Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ a1d8db07

History | View | Annotate | Download (8.8 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include "config.h"
20
#include "dyngen-exec.h"
21

    
22
/* XXX: factorize this mess */
23
#ifdef TARGET_X86_64
24
#define TARGET_LONG_BITS 64
25
#else
26
#define TARGET_LONG_BITS 32
27
#endif
28

    
29
#include "cpu-defs.h"
30

    
31
register struct CPUX86State *env asm(AREG0);
32

    
33
#include "qemu-common.h"
34
#include "qemu-log.h"
35

    
36
#undef EAX
37
#define EAX (env->regs[R_EAX])
38
#undef ECX
39
#define ECX (env->regs[R_ECX])
40
#undef EDX
41
#define EDX (env->regs[R_EDX])
42
#undef EBX
43
#define EBX (env->regs[R_EBX])
44
#undef ESP
45
#define ESP (env->regs[R_ESP])
46
#undef EBP
47
#define EBP (env->regs[R_EBP])
48
#undef ESI
49
#define ESI (env->regs[R_ESI])
50
#undef EDI
51
#define EDI (env->regs[R_EDI])
52
#undef EIP
53
#define EIP (env->eip)
54
#define DF  (env->df)
55

    
56
#define CC_SRC (env->cc_src)
57
#define CC_DST (env->cc_dst)
58
#define CC_OP  (env->cc_op)
59

    
60
/* float macros */
61
#define FT0    (env->ft0)
62
#define ST0    (env->fpregs[env->fpstt].d)
63
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
64
#define ST1    ST(1)
65

    
66
#include "cpu.h"
67
#include "exec-all.h"
68

    
69
/* op_helper.c */
70
void do_interrupt(int intno, int is_int, int error_code,
71
                  target_ulong next_eip, int is_hw);
72
void do_interrupt_user(int intno, int is_int, int error_code,
73
                       target_ulong next_eip);
74
void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
75
void QEMU_NORETURN raise_exception(int exception_index);
76
void QEMU_NORETURN raise_exception_env(int exception_index, CPUState *nenv);
77
void do_smm_enter(void);
78

    
79
/* n must be a constant to be efficient */
80
static inline target_long lshift(target_long x, int n)
81
{
82
    if (n >= 0)
83
        return x << n;
84
    else
85
        return x >> (-n);
86
}
87

    
88
#include "helper.h"
89

    
90
static inline void svm_check_intercept(uint32_t type)
91
{
92
    helper_svm_check_intercept_param(type, 0);
93
}
94

    
95
#if !defined(CONFIG_USER_ONLY)
96

    
97
#include "softmmu_exec.h"
98

    
99
#endif /* !defined(CONFIG_USER_ONLY) */
100

    
101
#ifdef USE_X86LDOUBLE
102
/* use long double functions */
103
#define floatx_to_int32 floatx80_to_int32
104
#define floatx_to_int64 floatx80_to_int64
105
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
106
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
107
#define int32_to_floatx int32_to_floatx80
108
#define int64_to_floatx int64_to_floatx80
109
#define float32_to_floatx float32_to_floatx80
110
#define float64_to_floatx float64_to_floatx80
111
#define floatx_to_float32 floatx80_to_float32
112
#define floatx_to_float64 floatx80_to_float64
113
#define floatx_add floatx80_add
114
#define floatx_div floatx80_div
115
#define floatx_mul floatx80_mul
116
#define floatx_sub floatx80_sub
117
#define floatx_sqrt floatx80_sqrt
118
#define floatx_abs floatx80_abs
119
#define floatx_chs floatx80_chs
120
#define floatx_scalbn floatx80_scalbn
121
#define floatx_round_to_int floatx80_round_to_int
122
#define floatx_compare floatx80_compare
123
#define floatx_compare_quiet floatx80_compare_quiet
124
#define floatx_is_any_nan floatx80_is_any_nan
125
#define floatx_is_neg floatx80_is_neg
126
#define floatx_is_zero floatx80_is_zero
127
#define floatx_zero floatx80_zero
128
#define floatx_one floatx80_one
129
#define floatx_ln2 floatx80_ln2
130
#define floatx_pi floatx80_pi
131
#else
132
#define floatx_to_int32 float64_to_int32
133
#define floatx_to_int64 float64_to_int64
134
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
135
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
136
#define int32_to_floatx int32_to_float64
137
#define int64_to_floatx int64_to_float64
138
#define float32_to_floatx float32_to_float64
139
#define float64_to_floatx(x, e) (x)
140
#define floatx_to_float32 float64_to_float32
141
#define floatx_to_float64(x, e) (x)
142
#define floatx_add float64_add
143
#define floatx_div float64_div
144
#define floatx_mul float64_mul
145
#define floatx_sub float64_sub
146
#define floatx_sqrt float64_sqrt
147
#define floatx_abs float64_abs
148
#define floatx_chs float64_chs
149
#define floatx_scalbn float64_scalbn
150
#define floatx_round_to_int float64_round_to_int
151
#define floatx_compare float64_compare
152
#define floatx_compare_quiet float64_compare_quiet
153
#define floatx_is_any_nan float64_is_any_nan
154
#define floatx_is_neg float64_is_neg
155
#define floatx_is_zero float64_is_zero
156
#define floatx_zero float64_zero
157
#define floatx_one float64_one
158
#define floatx_ln2 float64_ln2
159
#define floatx_pi float64_pi
160
#endif
161

    
162
#define RC_MASK         0xc00
163
#define RC_NEAR                0x000
164
#define RC_DOWN                0x400
165
#define RC_UP                0x800
166
#define RC_CHOP                0xc00
167

    
168
#define MAXTAN 9223372036854775808.0
169

    
170
#ifdef USE_X86LDOUBLE
171

    
172
/* only for x86 */
173
typedef CPU_LDoubleU CPU86_LDoubleU;
174

    
175
/* the following deal with x86 long double-precision numbers */
176
#define MAXEXPD 0x7fff
177
#define EXPBIAS 16383
178
#define EXPD(fp)        (fp.l.upper & 0x7fff)
179
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
180
#define MANTD(fp)       (fp.l.lower)
181
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
182

    
183
#else
184

    
185
typedef CPU_DoubleU CPU86_LDoubleU;
186

    
187
/* the following deal with IEEE double-precision numbers */
188
#define MAXEXPD 0x7ff
189
#define EXPBIAS 1023
190
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
191
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
192
#ifdef __arm__
193
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
194
#else
195
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
196
#endif
197
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
198
#endif
199

    
200
static inline void fpush(void)
201
{
202
    env->fpstt = (env->fpstt - 1) & 7;
203
    env->fptags[env->fpstt] = 0; /* validate stack entry */
204
}
205

    
206
static inline void fpop(void)
207
{
208
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
209
    env->fpstt = (env->fpstt + 1) & 7;
210
}
211

    
212
#ifndef USE_X86LDOUBLE
213
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
214
{
215
    CPU86_LDoubleU temp;
216
    int upper, e;
217
    uint64_t ll;
218

    
219
    /* mantissa */
220
    upper = lduw(ptr + 8);
221
    /* XXX: handle overflow ? */
222
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
223
    e |= (upper >> 4) & 0x800; /* sign */
224
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
225
#ifdef __arm__
226
    temp.l.upper = (e << 20) | (ll >> 32);
227
    temp.l.lower = ll;
228
#else
229
    temp.ll = ll | ((uint64_t)e << 52);
230
#endif
231
    return temp.d;
232
}
233

    
234
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
235
{
236
    CPU86_LDoubleU temp;
237
    int e;
238

    
239
    temp.d = f;
240
    /* mantissa */
241
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
242
    /* exponent + sign */
243
    e = EXPD(temp) - EXPBIAS + 16383;
244
    e |= SIGND(temp) >> 16;
245
    stw(ptr + 8, e);
246
}
247
#else
248

    
249
/* we use memory access macros */
250

    
251
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
252
{
253
    CPU86_LDoubleU temp;
254

    
255
    temp.l.lower = ldq(ptr);
256
    temp.l.upper = lduw(ptr + 8);
257
    return temp.d;
258
}
259

    
260
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
261
{
262
    CPU86_LDoubleU temp;
263

    
264
    temp.d = f;
265
    stq(ptr, temp.l.lower);
266
    stw(ptr + 8, temp.l.upper);
267
}
268

    
269
#endif /* USE_X86LDOUBLE */
270

    
271
#define FPUS_IE (1 << 0)
272
#define FPUS_DE (1 << 1)
273
#define FPUS_ZE (1 << 2)
274
#define FPUS_OE (1 << 3)
275
#define FPUS_UE (1 << 4)
276
#define FPUS_PE (1 << 5)
277
#define FPUS_SF (1 << 6)
278
#define FPUS_SE (1 << 7)
279
#define FPUS_B  (1 << 15)
280

    
281
#define FPUC_EM 0x3f
282

    
283
static inline uint32_t compute_eflags(void)
284
{
285
    return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
286
}
287

    
288
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
289
static inline void load_eflags(int eflags, int update_mask)
290
{
291
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
292
    DF = 1 - (2 * ((eflags >> 10) & 1));
293
    env->eflags = (env->eflags & ~update_mask) |
294
        (eflags & update_mask) | 0x2;
295
}
296

    
297
static inline int cpu_has_work(CPUState *env)
298
{
299
    return ((env->interrupt_request & CPU_INTERRUPT_HARD) &&
300
            (env->eflags & IF_MASK)) ||
301
           (env->interrupt_request & (CPU_INTERRUPT_NMI |
302
                                      CPU_INTERRUPT_INIT |
303
                                      CPU_INTERRUPT_SIPI |
304
                                      CPU_INTERRUPT_MCE));
305
}
306

    
307
/* load efer and update the corresponding hflags. XXX: do consistency
308
   checks with cpuid bits ? */
309
static inline void cpu_load_efer(CPUState *env, uint64_t val)
310
{
311
    env->efer = val;
312
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
313
    if (env->efer & MSR_EFER_LMA)
314
        env->hflags |= HF_LMA_MASK;
315
    if (env->efer & MSR_EFER_SVME)
316
        env->hflags |= HF_SVME_MASK;
317
}
318

    
319
static inline void cpu_pc_from_tb(CPUState *env, TranslationBlock *tb)
320
{
321
    env->eip = tb->pc - tb->cs_base;
322
}
323