#define floatx_abs floatx80_abs
119 7a0e1f41 bellard
#define floatx_chs floatx80_chs
120 be1c17c7 Aurelien Jarno
#define floatx_scalbn floatx80_scalbn
121 7a0e1f41 bellard
#define floatx_round_to_int floatx80_round_to_int
122 8422b113 bellard
#define floatx_compare floatx80_compare
123 8422b113 bellard
#define floatx_compare_quiet floatx80_compare_quiet
124 be1c17c7 Aurelien Jarno
#define floatx_is_any_nan floatx80_is_any_nan
125 fec05e42 Aurelien Jarno
#define floatx_is_neg floatx80_is_neg
126 13822781 Aurelien Jarno
#define floatx_is_zero floatx80_is_zero
127 a1d8db07 Aurelien Jarno
#define floatx_zero floatx80_zero
128 a1d8db07 Aurelien Jarno
#define floatx_one floatx80_one
129 a1d8db07 Aurelien Jarno
#define floatx_ln2 floatx80_ln2
130 a1d8db07 Aurelien Jarno
#define floatx_pi floatx80_pi
131 7d3505c5 bellard
#else
132 7a0e1f41 bellard
#define floatx_to_int32 float64_to_int32
133 7a0e1f41 bellard
#define floatx_to_int64 float64_to_int64
134 465e9838 bellard
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
135 465e9838 bellard
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
136 19e6c4b8 bellard
#define int32_to_floatx int32_to_float64
137 19e6c4b8 bellard
#define int64_to_floatx int64_to_float64
138 19e6c4b8 bellard
#define float32_to_floatx float32_to_float64
139 19e6c4b8 bellard
#define float64_to_floatx(x, e) (x)
140 19e6c4b8 bellard
#define floatx_to_float32 float64_to_float32
141 19e6c4b8 bellard
#define floatx_to_float64(x, e) (x)
142 67dd64bf Aurelien Jarno
#define floatx_add float64_add
143 13822781 Aurelien Jarno
#define floatx_div float64_div
144 67dd64bf Aurelien Jarno
#define floatx_mul float64_mul
145 67dd64bf Aurelien Jarno
#define floatx_sub float64_sub
146 fec05e42 Aurelien Jarno
#define floatx_sqrt float64_sqrt
147 7a0e1f41 bellard
#define floatx_abs float64_abs
148 7a0e1f41 bellard
#define floatx_chs float64_chs
149 be1c17c7 Aurelien Jarno
#define floatx_scalbn float64_scalbn
150 7a0e1f41 bellard
#define floatx_round_to_int float64_round_to_int
151 8422b113 bellard
#define floatx_compare float64_compare
152 8422b113 bellard
#define floatx_compare_quiet float64_compare_quiet
153 be1c17c7 Aurelien Jarno
#define floatx_is_any_nan float64_is_any_nan
154 fec05e42 Aurelien Jarno
#define floatx_is_neg float64_is_neg
155 13822781 Aurelien Jarno
#define floatx_is_zero float64_is_zero
156 a1d8db07 Aurelien Jarno
#define floatx_zero float64_zero
157 a1d8db07 Aurelien Jarno
#define floatx_one float64_one
158 a1d8db07 Aurelien Jarno
#define floatx_ln2 float64_ln2
159 a1d8db07 Aurelien Jarno
#define floatx_pi float64_pi
160 7d3505c5 bellard
#endif
161 7a0e1f41 bellard
162 2c0262af bellard
#define RC_MASK         0xc00
163 2c0262af bellard
#define RC_NEAR                0x000
164 2c0262af bellard
#define RC_DOWN                0x400
165 2c0262af bellard
#define RC_UP                0x800
166 2c0262af bellard
#define RC_CHOP                0xc00
167 2c0262af bellard
168 2c0262af bellard
#define MAXTAN 9223372036854775808.0
169 2c0262af bellard
170 2c0262af bellard
#ifdef USE_X86LDOUBLE
171 2c0262af bellard
172 2c0262af bellard
/* only for x86 */
173 c4137223 Aurelien Jarno
typedef CPU_LDoubleU CPU86_LDoubleU;
174 2c0262af bellard
175 2c0262af bellard
/* the following deal with x86 long double-precision numbers */
176 2c0262af bellard
#define MAXEXPD 0x7fff
177 2c0262af bellard
#define EXPBIAS 16383
178 2c0262af bellard
#define EXPD(fp)        (fp.l.upper & 0x7fff)
179 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
180 2c0262af bellard
#define MANTD(fp)       (fp.l.lower)
181 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
182 2c0262af bellard
183 2c0262af bellard
#else
184 2c0262af bellard
185 c4137223 Aurelien Jarno
typedef CPU_DoubleU CPU86_LDoubleU;
186 2c0262af bellard
187 2c0262af bellard
/* the following deal with IEEE double-precision numbers */
188 2c0262af bellard
#define MAXEXPD 0x7ff
189 2c0262af bellard
#define EXPBIAS 1023
190 2c0262af bellard
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
191 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
192 2c0262af bellard
#ifdef __arm__
193 2c0262af bellard
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
194 2c0262af bellard
#else
195 2c0262af bellard
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
196 2c0262af bellard
#endif
197 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
198 2c0262af bellard
#endif
199 2c0262af bellard
200 2c0262af bellard
static inline void fpush(void)
201 2c0262af bellard
{
202 2c0262af bellard
    env->fpstt = (env->fpstt - 1) & 7;
203 2c0262af bellard
    env->fptags[env->fpstt] = 0; /* validate stack entry */
204 2c0262af bellard
}
205 2c0262af bellard
206 2c0262af bellard
static inline void fpop(void)
207 2c0262af bellard
{
208 2c0262af bellard
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
209 2c0262af bellard
    env->fpstt = (env->fpstt + 1) & 7;
210 2c0262af bellard
}
211 2c0262af bellard
212 2c0262af bellard
#ifndef USE_X86LDOUBLE
213 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
214 2c0262af bellard
{
215 2c0262af bellard
    CPU86_LDoubleU temp;
216 2c0262af bellard
    int upper, e;
217 2c0262af bellard
    uint64_t ll;
218 2c0262af bellard
219 2c0262af bellard
    /* mantissa */
220 2c0262af bellard
    upper = lduw(ptr + 8);
221 2c0262af bellard
    /* XXX: handle overflow ? */
222 2c0262af bellard
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
223 2c0262af bellard
    e |= (upper >> 4) & 0x800; /* sign */
224 2c0262af bellard
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
225 2c0262af bellard
#ifdef __arm__
226 2c0262af bellard
    temp.l.upper = (e << 20) | (ll >> 32);
227 2c0262af bellard
    temp.l.lower = ll;
228 2c0262af bellard
#else
229 2c0262af bellard
    temp.ll = ll | ((uint64_t)e << 52);
230 2c0262af bellard
#endif
231 2c0262af bellard
    return temp.d;
232 2c0262af bellard
}
233 2c0262af bellard
234 664e0f19 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
235 2c0262af bellard
{
236 2c0262af bellard
    CPU86_LDoubleU temp;
237 2c0262af bellard
    int e;
238 2c0262af bellard
239 2c0262af bellard
    temp.d = f;
240 2c0262af bellard
    /* mantissa */
241 2c0262af bellard
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
242 2c0262af bellard
    /* exponent + sign */
243 2c0262af bellard
    e = EXPD(temp) - EXPBIAS + 16383;
244 2c0262af bellard
    e |= SIGND(temp) >> 16;
245 2c0262af bellard
    stw(ptr + 8, e);
246 2c0262af bellard
}
247 9951bf39 bellard
#else
248 9951bf39 bellard
249 9951bf39 bellard
/* we use memory access macros */
250 9951bf39 bellard
251 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
252 9951bf39 bellard
{
253 9951bf39 bellard
    CPU86_LDoubleU temp;
254 9951bf39 bellard
255 9951bf39 bellard
    temp.l.lower = ldq(ptr);
256 9951bf39 bellard
    temp.l.upper = lduw(ptr + 8);
257 9951bf39 bellard
    return temp.d;
258 9951bf39 bellard
}
259 9951bf39 bellard
260 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
261 9951bf39 bellard
{
262 9951bf39 bellard
    CPU86_LDoubleU temp;
263 3b46e624 ths
264 9951bf39 bellard
    temp.d = f;
265 9951bf39 bellard
    stq(ptr, temp.l.lower);
266 9951bf39 bellard
    stw(ptr + 8, temp.l.upper);
267 9951bf39 bellard
}
268 9951bf39 bellard
269 9951bf39 bellard
#endif /* USE_X86LDOUBLE */
270 2c0262af bellard
271 2ee73ac3 bellard
#define FPUS_IE (1 << 0)
272 2ee73ac3 bellard
#define FPUS_DE (1 << 1)
273 2ee73ac3 bellard
#define FPUS_ZE (1 << 2)
274 2ee73ac3 bellard
#define FPUS_OE (1 << 3)
275 2ee73ac3 bellard
#define FPUS_UE (1 << 4)
276 2ee73ac3 bellard
#define FPUS_PE (1 << 5)
277 2ee73ac3 bellard
#define FPUS_SF (1 << 6)
278 2ee73ac3 bellard
#define FPUS_SE (1 << 7)
279 2ee73ac3 bellard
#define FPUS_B  (1 << 15)
280 2ee73ac3 bellard
281 2ee73ac3 bellard
#define FPUC_EM 0x3f
282 2ee73ac3 bellard
283 2c0262af bellard
static inline uint32_t compute_eflags(void)
284 2c0262af bellard
{
285 a7812ae4 pbrook
    return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
286 2c0262af bellard
}
287 2c0262af bellard
288 2c0262af bellard
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
289 2c0262af bellard
static inline void load_eflags(int eflags, int update_mask)
290 2c0262af bellard
{
291 2c0262af bellard
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
292 2c0262af bellard
    DF = 1 - (2 * ((eflags >> 10) & 1));
293 5fafdf24 ths
    env->eflags = (env->eflags & ~update_mask) |
294 093f8f06 bellard
        (eflags & update_mask) | 0x2;
295 2c0262af bellard
}
296 2c0262af bellard
297 6a4955a8 aliguori
static inline int cpu_has_work(CPUState *env)
298 6a4955a8 aliguori
{
299 ac098781 Jan Kiszka
    return ((env->interrupt_request & CPU_INTERRUPT_HARD) &&
300 ac098781 Jan Kiszka
            (env->eflags & IF_MASK)) ||
301 ac098781 Jan Kiszka
           (env->interrupt_request & (CPU_INTERRUPT_NMI |
302 ac098781 Jan Kiszka
                                      CPU_INTERRUPT_INIT |
303 ac098781 Jan Kiszka
                                      CPU_INTERRUPT_SIPI |
304 ac098781 Jan Kiszka
                                      CPU_INTERRUPT_MCE));
305 6a4955a8 aliguori
}
306 6a4955a8 aliguori
307 5efc27bb bellard
/* load efer and update the corresponding hflags. XXX: do consistency
308 5efc27bb bellard
   checks with cpuid bits ? */
309 5efc27bb bellard
static inline void cpu_load_efer(CPUState *env, uint64_t val)
310 5efc27bb bellard
{
311 5efc27bb bellard
    env->efer = val;
312 5efc27bb bellard
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
313 5efc27bb bellard
    if (env->efer & MSR_EFER_LMA)
314 5efc27bb bellard
        env->hflags |= HF_LMA_MASK;
315 5efc27bb bellard
    if (env->efer & MSR_EFER_SVME)
316 5efc27bb bellard
        env->hflags |= HF_SVME_MASK;
317 5efc27bb bellard
}
318 10eb0cc0 Paolo Bonzini
319 10eb0cc0 Paolo Bonzini
static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
320 10eb0cc0 Paolo Bonzini
{
321 10eb0cc0 Paolo Bonzini
    env->eip = tb->pc - tb->cs_base;
322 10eb0cc0 Paolo Bonzini
}