Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ a36b1029

History | View | Annotate | Download (18.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25

    
26
//#define DEBUG_KVM
27

    
28
#ifdef DEBUG_KVM
29
#define dprintf(fmt, ...) \
30
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31
#else
32
#define dprintf(fmt, ...) \
33
    do { } while (0)
34
#endif
35

    
36
int kvm_arch_init_vcpu(CPUState *env)
37
{
38
    struct {
39
        struct kvm_cpuid2 cpuid;
40
        struct kvm_cpuid_entry2 entries[100];
41
    } __attribute__((packed)) cpuid_data;
42
    uint32_t limit, i, j, cpuid_i;
43
    uint32_t eax, ebx, ecx, edx;
44

    
45
    cpuid_i = 0;
46

    
47
    cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx);
48
    limit = eax;
49

    
50
    for (i = 0; i <= limit; i++) {
51
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
52

    
53
        switch (i) {
54
        case 2: {
55
            /* Keep reading function 2 till all the input is received */
56
            int times;
57

    
58
            cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
59
            times = eax & 0xff;
60

    
61
            c->function = i;
62
            c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
63
            c->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
64
            c->eax = eax;
65
            c->ebx = ebx;
66
            c->ecx = ecx;
67
            c->edx = edx;
68

    
69
            for (j = 1; j < times; ++j) {
70
                cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
71
                c->function = i;
72
                c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
73
                c->eax = eax;
74
                c->ebx = ebx;
75
                c->ecx = ecx;
76
                c->edx = edx;
77
            }
78
            break;
79
        }
80
        case 4:
81
        case 0xb:
82
        case 0xd:
83
            for (j = 0; ; j++) {
84
                cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx);
85
                c->function = i;
86
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
87
                c->index = j;
88
                c->eax = eax;
89
                c->ebx = ebx;
90
                c->ecx = ecx;
91
                c->edx = edx;
92
                c = &cpuid_data.entries[++cpuid_i];
93

    
94
                if (i == 4 && eax == 0)
95
                    break;
96
                if (i == 0xb && !(ecx & 0xff00))
97
                    break;
98
                if (i == 0xd && eax == 0)
99
                    break;
100
            }
101
            break;
102
        default:
103
            cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
104
            c->function = i;
105
            c->eax = eax;
106
            c->ebx = ebx;
107
            c->ecx = ecx;
108
            c->edx = edx;
109
            break;
110
        }
111
    }
112
    cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
113
    limit = eax;
114

    
115
    for (i = 0x80000000; i <= limit; i++) {
116
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
117

    
118
        cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
119
        c->function = i;
120
        c->eax = eax;
121
        c->ebx = ebx;
122
        c->ecx = ecx;
123
        c->edx = edx;
124
    }
125

    
126
    cpuid_data.cpuid.nent = cpuid_i;
127

    
128
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
129
}
130

    
131
static int kvm_has_msr_star(CPUState *env)
132
{
133
    static int has_msr_star;
134
    int ret;
135

    
136
    /* first time */
137
    if (has_msr_star == 0) {        
138
        struct kvm_msr_list msr_list, *kvm_msr_list;
139

    
140
        has_msr_star = -1;
141

    
142
        /* Obtain MSR list from KVM.  These are the MSRs that we must
143
         * save/restore */
144
        msr_list.nmsrs = 0;
145
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
146
        if (ret < 0)
147
            return 0;
148

    
149
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
150
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
151

    
152
        kvm_msr_list->nmsrs = msr_list.nmsrs;
153
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
154
        if (ret >= 0) {
155
            int i;
156

    
157
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
158
                if (kvm_msr_list->indices[i] == MSR_STAR) {
159
                    has_msr_star = 1;
160
                    break;
161
                }
162
            }
163
        }
164

    
165
        free(kvm_msr_list);
166
    }
167

    
168
    if (has_msr_star == 1)
169
        return 1;
170
    return 0;
171
}
172

    
173
int kvm_arch_init(KVMState *s, int smp_cpus)
174
{
175
    int ret;
176

    
177
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
178
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
179
     * must be part of guest physical memory, we need to allocate it.  Older
180
     * versions of KVM just assumed that it would be at the end of physical
181
     * memory but that doesn't work with more than 4GB of memory.  We simply
182
     * refuse to work with those older versions of KVM. */
183
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
184
    if (ret <= 0) {
185
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
186
        return ret;
187
    }
188

    
189
    /* this address is 3 pages before the bios, and the bios should present
190
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
191
     * this?
192
     */
193
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
194
}
195
                    
196
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
197
{
198
    lhs->selector = rhs->selector;
199
    lhs->base = rhs->base;
200
    lhs->limit = rhs->limit;
201
    lhs->type = 3;
202
    lhs->present = 1;
203
    lhs->dpl = 3;
204
    lhs->db = 0;
205
    lhs->s = 1;
206
    lhs->l = 0;
207
    lhs->g = 0;
208
    lhs->avl = 0;
209
    lhs->unusable = 0;
210
}
211

    
212
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
213
{
214
    unsigned flags = rhs->flags;
215
    lhs->selector = rhs->selector;
216
    lhs->base = rhs->base;
217
    lhs->limit = rhs->limit;
218
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
219
    lhs->present = (flags & DESC_P_MASK) != 0;
220
    lhs->dpl = rhs->selector & 3;
221
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
222
    lhs->s = (flags & DESC_S_MASK) != 0;
223
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
224
    lhs->g = (flags & DESC_G_MASK) != 0;
225
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
226
    lhs->unusable = 0;
227
}
228

    
229
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
230
{
231
    lhs->selector = rhs->selector;
232
    lhs->base = rhs->base;
233
    lhs->limit = rhs->limit;
234
    lhs->flags =
235
        (rhs->type << DESC_TYPE_SHIFT)
236
        | (rhs->present * DESC_P_MASK)
237
        | (rhs->dpl << DESC_DPL_SHIFT)
238
        | (rhs->db << DESC_B_SHIFT)
239
        | (rhs->s * DESC_S_MASK)
240
        | (rhs->l << DESC_L_SHIFT)
241
        | (rhs->g * DESC_G_MASK)
242
        | (rhs->avl * DESC_AVL_MASK);
243
}
244

    
245
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
246
{
247
    if (set)
248
        *kvm_reg = *qemu_reg;
249
    else
250
        *qemu_reg = *kvm_reg;
251
}
252

    
253
static int kvm_getput_regs(CPUState *env, int set)
254
{
255
    struct kvm_regs regs;
256
    int ret = 0;
257

    
258
    if (!set) {
259
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
260
        if (ret < 0)
261
            return ret;
262
    }
263

    
264
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
265
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
266
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
267
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
268
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
269
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
270
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
271
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
272
#ifdef TARGET_X86_64
273
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
274
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
275
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
276
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
277
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
278
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
279
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
280
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
281
#endif
282

    
283
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
284
    kvm_getput_reg(&regs.rip, &env->eip, set);
285

    
286
    if (set)
287
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
288

    
289
    return ret;
290
}
291

    
292
static int kvm_put_fpu(CPUState *env)
293
{
294
    struct kvm_fpu fpu;
295
    int i;
296

    
297
    memset(&fpu, 0, sizeof fpu);
298
    fpu.fsw = env->fpus & ~(7 << 11);
299
    fpu.fsw |= (env->fpstt & 7) << 11;
300
    fpu.fcw = env->fpuc;
301
    for (i = 0; i < 8; ++i)
302
        fpu.ftwx |= (!env->fptags[i]) << i;
303
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
304
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
305
    fpu.mxcsr = env->mxcsr;
306

    
307
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
308
}
309

    
310
static int kvm_put_sregs(CPUState *env)
311
{
312
    struct kvm_sregs sregs;
313

    
314
    memcpy(sregs.interrupt_bitmap,
315
           env->interrupt_bitmap,
316
           sizeof(sregs.interrupt_bitmap));
317

    
318
    if ((env->eflags & VM_MASK)) {
319
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
320
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
321
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
322
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
323
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
324
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
325
    } else {
326
            set_seg(&sregs.cs, &env->segs[R_CS]);
327
            set_seg(&sregs.ds, &env->segs[R_DS]);
328
            set_seg(&sregs.es, &env->segs[R_ES]);
329
            set_seg(&sregs.fs, &env->segs[R_FS]);
330
            set_seg(&sregs.gs, &env->segs[R_GS]);
331
            set_seg(&sregs.ss, &env->segs[R_SS]);
332

    
333
            if (env->cr[0] & CR0_PE_MASK) {
334
                /* force ss cpl to cs cpl */
335
                sregs.ss.selector = (sregs.ss.selector & ~3) |
336
                        (sregs.cs.selector & 3);
337
                sregs.ss.dpl = sregs.ss.selector & 3;
338
            }
339
    }
340

    
341
    set_seg(&sregs.tr, &env->tr);
342
    set_seg(&sregs.ldt, &env->ldt);
343

    
344
    sregs.idt.limit = env->idt.limit;
345
    sregs.idt.base = env->idt.base;
346
    sregs.gdt.limit = env->gdt.limit;
347
    sregs.gdt.base = env->gdt.base;
348

    
349
    sregs.cr0 = env->cr[0];
350
    sregs.cr2 = env->cr[2];
351
    sregs.cr3 = env->cr[3];
352
    sregs.cr4 = env->cr[4];
353

    
354
    sregs.cr8 = cpu_get_apic_tpr(env);
355
    sregs.apic_base = cpu_get_apic_base(env);
356

    
357
    sregs.efer = env->efer;
358

    
359
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
360
}
361

    
362
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
363
                              uint32_t index, uint64_t value)
364
{
365
    entry->index = index;
366
    entry->data = value;
367
}
368

    
369
static int kvm_put_msrs(CPUState *env)
370
{
371
    struct {
372
        struct kvm_msrs info;
373
        struct kvm_msr_entry entries[100];
374
    } msr_data;
375
    struct kvm_msr_entry *msrs = msr_data.entries;
376
    int n = 0;
377

    
378
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
379
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
380
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
381
    if (kvm_has_msr_star(env))
382
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
383
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
384
#ifdef TARGET_X86_64
385
    /* FIXME if lm capable */
386
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
387
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
388
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
389
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
390
#endif
391
    msr_data.info.nmsrs = n;
392

    
393
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
394

    
395
}
396

    
397

    
398
static int kvm_get_fpu(CPUState *env)
399
{
400
    struct kvm_fpu fpu;
401
    int i, ret;
402

    
403
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
404
    if (ret < 0)
405
        return ret;
406

    
407
    env->fpstt = (fpu.fsw >> 11) & 7;
408
    env->fpus = fpu.fsw;
409
    env->fpuc = fpu.fcw;
410
    for (i = 0; i < 8; ++i)
411
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
412
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
413
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
414
    env->mxcsr = fpu.mxcsr;
415

    
416
    return 0;
417
}
418

    
419
static int kvm_get_sregs(CPUState *env)
420
{
421
    struct kvm_sregs sregs;
422
    uint32_t hflags;
423
    int ret;
424

    
425
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
426
    if (ret < 0)
427
        return ret;
428

    
429
    memcpy(env->interrupt_bitmap, 
430
           sregs.interrupt_bitmap,
431
           sizeof(sregs.interrupt_bitmap));
432

    
433
    get_seg(&env->segs[R_CS], &sregs.cs);
434
    get_seg(&env->segs[R_DS], &sregs.ds);
435
    get_seg(&env->segs[R_ES], &sregs.es);
436
    get_seg(&env->segs[R_FS], &sregs.fs);
437
    get_seg(&env->segs[R_GS], &sregs.gs);
438
    get_seg(&env->segs[R_SS], &sregs.ss);
439

    
440
    get_seg(&env->tr, &sregs.tr);
441
    get_seg(&env->ldt, &sregs.ldt);
442

    
443
    env->idt.limit = sregs.idt.limit;
444
    env->idt.base = sregs.idt.base;
445
    env->gdt.limit = sregs.gdt.limit;
446
    env->gdt.base = sregs.gdt.base;
447

    
448
    env->cr[0] = sregs.cr0;
449
    env->cr[2] = sregs.cr2;
450
    env->cr[3] = sregs.cr3;
451
    env->cr[4] = sregs.cr4;
452

    
453
    cpu_set_apic_base(env, sregs.apic_base);
454

    
455
    env->efer = sregs.efer;
456
    //cpu_set_apic_tpr(env, sregs.cr8);
457

    
458
#define HFLAG_COPY_MASK ~( \
459
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
460
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
461
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
462
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
463

    
464

    
465

    
466
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
467
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
468
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
469
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
470
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
471
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
472
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
473

    
474
    if (env->efer & MSR_EFER_LMA) {
475
        hflags |= HF_LMA_MASK;
476
    }
477

    
478
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
479
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
480
    } else {
481
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
482
                (DESC_B_SHIFT - HF_CS32_SHIFT);
483
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
484
                (DESC_B_SHIFT - HF_SS32_SHIFT);
485
        if (!(env->cr[0] & CR0_PE_MASK) ||
486
                   (env->eflags & VM_MASK) ||
487
                   !(hflags & HF_CS32_MASK)) {
488
                hflags |= HF_ADDSEG_MASK;
489
            } else {
490
                hflags |= ((env->segs[R_DS].base |
491
                                env->segs[R_ES].base |
492
                                env->segs[R_SS].base) != 0) <<
493
                    HF_ADDSEG_SHIFT;
494
            }
495
    }
496
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
497

    
498
    return 0;
499
}
500

    
501
static int kvm_get_msrs(CPUState *env)
502
{
503
    struct {
504
        struct kvm_msrs info;
505
        struct kvm_msr_entry entries[100];
506
    } msr_data;
507
    struct kvm_msr_entry *msrs = msr_data.entries;
508
    int ret, i, n;
509

    
510
    n = 0;
511
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
512
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
513
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
514
    if (kvm_has_msr_star(env))
515
        msrs[n++].index = MSR_STAR;
516
    msrs[n++].index = MSR_IA32_TSC;
517
#ifdef TARGET_X86_64
518
    /* FIXME lm_capable_kernel */
519
    msrs[n++].index = MSR_CSTAR;
520
    msrs[n++].index = MSR_KERNELGSBASE;
521
    msrs[n++].index = MSR_FMASK;
522
    msrs[n++].index = MSR_LSTAR;
523
#endif
524
    msr_data.info.nmsrs = n;
525
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
526
    if (ret < 0)
527
        return ret;
528

    
529
    for (i = 0; i < ret; i++) {
530
        switch (msrs[i].index) {
531
        case MSR_IA32_SYSENTER_CS:
532
            env->sysenter_cs = msrs[i].data;
533
            break;
534
        case MSR_IA32_SYSENTER_ESP:
535
            env->sysenter_esp = msrs[i].data;
536
            break;
537
        case MSR_IA32_SYSENTER_EIP:
538
            env->sysenter_eip = msrs[i].data;
539
            break;
540
        case MSR_STAR:
541
            env->star = msrs[i].data;
542
            break;
543
#ifdef TARGET_X86_64
544
        case MSR_CSTAR:
545
            env->cstar = msrs[i].data;
546
            break;
547
        case MSR_KERNELGSBASE:
548
            env->kernelgsbase = msrs[i].data;
549
            break;
550
        case MSR_FMASK:
551
            env->fmask = msrs[i].data;
552
            break;
553
        case MSR_LSTAR:
554
            env->lstar = msrs[i].data;
555
            break;
556
#endif
557
        case MSR_IA32_TSC:
558
            env->tsc = msrs[i].data;
559
            break;
560
        }
561
    }
562

    
563
    return 0;
564
}
565

    
566
int kvm_arch_put_registers(CPUState *env)
567
{
568
    int ret;
569

    
570
    ret = kvm_getput_regs(env, 1);
571
    if (ret < 0)
572
        return ret;
573

    
574
    ret = kvm_put_fpu(env);
575
    if (ret < 0)
576
        return ret;
577

    
578
    ret = kvm_put_sregs(env);
579
    if (ret < 0)
580
        return ret;
581

    
582
    ret = kvm_put_msrs(env);
583
    if (ret < 0)
584
        return ret;
585

    
586
    return 0;
587
}
588

    
589
int kvm_arch_get_registers(CPUState *env)
590
{
591
    int ret;
592

    
593
    ret = kvm_getput_regs(env, 0);
594
    if (ret < 0)
595
        return ret;
596

    
597
    ret = kvm_get_fpu(env);
598
    if (ret < 0)
599
        return ret;
600

    
601
    ret = kvm_get_sregs(env);
602
    if (ret < 0)
603
        return ret;
604

    
605
    ret = kvm_get_msrs(env);
606
    if (ret < 0)
607
        return ret;
608

    
609
    return 0;
610
}
611

    
612
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
613
{
614
    /* Try to inject an interrupt if the guest can accept it */
615
    if (run->ready_for_interrupt_injection &&
616
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
617
        (env->eflags & IF_MASK)) {
618
        int irq;
619

    
620
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
621
        irq = cpu_get_pic_interrupt(env);
622
        if (irq >= 0) {
623
            struct kvm_interrupt intr;
624
            intr.irq = irq;
625
            /* FIXME: errors */
626
            dprintf("injected interrupt %d\n", irq);
627
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
628
        }
629
    }
630

    
631
    /* If we have an interrupt but the guest is not ready to receive an
632
     * interrupt, request an interrupt window exit.  This will
633
     * cause a return to userspace as soon as the guest is ready to
634
     * receive interrupts. */
635
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
636
        run->request_interrupt_window = 1;
637
    else
638
        run->request_interrupt_window = 0;
639

    
640
    dprintf("setting tpr\n");
641
    run->cr8 = cpu_get_apic_tpr(env);
642

    
643
    return 0;
644
}
645

    
646
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
647
{
648
    if (run->if_flag)
649
        env->eflags |= IF_MASK;
650
    else
651
        env->eflags &= ~IF_MASK;
652
    
653
    cpu_set_apic_tpr(env, run->cr8);
654
    cpu_set_apic_base(env, run->apic_base);
655

    
656
    return 0;
657
}
658

    
659
static int kvm_handle_halt(CPUState *env)
660
{
661
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
662
          (env->eflags & IF_MASK)) &&
663
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
664
        env->halted = 1;
665
        env->exception_index = EXCP_HLT;
666
        return 0;
667
    }
668

    
669
    return 1;
670
}
671

    
672
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
673
{
674
    int ret = 0;
675

    
676
    switch (run->exit_reason) {
677
    case KVM_EXIT_HLT:
678
        dprintf("handle_hlt\n");
679
        ret = kvm_handle_halt(env);
680
        break;
681
    }
682

    
683
    return ret;
684
}