Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ a496775f

History | View | Annotate | Download (57.7 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21

    
22
#include "op_helper.h"
23

    
24
#define MEMSUFFIX _raw
25
#include "op_helper.h"
26
#include "op_helper_mem.h"
27
#if !defined(CONFIG_USER_ONLY)
28
#define MEMSUFFIX _user
29
#include "op_helper.h"
30
#include "op_helper_mem.h"
31
#define MEMSUFFIX _kernel
32
#include "op_helper.h"
33
#include "op_helper_mem.h"
34
#endif
35

    
36
//#define DEBUG_OP
37
//#define DEBUG_EXCEPTIONS
38
//#define DEBUG_SOFTWARE_TLB
39
//#define FLUSH_ALL_TLBS
40

    
41
/*****************************************************************************/
42
/* Exceptions processing helpers */
43
void cpu_loop_exit (void)
44
{
45
    longjmp(env->jmp_env, 1);
46
}
47

    
48
void do_raise_exception_err (uint32_t exception, int error_code)
49
{
50
#if 0
51
    printf("Raise exception %3x code : %d\n", exception, error_code);
52
#endif
53
    switch (exception) {
54
    case EXCP_PROGRAM:
55
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
56
            return;
57
        break;
58
    default:
59
        break;
60
    }
61
    env->exception_index = exception;
62
    env->error_code = error_code;
63
    cpu_loop_exit();
64
}
65

    
66
void do_raise_exception (uint32_t exception)
67
{
68
    do_raise_exception_err(exception, 0);
69
}
70

    
71
void cpu_dump_EA (target_ulong EA);
72
void do_print_mem_EA (target_ulong EA)
73
{
74
    cpu_dump_EA(EA);
75
}
76

    
77
/*****************************************************************************/
78
/* Registers load and stores */
79
void do_load_cr (void)
80
{
81
    T0 = (env->crf[0] << 28) |
82
        (env->crf[1] << 24) |
83
        (env->crf[2] << 20) |
84
        (env->crf[3] << 16) |
85
        (env->crf[4] << 12) |
86
        (env->crf[5] << 8) |
87
        (env->crf[6] << 4) |
88
        (env->crf[7] << 0);
89
}
90

    
91
void do_store_cr (uint32_t mask)
92
{
93
    int i, sh;
94

    
95
    for (i = 0, sh = 7; i < 8; i++, sh --) {
96
        if (mask & (1 << sh))
97
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
98
    }
99
}
100

    
101
void do_load_xer (void)
102
{
103
    T0 = (xer_so << XER_SO) |
104
        (xer_ov << XER_OV) |
105
        (xer_ca << XER_CA) |
106
        (xer_bc << XER_BC) |
107
        (xer_cmp << XER_CMP);
108
}
109

    
110
void do_store_xer (void)
111
{
112
    xer_so = (T0 >> XER_SO) & 0x01;
113
    xer_ov = (T0 >> XER_OV) & 0x01;
114
    xer_ca = (T0 >> XER_CA) & 0x01;
115
    xer_cmp = (T0 >> XER_CMP) & 0xFF;
116
    xer_bc = (T0 >> XER_BC) & 0x7F;
117
}
118

    
119
void do_load_fpscr (void)
120
{
121
    /* The 32 MSB of the target fpr are undefined.
122
     * They'll be zero...
123
     */
124
    union {
125
        float64 d;
126
        struct {
127
            uint32_t u[2];
128
        } s;
129
    } u;
130
    int i;
131

    
132
#if defined(WORDS_BIGENDIAN)
133
#define WORD0 0
134
#define WORD1 1
135
#else
136
#define WORD0 1
137
#define WORD1 0
138
#endif
139
    u.s.u[WORD0] = 0;
140
    u.s.u[WORD1] = 0;
141
    for (i = 0; i < 8; i++)
142
        u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
143
    FT0 = u.d;
144
}
145

    
146
void do_store_fpscr (uint32_t mask)
147
{
148
    /*
149
     * We use only the 32 LSB of the incoming fpr
150
     */
151
    union {
152
        double d;
153
        struct {
154
            uint32_t u[2];
155
        } s;
156
    } u;
157
    int i, rnd_type;
158

    
159
    u.d = FT0;
160
    if (mask & 0x80)
161
        env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
162
    for (i = 1; i < 7; i++) {
163
        if (mask & (1 << (7 - i)))
164
            env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
165
    }
166
    /* TODO: update FEX & VX */
167
    /* Set rounding mode */
168
    switch (env->fpscr[0] & 0x3) {
169
    case 0:
170
        /* Best approximation (round to nearest) */
171
        rnd_type = float_round_nearest_even;
172
        break;
173
    case 1:
174
        /* Smaller magnitude (round toward zero) */
175
        rnd_type = float_round_to_zero;
176
        break;
177
    case 2:
178
        /* Round toward +infinite */
179
        rnd_type = float_round_up;
180
        break;
181
    default:
182
    case 3:
183
        /* Round toward -infinite */
184
        rnd_type = float_round_down;
185
        break;
186
    }
187
    set_float_rounding_mode(rnd_type, &env->fp_status);
188
}
189

    
190
target_ulong ppc_load_dump_spr (int sprn)
191
{
192
    if (loglevel) {
193
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
194
                sprn, sprn, env->spr[sprn]);
195
    }
196

    
197
    return env->spr[sprn];
198
}
199

    
200
void ppc_store_dump_spr (int sprn, target_ulong val)
201
{
202
    if (loglevel) {
203
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
204
                sprn, sprn, env->spr[sprn], val);
205
    }
206
    env->spr[sprn] = val;
207
}
208

    
209
/*****************************************************************************/
210
/* Fixed point operations helpers */
211
#if defined(TARGET_PPC64)
212
static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
213
{
214
    *plow += a;
215
    /* carry test */
216
    if (*plow < a)
217
        (*phigh)++;
218
    *phigh += b;
219
}
220

    
221
static void neg128 (uint64_t *plow, uint64_t *phigh)
222
{
223
    *plow = ~ *plow;
224
    *phigh = ~ *phigh;
225
    add128(plow, phigh, 1, 0);
226
}
227

    
228
static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
229
{
230
    uint32_t a0, a1, b0, b1;
231
    uint64_t v;
232

    
233
    a0 = a;
234
    a1 = a >> 32;
235

    
236
    b0 = b;
237
    b1 = b >> 32;
238
    
239
    v = (uint64_t)a0 * (uint64_t)b0;
240
    *plow = v;
241
    *phigh = 0;
242

    
243
    v = (uint64_t)a0 * (uint64_t)b1;
244
    add128(plow, phigh, v << 32, v >> 32);
245

    
246
    v = (uint64_t)a1 * (uint64_t)b0;
247
    add128(plow, phigh, v << 32, v >> 32);
248

    
249
    v = (uint64_t)a1 * (uint64_t)b1;
250
    *phigh += v;
251
#if defined(DEBUG_MULDIV)
252
    printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
253
           a, b, *phigh, *plow);
254
#endif
255
}
256

    
257
void do_mul64 (uint64_t *plow, uint64_t *phigh)
258
{
259
    mul64(plow, phigh, T0, T1);
260
}
261

    
262
static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
263
{
264
    int sa, sb;
265
    sa = (a < 0);
266
    if (sa)
267
        a = -a;
268
    sb = (b < 0);
269
    if (sb)
270
        b = -b;
271
    mul64(plow, phigh, a, b);
272
    if (sa ^ sb) {
273
        neg128(plow, phigh);
274
    }
275
}
276

    
277
void do_imul64 (uint64_t *plow, uint64_t *phigh)
278
{
279
    imul64(plow, phigh, T0, T1);
280
}
281
#endif
282

    
283
void do_adde (void)
284
{
285
    T2 = T0;
286
    T0 += T1 + xer_ca;
287
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
288
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
289
        xer_ca = 0;
290
    } else {
291
        xer_ca = 1;
292
    }
293
}
294

    
295
#if defined(TARGET_PPC64)
296
void do_adde_64 (void)
297
{
298
    T2 = T0;
299
    T0 += T1 + xer_ca;
300
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
301
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
302
        xer_ca = 0;
303
    } else {
304
        xer_ca = 1;
305
    }
306
}
307
#endif
308

    
309
void do_addmeo (void)
310
{
311
    T1 = T0;
312
    T0 += xer_ca + (-1);
313
    if (likely(!((uint32_t)T1 &
314
                 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
315
        xer_ov = 0;
316
    } else {
317
        xer_so = 1;
318
        xer_ov = 1;
319
    }
320
    if (likely(T1 != 0))
321
        xer_ca = 1;
322
}
323

    
324
#if defined(TARGET_PPC64)
325
void do_addmeo_64 (void)
326
{
327
    T1 = T0;
328
    T0 += xer_ca + (-1);
329
    if (likely(!((uint64_t)T1 &
330
                 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
331
        xer_ov = 0;
332
    } else {
333
        xer_so = 1;
334
        xer_ov = 1;
335
    }
336
    if (likely(T1 != 0))
337
        xer_ca = 1;
338
}
339
#endif
340

    
341
void do_divwo (void)
342
{
343
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
344
                 (int32_t)T1 == 0))) {
345
        xer_ov = 0;
346
        T0 = (int32_t)T0 / (int32_t)T1;
347
    } else {
348
        xer_so = 1;
349
        xer_ov = 1;
350
        T0 = (-1) * ((uint32_t)T0 >> 31);
351
    }
352
}
353

    
354
#if defined(TARGET_PPC64)
355
void do_divdo (void)
356
{
357
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
358
                 (int64_t)T1 == 0))) {
359
        xer_ov = 0;
360
        T0 = (int64_t)T0 / (int64_t)T1;
361
    } else {
362
        xer_so = 1;
363
        xer_ov = 1;
364
        T0 = (-1ULL) * ((uint64_t)T0 >> 63);
365
    }
366
}
367
#endif
368

    
369
void do_divwuo (void)
370
{
371
    if (likely((uint32_t)T1 != 0)) {
372
        xer_ov = 0;
373
        T0 = (uint32_t)T0 / (uint32_t)T1;
374
    } else {
375
        xer_so = 1;
376
        xer_ov = 1;
377
        T0 = 0;
378
    }
379
}
380

    
381
#if defined(TARGET_PPC64)
382
void do_divduo (void)
383
{
384
    if (likely((uint64_t)T1 != 0)) {
385
        xer_ov = 0;
386
        T0 = (uint64_t)T0 / (uint64_t)T1;
387
    } else {
388
        xer_so = 1;
389
        xer_ov = 1;
390
        T0 = 0;
391
    }
392
}
393
#endif
394

    
395
void do_mullwo (void)
396
{
397
    int64_t res = (int64_t)T0 * (int64_t)T1;
398

    
399
    if (likely((int32_t)res == res)) {
400
        xer_ov = 0;
401
    } else {
402
        xer_ov = 1;
403
        xer_so = 1;
404
    }
405
    T0 = (int32_t)res;
406
}
407

    
408
#if defined(TARGET_PPC64)
409
void do_mulldo (void)
410
{
411
    int64_t th;
412
    uint64_t tl;
413

    
414
    do_imul64(&tl, &th);
415
    if (likely(th == 0)) {
416
        xer_ov = 0;
417
    } else {
418
        xer_ov = 1;
419
        xer_so = 1;
420
    }
421
    T0 = (int64_t)tl;
422
}
423
#endif
424

    
425
void do_nego (void)
426
{
427
    if (likely((int32_t)T0 != INT32_MIN)) {
428
        xer_ov = 0;
429
        T0 = -(int32_t)T0;
430
    } else {
431
        xer_ov = 1;
432
        xer_so = 1;
433
    }
434
}
435

    
436
#if defined(TARGET_PPC64)
437
void do_nego_64 (void)
438
{
439
    if (likely((int64_t)T0 != INT64_MIN)) {
440
        xer_ov = 0;
441
        T0 = -(int64_t)T0;
442
    } else {
443
        xer_ov = 1;
444
        xer_so = 1;
445
    }
446
}
447
#endif
448

    
449
void do_subfe (void)
450
{
451
    T0 = T1 + ~T0 + xer_ca;
452
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
453
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
454
        xer_ca = 0;
455
    } else {
456
        xer_ca = 1;
457
    }
458
}
459

    
460
#if defined(TARGET_PPC64)
461
void do_subfe_64 (void)
462
{
463
    T0 = T1 + ~T0 + xer_ca;
464
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
465
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
466
        xer_ca = 0;
467
    } else {
468
        xer_ca = 1;
469
    }
470
}
471
#endif
472

    
473
void do_subfmeo (void)
474
{
475
    T1 = T0;
476
    T0 = ~T0 + xer_ca - 1;
477
    if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
478
                 (1UL << 31)))) {
479
        xer_ov = 0;
480
    } else {
481
        xer_so = 1;
482
        xer_ov = 1;
483
    }
484
    if (likely((uint32_t)T1 != UINT32_MAX))
485
        xer_ca = 1;
486
}
487

    
488
#if defined(TARGET_PPC64)
489
void do_subfmeo_64 (void)
490
{
491
    T1 = T0;
492
    T0 = ~T0 + xer_ca - 1;
493
    if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
494
                 (1ULL << 63)))) {
495
        xer_ov = 0;
496
    } else {
497
        xer_so = 1;
498
        xer_ov = 1;
499
    }
500
    if (likely((uint64_t)T1 != UINT64_MAX))
501
        xer_ca = 1;
502
}
503
#endif
504

    
505
void do_subfzeo (void)
506
{
507
    T1 = T0;
508
    T0 = ~T0 + xer_ca;
509
    if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
510
                 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
511
        xer_ov = 0;
512
    } else {
513
        xer_ov = 1;
514
        xer_so = 1;
515
    }
516
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
517
        xer_ca = 0;
518
    } else {
519
        xer_ca = 1;
520
    }
521
}
522

    
523
#if defined(TARGET_PPC64)
524
void do_subfzeo_64 (void)
525
{
526
    T1 = T0;
527
    T0 = ~T0 + xer_ca;
528
    if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
529
                 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
530
        xer_ov = 0;
531
    } else {
532
        xer_ov = 1;
533
        xer_so = 1;
534
    }
535
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
536
        xer_ca = 0;
537
    } else {
538
        xer_ca = 1;
539
    }
540
}
541
#endif
542

    
543
/* shift right arithmetic helper */
544
void do_sraw (void)
545
{
546
    int32_t ret;
547

    
548
    if (likely(!(T1 & 0x20UL))) {
549
        if (likely((uint32_t)T1 != 0)) {
550
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
551
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
552
                xer_ca = 0;
553
            } else {
554
                xer_ca = 1;
555
            }
556
        } else {
557
            ret = T0;
558
            xer_ca = 0;
559
        }
560
    } else {
561
        ret = (-1) * ((uint32_t)T0 >> 31);
562
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
563
            xer_ca = 0;
564
        } else {
565
            xer_ca = 1;
566
        }
567
    }
568
    T0 = ret;
569
}
570

    
571
#if defined(TARGET_PPC64)
572
void do_srad (void)
573
{
574
    int64_t ret;
575

    
576
    if (likely(!(T1 & 0x40UL))) {
577
        if (likely((uint64_t)T1 != 0)) {
578
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
579
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
580
                xer_ca = 0;
581
            } else {
582
                xer_ca = 1;
583
            }
584
        } else {
585
            ret = T0;
586
            xer_ca = 0;
587
        }
588
    } else {
589
        ret = (-1) * ((uint64_t)T0 >> 63);
590
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
591
            xer_ca = 0;
592
        } else {
593
            xer_ca = 1;
594
        }
595
    }
596
    T0 = ret;
597
}
598
#endif
599

    
600
static inline int popcnt (uint32_t val)
601
{
602
    int i;
603

    
604
    for (i = 0; val != 0;)
605
        val = val ^ (val - 1);
606

    
607
    return i;
608
}
609

    
610
void do_popcntb (void)
611
{
612
    uint32_t ret;
613
    int i;
614

    
615
    ret = 0;
616
    for (i = 0; i < 32; i += 8)
617
        ret |= popcnt((T0 >> i) & 0xFF) << i;
618
    T0 = ret;
619
}
620

    
621
#if defined(TARGET_PPC64)
622
void do_popcntb_64 (void)
623
{
624
    uint64_t ret;
625
    int i;
626

    
627
    ret = 0;
628
    for (i = 0; i < 64; i += 8)
629
        ret |= popcnt((T0 >> i) & 0xFF) << i;
630
    T0 = ret;
631
}
632
#endif
633

    
634
/*****************************************************************************/
635
/* Floating point operations helpers */
636
void do_fctiw (void)
637
{
638
    union {
639
        double d;
640
        uint64_t i;
641
    } p;
642

    
643
    p.i = float64_to_int32(FT0, &env->fp_status);
644
#if USE_PRECISE_EMULATION
645
    /* XXX: higher bits are not supposed to be significant.
646
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
647
     */
648
    p.i |= 0xFFF80000ULL << 32;
649
#endif
650
    FT0 = p.d;
651
}
652

    
653
void do_fctiwz (void)
654
{
655
    union {
656
        double d;
657
        uint64_t i;
658
    } p;
659

    
660
    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
661
#if USE_PRECISE_EMULATION
662
    /* XXX: higher bits are not supposed to be significant.
663
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
664
     */
665
    p.i |= 0xFFF80000ULL << 32;
666
#endif
667
    FT0 = p.d;
668
}
669

    
670
#if defined(TARGET_PPC64)
671
void do_fcfid (void)
672
{
673
    union {
674
        double d;
675
        uint64_t i;
676
    } p;
677

    
678
    p.d = FT0;
679
    FT0 = int64_to_float64(p.i, &env->fp_status);
680
}
681

    
682
void do_fctid (void)
683
{
684
    union {
685
        double d;
686
        uint64_t i;
687
    } p;
688

    
689
    p.i = float64_to_int64(FT0, &env->fp_status);
690
    FT0 = p.d;
691
}
692

    
693
void do_fctidz (void)
694
{
695
    union {
696
        double d;
697
        uint64_t i;
698
    } p;
699

    
700
    p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
701
    FT0 = p.d;
702
}
703

    
704
#endif
705

    
706
#if USE_PRECISE_EMULATION
707
void do_fmadd (void)
708
{
709
#ifdef FLOAT128
710
    float128 ft0_128, ft1_128;
711

    
712
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
713
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
714
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
715
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
716
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
717
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
718
#else
719
    /* This is OK on x86 hosts */
720
    FT0 = (FT0 * FT1) + FT2;
721
#endif
722
}
723

    
724
void do_fmsub (void)
725
{
726
#ifdef FLOAT128
727
    float128 ft0_128, ft1_128;
728

    
729
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
730
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
731
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
732
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
733
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
734
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
735
#else
736
    /* This is OK on x86 hosts */
737
    FT0 = (FT0 * FT1) - FT2;
738
#endif
739
}
740
#endif /* USE_PRECISE_EMULATION */
741

    
742
void do_fnmadd (void)
743
{
744
#if USE_PRECISE_EMULATION
745
#ifdef FLOAT128
746
    float128 ft0_128, ft1_128;
747

    
748
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
749
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
750
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
751
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
752
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
753
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
754
#else
755
    /* This is OK on x86 hosts */
756
    FT0 = (FT0 * FT1) + FT2;
757
#endif
758
#else
759
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
760
    FT0 = float64_add(FT0, FT2, &env->fp_status);
761
#endif
762
    if (likely(!isnan(FT0)))
763
        FT0 = float64_chs(FT0);
764
}
765

    
766
void do_fnmsub (void)
767
{
768
#if USE_PRECISE_EMULATION
769
#ifdef FLOAT128
770
    float128 ft0_128, ft1_128;
771

    
772
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
773
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
774
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
775
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
776
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
777
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
778
#else
779
    /* This is OK on x86 hosts */
780
    FT0 = (FT0 * FT1) - FT2;
781
#endif
782
#else
783
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
784
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
785
#endif
786
    if (likely(!isnan(FT0)))
787
        FT0 = float64_chs(FT0);
788
}
789

    
790
void do_fsqrt (void)
791
{
792
    FT0 = float64_sqrt(FT0, &env->fp_status);
793
}
794

    
795
void do_fres (void)
796
{
797
    union {
798
        double d;
799
        uint64_t i;
800
    } p;
801

    
802
    if (likely(isnormal(FT0))) {
803
#if USE_PRECISE_EMULATION
804
        FT0 = float64_div(1.0, FT0, &env->fp_status);
805
        FT0 = float64_to_float32(FT0, &env->fp_status);
806
#else
807
        FT0 = float32_div(1.0, FT0, &env->fp_status);
808
#endif
809
    } else {
810
        p.d = FT0;
811
        if (p.i == 0x8000000000000000ULL) {
812
            p.i = 0xFFF0000000000000ULL;
813
        } else if (p.i == 0x0000000000000000ULL) {
814
            p.i = 0x7FF0000000000000ULL;
815
        } else if (isnan(FT0)) {
816
            p.i = 0x7FF8000000000000ULL;
817
        } else if (FT0 < 0.0) {
818
            p.i = 0x8000000000000000ULL;
819
        } else {
820
            p.i = 0x0000000000000000ULL;
821
        }
822
        FT0 = p.d;
823
    }
824
}
825

    
826
void do_frsqrte (void)
827
{
828
    union {
829
        double d;
830
        uint64_t i;
831
    } p;
832

    
833
    if (likely(isnormal(FT0) && FT0 > 0.0)) {
834
        FT0 = float64_sqrt(FT0, &env->fp_status);
835
        FT0 = float32_div(1.0, FT0, &env->fp_status);
836
    } else {
837
        p.d = FT0;
838
        if (p.i == 0x8000000000000000ULL) {
839
            p.i = 0xFFF0000000000000ULL;
840
        } else if (p.i == 0x0000000000000000ULL) {
841
            p.i = 0x7FF0000000000000ULL;
842
        } else if (isnan(FT0)) {
843
            if (!(p.i & 0x0008000000000000ULL))
844
                p.i |= 0x000FFFFFFFFFFFFFULL;
845
        } else if (FT0 < 0) {
846
            p.i = 0x7FF8000000000000ULL;
847
        } else {
848
            p.i = 0x0000000000000000ULL;
849
        }
850
        FT0 = p.d;
851
    }
852
}
853

    
854
void do_fsel (void)
855
{
856
    if (FT0 >= 0)
857
        FT0 = FT1;
858
    else
859
        FT0 = FT2;
860
}
861

    
862
void do_fcmpu (void)
863
{
864
    if (likely(!isnan(FT0) && !isnan(FT1))) {
865
        if (float64_lt(FT0, FT1, &env->fp_status)) {
866
            T0 = 0x08UL;
867
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
868
            T0 = 0x04UL;
869
        } else {
870
            T0 = 0x02UL;
871
        }
872
    } else {
873
        T0 = 0x01UL;
874
        env->fpscr[4] |= 0x1;
875
        env->fpscr[6] |= 0x1;
876
    }
877
    env->fpscr[3] = T0;
878
}
879

    
880
void do_fcmpo (void)
881
{
882
    env->fpscr[4] &= ~0x1;
883
    if (likely(!isnan(FT0) && !isnan(FT1))) {
884
        if (float64_lt(FT0, FT1, &env->fp_status)) {
885
            T0 = 0x08UL;
886
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
887
            T0 = 0x04UL;
888
        } else {
889
            T0 = 0x02UL;
890
        }
891
    } else {
892
        T0 = 0x01UL;
893
        env->fpscr[4] |= 0x1;
894
        if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
895
            /* Quiet NaN case */
896
            env->fpscr[6] |= 0x1;
897
            if (!(env->fpscr[1] & 0x8))
898
                env->fpscr[4] |= 0x8;
899
        } else {
900
            env->fpscr[4] |= 0x8;
901
        }
902
    }
903
    env->fpscr[3] = T0;
904
}
905

    
906
#if !defined (CONFIG_USER_ONLY)
907
void do_rfi (void)
908
{
909
#if defined(TARGET_PPC64)
910
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
911
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
912
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
913
    } else {
914
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
915
        ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
916
    }
917
#else
918
    env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
919
    do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
920
#endif
921
#if defined (DEBUG_OP)
922
    dump_rfi();
923
#endif
924
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
925
}
926

    
927
#if defined(TARGET_PPC64)
928
void do_rfid (void)
929
{
930
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
931
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
932
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
933
    } else {
934
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
935
        do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
936
    }
937
#if defined (DEBUG_OP)
938
    dump_rfi();
939
#endif
940
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
941
}
942
#endif
943
#endif
944

    
945
void do_tw (int flags)
946
{
947
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
948
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
949
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
950
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
951
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
952
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
953
    }
954
}
955

    
956
#if defined(TARGET_PPC64)
957
void do_td (int flags)
958
{
959
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
960
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
961
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
962
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
963
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
964
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
965
}
966
#endif
967

    
968
/*****************************************************************************/
969
/* PowerPC 601 specific instructions (POWER bridge) */
970
void do_POWER_abso (void)
971
{
972
    if ((uint32_t)T0 == INT32_MIN) {
973
        T0 = INT32_MAX;
974
        xer_ov = 1;
975
        xer_so = 1;
976
    } else {
977
        T0 = -T0;
978
        xer_ov = 0;
979
    }
980
}
981

    
982
void do_POWER_clcs (void)
983
{
984
    switch (T0) {
985
    case 0x0CUL:
986
        /* Instruction cache line size */
987
        T0 = ICACHE_LINE_SIZE;
988
        break;
989
    case 0x0DUL:
990
        /* Data cache line size */
991
        T0 = DCACHE_LINE_SIZE;
992
        break;
993
    case 0x0EUL:
994
        /* Minimum cache line size */
995
        T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
996
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
997
        break;
998
    case 0x0FUL:
999
        /* Maximum cache line size */
1000
        T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
1001
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
1002
        break;
1003
    default:
1004
        /* Undefined */
1005
        break;
1006
    }
1007
}
1008

    
1009
void do_POWER_div (void)
1010
{
1011
    uint64_t tmp;
1012

    
1013
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1014
        T0 = (long)((-1) * (T0 >> 31));
1015
        env->spr[SPR_MQ] = 0;
1016
    } else {
1017
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1018
        env->spr[SPR_MQ] = tmp % T1;
1019
        T0 = tmp / (int32_t)T1;
1020
    }
1021
}
1022

    
1023
void do_POWER_divo (void)
1024
{
1025
    int64_t tmp;
1026

    
1027
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1028
        T0 = (long)((-1) * (T0 >> 31));
1029
        env->spr[SPR_MQ] = 0;
1030
        xer_ov = 1;
1031
        xer_so = 1;
1032
    } else {
1033
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1034
        env->spr[SPR_MQ] = tmp % T1;
1035
        tmp /= (int32_t)T1;
1036
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1037
            xer_ov = 1;
1038
            xer_so = 1;
1039
        } else {
1040
            xer_ov = 0;
1041
        }
1042
        T0 = tmp;
1043
    }
1044
}
1045

    
1046
void do_POWER_divs (void)
1047
{
1048
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1049
        T0 = (long)((-1) * (T0 >> 31));
1050
        env->spr[SPR_MQ] = 0;
1051
    } else {
1052
        env->spr[SPR_MQ] = T0 % T1;
1053
        T0 = (int32_t)T0 / (int32_t)T1;
1054
    }
1055
}
1056

    
1057
void do_POWER_divso (void)
1058
{
1059
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1060
        T0 = (long)((-1) * (T0 >> 31));
1061
        env->spr[SPR_MQ] = 0;
1062
        xer_ov = 1;
1063
        xer_so = 1;
1064
    } else {
1065
        T0 = (int32_t)T0 / (int32_t)T1;
1066
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1067
        xer_ov = 0;
1068
    }
1069
}
1070

    
1071
void do_POWER_dozo (void)
1072
{
1073
    if ((int32_t)T1 > (int32_t)T0) {
1074
        T2 = T0;
1075
        T0 = T1 - T0;
1076
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1077
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1078
            xer_so = 1;
1079
            xer_ov = 1;
1080
        } else {
1081
            xer_ov = 0;
1082
        }
1083
    } else {
1084
        T0 = 0;
1085
        xer_ov = 0;
1086
    }
1087
}
1088

    
1089
void do_POWER_maskg (void)
1090
{
1091
    uint32_t ret;
1092

    
1093
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1094
        ret = -1;
1095
    } else {
1096
        ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1097
            (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1098
        if ((uint32_t)T0 > (uint32_t)T1)
1099
            ret = ~ret;
1100
    }
1101
    T0 = ret;
1102
}
1103

    
1104
void do_POWER_mulo (void)
1105
{
1106
    uint64_t tmp;
1107

    
1108
    tmp = (uint64_t)T0 * (uint64_t)T1;
1109
    env->spr[SPR_MQ] = tmp >> 32;
1110
    T0 = tmp;
1111
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1112
        xer_ov = 1;
1113
        xer_so = 1;
1114
    } else {
1115
        xer_ov = 0;
1116
    }
1117
}
1118

    
1119
#if !defined (CONFIG_USER_ONLY)
1120
void do_POWER_rac (void)
1121
{
1122
#if 0
1123
    mmu_ctx_t ctx;
1124

1125
    /* We don't have to generate many instances of this instruction,
1126
     * as rac is supervisor only.
1127
     */
1128
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1129
        T0 = ctx.raddr;
1130
#endif
1131
}
1132

    
1133
void do_POWER_rfsvc (void)
1134
{
1135
    env->nip = env->lr & ~0x00000003UL;
1136
    T0 = env->ctr & 0x0000FFFFUL;
1137
    do_store_msr(env, T0);
1138
#if defined (DEBUG_OP)
1139
    dump_rfi();
1140
#endif
1141
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1142
}
1143

    
1144
/* PowerPC 601 BAT management helper */
1145
void do_store_601_batu (int nr)
1146
{
1147
    do_store_ibatu(env, nr, (uint32_t)T0);
1148
    env->DBAT[0][nr] = env->IBAT[0][nr];
1149
    env->DBAT[1][nr] = env->IBAT[1][nr];
1150
}
1151
#endif
1152

    
1153
/*****************************************************************************/
1154
/* 602 specific instructions */
1155
/* mfrom is the most crazy instruction ever seen, imho ! */
1156
/* Real implementation uses a ROM table. Do the same */
1157
#define USE_MFROM_ROM_TABLE
1158
void do_op_602_mfrom (void)
1159
{
1160
    if (likely(T0 < 602)) {
1161
#if defined(USE_MFROM_ROM_TABLE)
1162
#include "mfrom_table.c"
1163
        T0 = mfrom_ROM_table[T0];
1164
#else
1165
        double d;
1166
        /* Extremly decomposed:
1167
         *                    -T0 / 256
1168
         * T0 = 256 * log10(10          + 1.0) + 0.5
1169
         */
1170
        d = T0;
1171
        d = float64_div(d, 256, &env->fp_status);
1172
        d = float64_chs(d);
1173
        d = exp10(d); // XXX: use float emulation function
1174
        d = float64_add(d, 1.0, &env->fp_status);
1175
        d = log10(d); // XXX: use float emulation function
1176
        d = float64_mul(d, 256, &env->fp_status);
1177
        d = float64_add(d, 0.5, &env->fp_status);
1178
        T0 = float64_round_to_int(d, &env->fp_status);
1179
#endif
1180
    } else {
1181
        T0 = 0;
1182
    }
1183
}
1184

    
1185
/*****************************************************************************/
1186
/* Embedded PowerPC specific helpers */
1187
void do_405_check_ov (void)
1188
{
1189
    if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1190
               !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1191
        xer_ov = 0;
1192
    } else {
1193
        xer_ov = 1;
1194
        xer_so = 1;
1195
    }
1196
}
1197

    
1198
void do_405_check_sat (void)
1199
{
1200
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1201
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1202
        /* Saturate result */
1203
        if (T2 >> 31) {
1204
            T0 = INT32_MIN;
1205
        } else {
1206
            T0 = INT32_MAX;
1207
        }
1208
    }
1209
}
1210

    
1211
#if !defined(CONFIG_USER_ONLY)
1212
void do_40x_rfci (void)
1213
{
1214
    env->nip = env->spr[SPR_40x_SRR2];
1215
    do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
1216
#if defined (DEBUG_OP)
1217
    dump_rfi();
1218
#endif
1219
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1220
}
1221

    
1222
void do_rfci (void)
1223
{
1224
#if defined(TARGET_PPC64)
1225
    if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
1226
        env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
1227
    } else
1228
#endif
1229
    {
1230
        env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
1231
    }
1232
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
1233
#if defined (DEBUG_OP)
1234
    dump_rfi();
1235
#endif
1236
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1237
}
1238

    
1239
void do_rfdi (void)
1240
{
1241
#if defined(TARGET_PPC64)
1242
    if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
1243
        env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
1244
    } else
1245
#endif
1246
    {
1247
        env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
1248
    }
1249
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
1250
#if defined (DEBUG_OP)
1251
    dump_rfi();
1252
#endif
1253
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1254
}
1255

    
1256
void do_rfmci (void)
1257
{
1258
#if defined(TARGET_PPC64)
1259
    if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
1260
        env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
1261
    } else
1262
#endif
1263
    {
1264
        env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
1265
    }
1266
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
1267
#if defined (DEBUG_OP)
1268
    dump_rfi();
1269
#endif
1270
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1271
}
1272

    
1273
void do_load_dcr (void)
1274
{
1275
    target_ulong val;
1276
    
1277
    if (unlikely(env->dcr_env == NULL)) {
1278
        if (loglevel) {
1279
            fprintf(logfile, "No DCR environment\n");
1280
        }
1281
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1282
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1283
        if (loglevel) {
1284
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1285
        }
1286
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1287
    } else {
1288
        T0 = val;
1289
    }
1290
}
1291

    
1292
void do_store_dcr (void)
1293
{
1294
    if (unlikely(env->dcr_env == NULL)) {
1295
        if (loglevel) {
1296
            fprintf(logfile, "No DCR environment\n");
1297
        }
1298
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1299
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1300
        if (loglevel) {
1301
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1302
        }
1303
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1304
    }
1305
}
1306

    
1307
void do_load_403_pb (int num)
1308
{
1309
    T0 = env->pb[num];
1310
}
1311

    
1312
void do_store_403_pb (int num)
1313
{
1314
    if (likely(env->pb[num] != T0)) {
1315
        env->pb[num] = T0;
1316
        /* Should be optimized */
1317
        tlb_flush(env, 1);
1318
    }
1319
}
1320
#endif
1321

    
1322
/* 440 specific */
1323
void do_440_dlmzb (void)
1324
{
1325
    target_ulong mask;
1326
    int i;
1327

    
1328
    i = 1;
1329
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1330
        if ((T0 & mask) == 0)
1331
            goto done;
1332
        i++;
1333
    }
1334
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1335
        if ((T1 & mask) == 0)
1336
            break;
1337
        i++;
1338
    }
1339
 done:
1340
    T0 = i;
1341
}
1342

    
1343
#if defined(TARGET_PPCSPE)
1344
/* SPE extension helpers */
1345
/* Use a table to make this quicker */
1346
static uint8_t hbrev[16] = {
1347
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1348
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1349
};
1350

    
1351
static inline uint8_t byte_reverse (uint8_t val)
1352
{
1353
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1354
}
1355

    
1356
static inline uint32_t word_reverse (uint32_t val)
1357
{
1358
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1359
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1360
}
1361

    
1362
#define MASKBITS 16 // Random value - to be fixed
1363
void do_brinc (void)
1364
{
1365
    uint32_t a, b, d, mask;
1366

    
1367
    mask = (uint32_t)(-1UL) >> MASKBITS;
1368
    b = T1_64 & mask;
1369
    a = T0_64 & mask;
1370
    d = word_reverse(1 + word_reverse(a | ~mask));
1371
    T0_64 = (T0_64 & ~mask) | (d & mask);
1372
}
1373

    
1374
#define DO_SPE_OP2(name)                                                      \
1375
void do_ev##name (void)                                                       \
1376
{                                                                             \
1377
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1378
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1379
}
1380

    
1381
#define DO_SPE_OP1(name)                                                      \
1382
void do_ev##name (void)                                                       \
1383
{                                                                             \
1384
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1385
        (uint64_t)_do_e##name(T0_64);                                         \
1386
}
1387

    
1388
/* Fixed-point vector arithmetic */
1389
static inline uint32_t _do_eabs (uint32_t val)
1390
{
1391
    if (val != 0x80000000)
1392
        val &= ~0x80000000;
1393

    
1394
    return val;
1395
}
1396

    
1397
static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1398
{
1399
    return op1 + op2;
1400
}
1401

    
1402
static inline int _do_ecntlsw (uint32_t val)
1403
{
1404
    if (val & 0x80000000)
1405
        return _do_cntlzw(~val);
1406
    else
1407
        return _do_cntlzw(val);
1408
}
1409

    
1410
static inline int _do_ecntlzw (uint32_t val)
1411
{
1412
    return _do_cntlzw(val);
1413
}
1414

    
1415
static inline uint32_t _do_eneg (uint32_t val)
1416
{
1417
    if (val != 0x80000000)
1418
        val ^= 0x80000000;
1419

    
1420
    return val;
1421
}
1422

    
1423
static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1424
{
1425
    return rotl32(op1, op2);
1426
}
1427

    
1428
static inline uint32_t _do_erndw (uint32_t val)
1429
{
1430
    return (val + 0x000080000000) & 0xFFFF0000;
1431
}
1432

    
1433
static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1434
{
1435
    /* No error here: 6 bits are used */
1436
    return op1 << (op2 & 0x3F);
1437
}
1438

    
1439
static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1440
{
1441
    /* No error here: 6 bits are used */
1442
    return op1 >> (op2 & 0x3F);
1443
}
1444

    
1445
static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1446
{
1447
    /* No error here: 6 bits are used */
1448
    return op1 >> (op2 & 0x3F);
1449
}
1450

    
1451
static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1452
{
1453
    return op2 - op1;
1454
}
1455

    
1456
/* evabs */
1457
DO_SPE_OP1(abs);
1458
/* evaddw */
1459
DO_SPE_OP2(addw);
1460
/* evcntlsw */
1461
DO_SPE_OP1(cntlsw);
1462
/* evcntlzw */
1463
DO_SPE_OP1(cntlzw);
1464
/* evneg */
1465
DO_SPE_OP1(neg);
1466
/* evrlw */
1467
DO_SPE_OP2(rlw);
1468
/* evrnd */
1469
DO_SPE_OP1(rndw);
1470
/* evslw */
1471
DO_SPE_OP2(slw);
1472
/* evsrws */
1473
DO_SPE_OP2(srws);
1474
/* evsrwu */
1475
DO_SPE_OP2(srwu);
1476
/* evsubfw */
1477
DO_SPE_OP2(subfw);
1478

    
1479
/* evsel is a little bit more complicated... */
1480
static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1481
{
1482
    if (n)
1483
        return op1;
1484
    else
1485
        return op2;
1486
}
1487

    
1488
void do_evsel (void)
1489
{
1490
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1491
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1492
}
1493

    
1494
/* Fixed-point vector comparisons */
1495
#define DO_SPE_CMP(name)                                                      \
1496
void do_ev##name (void)                                                       \
1497
{                                                                             \
1498
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
1499
                                               T1_64 >> 32) << 32,            \
1500
                         _do_e##name(T0_64, T1_64));                          \
1501
}
1502

    
1503
static inline uint32_t _do_evcmp_merge (int t0, int t1)
1504
{
1505
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1506
}
1507
static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1508
{
1509
    return op1 == op2 ? 1 : 0;
1510
}
1511

    
1512
static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1513
{
1514
    return op1 > op2 ? 1 : 0;
1515
}
1516

    
1517
static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1518
{
1519
    return op1 > op2 ? 1 : 0;
1520
}
1521

    
1522
static inline int _do_ecmplts (int32_t op1, int32_t op2)
1523
{
1524
    return op1 < op2 ? 1 : 0;
1525
}
1526

    
1527
static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1528
{
1529
    return op1 < op2 ? 1 : 0;
1530
}
1531

    
1532
/* evcmpeq */
1533
DO_SPE_CMP(cmpeq);
1534
/* evcmpgts */
1535
DO_SPE_CMP(cmpgts);
1536
/* evcmpgtu */
1537
DO_SPE_CMP(cmpgtu);
1538
/* evcmplts */
1539
DO_SPE_CMP(cmplts);
1540
/* evcmpltu */
1541
DO_SPE_CMP(cmpltu);
1542

    
1543
/* Single precision floating-point conversions from/to integer */
1544
static inline uint32_t _do_efscfsi (int32_t val)
1545
{
1546
    union {
1547
        uint32_t u;
1548
        float32 f;
1549
    } u;
1550

    
1551
    u.f = int32_to_float32(val, &env->spe_status);
1552

    
1553
    return u.u;
1554
}
1555

    
1556
static inline uint32_t _do_efscfui (uint32_t val)
1557
{
1558
    union {
1559
        uint32_t u;
1560
        float32 f;
1561
    } u;
1562

    
1563
    u.f = uint32_to_float32(val, &env->spe_status);
1564

    
1565
    return u.u;
1566
}
1567

    
1568
static inline int32_t _do_efsctsi (uint32_t val)
1569
{
1570
    union {
1571
        int32_t u;
1572
        float32 f;
1573
    } u;
1574

    
1575
    u.u = val;
1576
    /* NaN are not treated the same way IEEE 754 does */
1577
    if (unlikely(isnan(u.f)))
1578
        return 0;
1579

    
1580
    return float32_to_int32(u.f, &env->spe_status);
1581
}
1582

    
1583
static inline uint32_t _do_efsctui (uint32_t val)
1584
{
1585
    union {
1586
        int32_t u;
1587
        float32 f;
1588
    } u;
1589

    
1590
    u.u = val;
1591
    /* NaN are not treated the same way IEEE 754 does */
1592
    if (unlikely(isnan(u.f)))
1593
        return 0;
1594

    
1595
    return float32_to_uint32(u.f, &env->spe_status);
1596
}
1597

    
1598
static inline int32_t _do_efsctsiz (uint32_t val)
1599
{
1600
    union {
1601
        int32_t u;
1602
        float32 f;
1603
    } u;
1604

    
1605
    u.u = val;
1606
    /* NaN are not treated the same way IEEE 754 does */
1607
    if (unlikely(isnan(u.f)))
1608
        return 0;
1609

    
1610
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1611
}
1612

    
1613
static inline uint32_t _do_efsctuiz (uint32_t val)
1614
{
1615
    union {
1616
        int32_t u;
1617
        float32 f;
1618
    } u;
1619

    
1620
    u.u = val;
1621
    /* NaN are not treated the same way IEEE 754 does */
1622
    if (unlikely(isnan(u.f)))
1623
        return 0;
1624

    
1625
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1626
}
1627

    
1628
void do_efscfsi (void)
1629
{
1630
    T0_64 = _do_efscfsi(T0_64);
1631
}
1632

    
1633
void do_efscfui (void)
1634
{
1635
    T0_64 = _do_efscfui(T0_64);
1636
}
1637

    
1638
void do_efsctsi (void)
1639
{
1640
    T0_64 = _do_efsctsi(T0_64);
1641
}
1642

    
1643
void do_efsctui (void)
1644
{
1645
    T0_64 = _do_efsctui(T0_64);
1646
}
1647

    
1648
void do_efsctsiz (void)
1649
{
1650
    T0_64 = _do_efsctsiz(T0_64);
1651
}
1652

    
1653
void do_efsctuiz (void)
1654
{
1655
    T0_64 = _do_efsctuiz(T0_64);
1656
}
1657

    
1658
/* Single precision floating-point conversion to/from fractional */
1659
static inline uint32_t _do_efscfsf (uint32_t val)
1660
{
1661
    union {
1662
        uint32_t u;
1663
        float32 f;
1664
    } u;
1665
    float32 tmp;
1666

    
1667
    u.f = int32_to_float32(val, &env->spe_status);
1668
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1669
    u.f = float32_div(u.f, tmp, &env->spe_status);
1670

    
1671
    return u.u;
1672
}
1673

    
1674
static inline uint32_t _do_efscfuf (uint32_t val)
1675
{
1676
    union {
1677
        uint32_t u;
1678
        float32 f;
1679
    } u;
1680
    float32 tmp;
1681

    
1682
    u.f = uint32_to_float32(val, &env->spe_status);
1683
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1684
    u.f = float32_div(u.f, tmp, &env->spe_status);
1685

    
1686
    return u.u;
1687
}
1688

    
1689
static inline int32_t _do_efsctsf (uint32_t val)
1690
{
1691
    union {
1692
        int32_t u;
1693
        float32 f;
1694
    } u;
1695
    float32 tmp;
1696

    
1697
    u.u = val;
1698
    /* NaN are not treated the same way IEEE 754 does */
1699
    if (unlikely(isnan(u.f)))
1700
        return 0;
1701
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1702
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1703

    
1704
    return float32_to_int32(u.f, &env->spe_status);
1705
}
1706

    
1707
static inline uint32_t _do_efsctuf (uint32_t val)
1708
{
1709
    union {
1710
        int32_t u;
1711
        float32 f;
1712
    } u;
1713
    float32 tmp;
1714

    
1715
    u.u = val;
1716
    /* NaN are not treated the same way IEEE 754 does */
1717
    if (unlikely(isnan(u.f)))
1718
        return 0;
1719
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1720
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1721

    
1722
    return float32_to_uint32(u.f, &env->spe_status);
1723
}
1724

    
1725
static inline int32_t _do_efsctsfz (uint32_t val)
1726
{
1727
    union {
1728
        int32_t u;
1729
        float32 f;
1730
    } u;
1731
    float32 tmp;
1732

    
1733
    u.u = val;
1734
    /* NaN are not treated the same way IEEE 754 does */
1735
    if (unlikely(isnan(u.f)))
1736
        return 0;
1737
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1738
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1739

    
1740
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1741
}
1742

    
1743
static inline uint32_t _do_efsctufz (uint32_t val)
1744
{
1745
    union {
1746
        int32_t u;
1747
        float32 f;
1748
    } u;
1749
    float32 tmp;
1750

    
1751
    u.u = val;
1752
    /* NaN are not treated the same way IEEE 754 does */
1753
    if (unlikely(isnan(u.f)))
1754
        return 0;
1755
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1756
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1757

    
1758
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1759
}
1760

    
1761
void do_efscfsf (void)
1762
{
1763
    T0_64 = _do_efscfsf(T0_64);
1764
}
1765

    
1766
void do_efscfuf (void)
1767
{
1768
    T0_64 = _do_efscfuf(T0_64);
1769
}
1770

    
1771
void do_efsctsf (void)
1772
{
1773
    T0_64 = _do_efsctsf(T0_64);
1774
}
1775

    
1776
void do_efsctuf (void)
1777
{
1778
    T0_64 = _do_efsctuf(T0_64);
1779
}
1780

    
1781
void do_efsctsfz (void)
1782
{
1783
    T0_64 = _do_efsctsfz(T0_64);
1784
}
1785

    
1786
void do_efsctufz (void)
1787
{
1788
    T0_64 = _do_efsctufz(T0_64);
1789
}
1790

    
1791
/* Double precision floating point helpers */
1792
static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1793
{
1794
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1795
    return _do_efdtstlt(op1, op2);
1796
}
1797

    
1798
static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1799
{
1800
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1801
    return _do_efdtstgt(op1, op2);
1802
}
1803

    
1804
static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1805
{
1806
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1807
    return _do_efdtsteq(op1, op2);
1808
}
1809

    
1810
void do_efdcmplt (void)
1811
{
1812
    T0 = _do_efdcmplt(T0_64, T1_64);
1813
}
1814

    
1815
void do_efdcmpgt (void)
1816
{
1817
    T0 = _do_efdcmpgt(T0_64, T1_64);
1818
}
1819

    
1820
void do_efdcmpeq (void)
1821
{
1822
    T0 = _do_efdcmpeq(T0_64, T1_64);
1823
}
1824

    
1825
/* Double precision floating-point conversion to/from integer */
1826
static inline uint64_t _do_efdcfsi (int64_t val)
1827
{
1828
    union {
1829
        uint64_t u;
1830
        float64 f;
1831
    } u;
1832

    
1833
    u.f = int64_to_float64(val, &env->spe_status);
1834

    
1835
    return u.u;
1836
}
1837

    
1838
static inline uint64_t _do_efdcfui (uint64_t val)
1839
{
1840
    union {
1841
        uint64_t u;
1842
        float64 f;
1843
    } u;
1844

    
1845
    u.f = uint64_to_float64(val, &env->spe_status);
1846

    
1847
    return u.u;
1848
}
1849

    
1850
static inline int64_t _do_efdctsi (uint64_t val)
1851
{
1852
    union {
1853
        int64_t u;
1854
        float64 f;
1855
    } u;
1856

    
1857
    u.u = val;
1858
    /* NaN are not treated the same way IEEE 754 does */
1859
    if (unlikely(isnan(u.f)))
1860
        return 0;
1861

    
1862
    return float64_to_int64(u.f, &env->spe_status);
1863
}
1864

    
1865
static inline uint64_t _do_efdctui (uint64_t val)
1866
{
1867
    union {
1868
        int64_t u;
1869
        float64 f;
1870
    } u;
1871

    
1872
    u.u = val;
1873
    /* NaN are not treated the same way IEEE 754 does */
1874
    if (unlikely(isnan(u.f)))
1875
        return 0;
1876

    
1877
    return float64_to_uint64(u.f, &env->spe_status);
1878
}
1879

    
1880
static inline int64_t _do_efdctsiz (uint64_t val)
1881
{
1882
    union {
1883
        int64_t u;
1884
        float64 f;
1885
    } u;
1886

    
1887
    u.u = val;
1888
    /* NaN are not treated the same way IEEE 754 does */
1889
    if (unlikely(isnan(u.f)))
1890
        return 0;
1891

    
1892
    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1893
}
1894

    
1895
static inline uint64_t _do_efdctuiz (uint64_t val)
1896
{
1897
    union {
1898
        int64_t u;
1899
        float64 f;
1900
    } u;
1901

    
1902
    u.u = val;
1903
    /* NaN are not treated the same way IEEE 754 does */
1904
    if (unlikely(isnan(u.f)))
1905
        return 0;
1906

    
1907
    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1908
}
1909

    
1910
void do_efdcfsi (void)
1911
{
1912
    T0_64 = _do_efdcfsi(T0_64);
1913
}
1914

    
1915
void do_efdcfui (void)
1916
{
1917
    T0_64 = _do_efdcfui(T0_64);
1918
}
1919

    
1920
void do_efdctsi (void)
1921
{
1922
    T0_64 = _do_efdctsi(T0_64);
1923
}
1924

    
1925
void do_efdctui (void)
1926
{
1927
    T0_64 = _do_efdctui(T0_64);
1928
}
1929

    
1930
void do_efdctsiz (void)
1931
{
1932
    T0_64 = _do_efdctsiz(T0_64);
1933
}
1934

    
1935
void do_efdctuiz (void)
1936
{
1937
    T0_64 = _do_efdctuiz(T0_64);
1938
}
1939

    
1940
/* Double precision floating-point conversion to/from fractional */
1941
static inline uint64_t _do_efdcfsf (int64_t val)
1942
{
1943
    union {
1944
        uint64_t u;
1945
        float64 f;
1946
    } u;
1947
    float64 tmp;
1948

    
1949
    u.f = int32_to_float64(val, &env->spe_status);
1950
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1951
    u.f = float64_div(u.f, tmp, &env->spe_status);
1952

    
1953
    return u.u;
1954
}
1955

    
1956
static inline uint64_t _do_efdcfuf (uint64_t val)
1957
{
1958
    union {
1959
        uint64_t u;
1960
        float64 f;
1961
    } u;
1962
    float64 tmp;
1963

    
1964
    u.f = uint32_to_float64(val, &env->spe_status);
1965
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1966
    u.f = float64_div(u.f, tmp, &env->spe_status);
1967

    
1968
    return u.u;
1969
}
1970

    
1971
static inline int64_t _do_efdctsf (uint64_t val)
1972
{
1973
    union {
1974
        int64_t u;
1975
        float64 f;
1976
    } u;
1977
    float64 tmp;
1978

    
1979
    u.u = val;
1980
    /* NaN are not treated the same way IEEE 754 does */
1981
    if (unlikely(isnan(u.f)))
1982
        return 0;
1983
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1984
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1985

    
1986
    return float64_to_int32(u.f, &env->spe_status);
1987
}
1988

    
1989
static inline uint64_t _do_efdctuf (uint64_t val)
1990
{
1991
    union {
1992
        int64_t u;
1993
        float64 f;
1994
    } u;
1995
    float64 tmp;
1996

    
1997
    u.u = val;
1998
    /* NaN are not treated the same way IEEE 754 does */
1999
    if (unlikely(isnan(u.f)))
2000
        return 0;
2001
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2002
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2003

    
2004
    return float64_to_uint32(u.f, &env->spe_status);
2005
}
2006

    
2007
static inline int64_t _do_efdctsfz (uint64_t val)
2008
{
2009
    union {
2010
        int64_t u;
2011
        float64 f;
2012
    } u;
2013
    float64 tmp;
2014

    
2015
    u.u = val;
2016
    /* NaN are not treated the same way IEEE 754 does */
2017
    if (unlikely(isnan(u.f)))
2018
        return 0;
2019
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2020
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2021

    
2022
    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2023
}
2024

    
2025
static inline uint64_t _do_efdctufz (uint64_t val)
2026
{
2027
    union {
2028
        int64_t u;
2029
        float64 f;
2030
    } u;
2031
    float64 tmp;
2032

    
2033
    u.u = val;
2034
    /* NaN are not treated the same way IEEE 754 does */
2035
    if (unlikely(isnan(u.f)))
2036
        return 0;
2037
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2038
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2039

    
2040
    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2041
}
2042

    
2043
void do_efdcfsf (void)
2044
{
2045
    T0_64 = _do_efdcfsf(T0_64);
2046
}
2047

    
2048
void do_efdcfuf (void)
2049
{
2050
    T0_64 = _do_efdcfuf(T0_64);
2051
}
2052

    
2053
void do_efdctsf (void)
2054
{
2055
    T0_64 = _do_efdctsf(T0_64);
2056
}
2057

    
2058
void do_efdctuf (void)
2059
{
2060
    T0_64 = _do_efdctuf(T0_64);
2061
}
2062

    
2063
void do_efdctsfz (void)
2064
{
2065
    T0_64 = _do_efdctsfz(T0_64);
2066
}
2067

    
2068
void do_efdctufz (void)
2069
{
2070
    T0_64 = _do_efdctufz(T0_64);
2071
}
2072

    
2073
/* Floating point conversion between single and double precision */
2074
static inline uint32_t _do_efscfd (uint64_t val)
2075
{
2076
    union {
2077
        uint64_t u;
2078
        float64 f;
2079
    } u1;
2080
    union {
2081
        uint32_t u;
2082
        float32 f;
2083
    } u2;
2084

    
2085
    u1.u = val;
2086
    u2.f = float64_to_float32(u1.f, &env->spe_status);
2087

    
2088
    return u2.u;
2089
}
2090

    
2091
static inline uint64_t _do_efdcfs (uint32_t val)
2092
{
2093
    union {
2094
        uint64_t u;
2095
        float64 f;
2096
    } u2;
2097
    union {
2098
        uint32_t u;
2099
        float32 f;
2100
    } u1;
2101

    
2102
    u1.u = val;
2103
    u2.f = float32_to_float64(u1.f, &env->spe_status);
2104

    
2105
    return u2.u;
2106
}
2107

    
2108
void do_efscfd (void)
2109
{
2110
    T0_64 = _do_efscfd(T0_64);
2111
}
2112

    
2113
void do_efdcfs (void)
2114
{
2115
    T0_64 = _do_efdcfs(T0_64);
2116
}
2117

    
2118
/* Single precision fixed-point vector arithmetic */
2119
/* evfsabs */
2120
DO_SPE_OP1(fsabs);
2121
/* evfsnabs */
2122
DO_SPE_OP1(fsnabs);
2123
/* evfsneg */
2124
DO_SPE_OP1(fsneg);
2125
/* evfsadd */
2126
DO_SPE_OP2(fsadd);
2127
/* evfssub */
2128
DO_SPE_OP2(fssub);
2129
/* evfsmul */
2130
DO_SPE_OP2(fsmul);
2131
/* evfsdiv */
2132
DO_SPE_OP2(fsdiv);
2133

    
2134
/* Single-precision floating-point comparisons */
2135
static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2136
{
2137
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2138
    return _do_efststlt(op1, op2);
2139
}
2140

    
2141
static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2142
{
2143
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2144
    return _do_efststgt(op1, op2);
2145
}
2146

    
2147
static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2148
{
2149
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2150
    return _do_efststeq(op1, op2);
2151
}
2152

    
2153
void do_efscmplt (void)
2154
{
2155
    T0 = _do_efscmplt(T0_64, T1_64);
2156
}
2157

    
2158
void do_efscmpgt (void)
2159
{
2160
    T0 = _do_efscmpgt(T0_64, T1_64);
2161
}
2162

    
2163
void do_efscmpeq (void)
2164
{
2165
    T0 = _do_efscmpeq(T0_64, T1_64);
2166
}
2167

    
2168
/* Single-precision floating-point vector comparisons */
2169
/* evfscmplt */
2170
DO_SPE_CMP(fscmplt);
2171
/* evfscmpgt */
2172
DO_SPE_CMP(fscmpgt);
2173
/* evfscmpeq */
2174
DO_SPE_CMP(fscmpeq);
2175
/* evfststlt */
2176
DO_SPE_CMP(fststlt);
2177
/* evfststgt */
2178
DO_SPE_CMP(fststgt);
2179
/* evfststeq */
2180
DO_SPE_CMP(fststeq);
2181

    
2182
/* Single-precision floating-point vector conversions */
2183
/* evfscfsi */
2184
DO_SPE_OP1(fscfsi);
2185
/* evfscfui */
2186
DO_SPE_OP1(fscfui);
2187
/* evfscfuf */
2188
DO_SPE_OP1(fscfuf);
2189
/* evfscfsf */
2190
DO_SPE_OP1(fscfsf);
2191
/* evfsctsi */
2192
DO_SPE_OP1(fsctsi);
2193
/* evfsctui */
2194
DO_SPE_OP1(fsctui);
2195
/* evfsctsiz */
2196
DO_SPE_OP1(fsctsiz);
2197
/* evfsctuiz */
2198
DO_SPE_OP1(fsctuiz);
2199
/* evfsctsf */
2200
DO_SPE_OP1(fsctsf);
2201
/* evfsctuf */
2202
DO_SPE_OP1(fsctuf);
2203
#endif /* defined(TARGET_PPCSPE) */
2204

    
2205
/*****************************************************************************/
2206
/* Softmmu support */
2207
#if !defined (CONFIG_USER_ONLY)
2208

    
2209
#define MMUSUFFIX _mmu
2210
#define GETPC() (__builtin_return_address(0))
2211

    
2212
#define SHIFT 0
2213
#include "softmmu_template.h"
2214

    
2215
#define SHIFT 1
2216
#include "softmmu_template.h"
2217

    
2218
#define SHIFT 2
2219
#include "softmmu_template.h"
2220

    
2221
#define SHIFT 3
2222
#include "softmmu_template.h"
2223

    
2224
/* try to fill the TLB and return an exception if error. If retaddr is
2225
   NULL, it means that the function was called in C code (i.e. not
2226
   from generated code or from helper.c) */
2227
/* XXX: fix it to restore all registers */
2228
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2229
{
2230
    TranslationBlock *tb;
2231
    CPUState *saved_env;
2232
    target_phys_addr_t pc;
2233
    int ret;
2234

    
2235
    /* XXX: hack to restore env in all cases, even if not called from
2236
       generated code */
2237
    saved_env = env;
2238
    env = cpu_single_env;
2239
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2240
    if (unlikely(ret != 0)) {
2241
        if (likely(retaddr)) {
2242
            /* now we have a real cpu fault */
2243
            pc = (target_phys_addr_t)retaddr;
2244
            tb = tb_find_pc(pc);
2245
            if (likely(tb)) {
2246
                /* the PC is inside the translated code. It means that we have
2247
                   a virtual CPU fault */
2248
                cpu_restore_state(tb, env, pc, NULL);
2249
            }
2250
        }
2251
        do_raise_exception_err(env->exception_index, env->error_code);
2252
    }
2253
    env = saved_env;
2254
}
2255

    
2256
/* TLB invalidation helpers */
2257
void do_tlbia (void)
2258
{
2259
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2260
        ppc6xx_tlb_invalidate_all(env);
2261
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2262
        /* XXX: TODO */
2263
#if 0
2264
        ppcbooke_tlb_invalidate_all(env);
2265
#endif
2266
    } else {
2267
        tlb_flush(env, 1);
2268
    }
2269
}
2270

    
2271
void do_tlbie (void)
2272
{
2273
    T0 = (uint32_t)T0;
2274
#if !defined(FLUSH_ALL_TLBS)
2275
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2276
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2277
        if (env->id_tlbs == 1)
2278
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2279
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2280
        /* XXX: TODO */
2281
#if 0
2282
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2283
                                     env->spr[SPR_BOOKE_PID]);
2284
#endif
2285
    } else {
2286
        /* tlbie invalidate TLBs for all segments */
2287
        T0 &= TARGET_PAGE_MASK;
2288
        T0 &= ~((target_ulong)-1 << 28);
2289
        /* XXX: this case should be optimized,
2290
         * giving a mask to tlb_flush_page
2291
         */
2292
        tlb_flush_page(env, T0 | (0x0 << 28));
2293
        tlb_flush_page(env, T0 | (0x1 << 28));
2294
        tlb_flush_page(env, T0 | (0x2 << 28));
2295
        tlb_flush_page(env, T0 | (0x3 << 28));
2296
        tlb_flush_page(env, T0 | (0x4 << 28));
2297
        tlb_flush_page(env, T0 | (0x5 << 28));
2298
        tlb_flush_page(env, T0 | (0x6 << 28));
2299
        tlb_flush_page(env, T0 | (0x7 << 28));
2300
        tlb_flush_page(env, T0 | (0x8 << 28));
2301
        tlb_flush_page(env, T0 | (0x9 << 28));
2302
        tlb_flush_page(env, T0 | (0xA << 28));
2303
        tlb_flush_page(env, T0 | (0xB << 28));
2304
        tlb_flush_page(env, T0 | (0xC << 28));
2305
        tlb_flush_page(env, T0 | (0xD << 28));
2306
        tlb_flush_page(env, T0 | (0xE << 28));
2307
        tlb_flush_page(env, T0 | (0xF << 28));
2308
    }
2309
#else
2310
    do_tlbia();
2311
#endif
2312
}
2313

    
2314
#if defined(TARGET_PPC64)
2315
void do_tlbie_64 (void)
2316
{
2317
    T0 = (uint64_t)T0;
2318
#if !defined(FLUSH_ALL_TLBS)
2319
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2320
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2321
        if (env->id_tlbs == 1)
2322
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2323
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2324
        /* XXX: TODO */
2325
#if 0
2326
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2327
                                     env->spr[SPR_BOOKE_PID]);
2328
#endif
2329
    } else {
2330
        /* tlbie invalidate TLBs for all segments
2331
         * As we have 2^36 segments, invalidate all qemu TLBs
2332
         */
2333
#if 0
2334
        T0 &= TARGET_PAGE_MASK;
2335
        T0 &= ~((target_ulong)-1 << 28);
2336
        /* XXX: this case should be optimized,
2337
         * giving a mask to tlb_flush_page
2338
         */
2339
        tlb_flush_page(env, T0 | (0x0 << 28));
2340
        tlb_flush_page(env, T0 | (0x1 << 28));
2341
        tlb_flush_page(env, T0 | (0x2 << 28));
2342
        tlb_flush_page(env, T0 | (0x3 << 28));
2343
        tlb_flush_page(env, T0 | (0x4 << 28));
2344
        tlb_flush_page(env, T0 | (0x5 << 28));
2345
        tlb_flush_page(env, T0 | (0x6 << 28));
2346
        tlb_flush_page(env, T0 | (0x7 << 28));
2347
        tlb_flush_page(env, T0 | (0x8 << 28));
2348
        tlb_flush_page(env, T0 | (0x9 << 28));
2349
        tlb_flush_page(env, T0 | (0xA << 28));
2350
        tlb_flush_page(env, T0 | (0xB << 28));
2351
        tlb_flush_page(env, T0 | (0xC << 28));
2352
        tlb_flush_page(env, T0 | (0xD << 28));
2353
        tlb_flush_page(env, T0 | (0xE << 28));
2354
        tlb_flush_page(env, T0 | (0xF << 28));
2355
#else
2356
        tlb_flush(env, 1);
2357
#endif
2358
    }
2359
#else
2360
    do_tlbia();
2361
#endif
2362
}
2363
#endif
2364

    
2365
#if defined(TARGET_PPC64)
2366
void do_slbia (void)
2367
{
2368
    /* XXX: TODO */
2369
    tlb_flush(env, 1);
2370
}
2371

    
2372
void do_slbie (void)
2373
{
2374
    /* XXX: TODO */
2375
    tlb_flush(env, 1);
2376
}
2377
#endif
2378

    
2379
/* Software driven TLBs management */
2380
/* PowerPC 602/603 software TLB load instructions helpers */
2381
void do_load_6xx_tlb (int is_code)
2382
{
2383
    target_ulong RPN, CMP, EPN;
2384
    int way;
2385

    
2386
    RPN = env->spr[SPR_RPA];
2387
    if (is_code) {
2388
        CMP = env->spr[SPR_ICMP];
2389
        EPN = env->spr[SPR_IMISS];
2390
    } else {
2391
        CMP = env->spr[SPR_DCMP];
2392
        EPN = env->spr[SPR_DMISS];
2393
    }
2394
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2395
#if defined (DEBUG_SOFTWARE_TLB)
2396
    if (loglevel != 0) {
2397
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2398
                __func__, (unsigned long)T0, (unsigned long)EPN,
2399
                (unsigned long)CMP, (unsigned long)RPN, way);
2400
    }
2401
#endif
2402
    /* Store this TLB */
2403
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2404
                     way, is_code, CMP, RPN);
2405
}
2406

    
2407
static target_ulong booke_tlb_to_page_size (int size)
2408
{
2409
    return 1024 << (2 * size);
2410
}
2411

    
2412
static int booke_page_size_to_tlb (target_ulong page_size)
2413
{
2414
    int size;
2415

    
2416
    switch (page_size) {
2417
    case 0x00000400UL:
2418
        size = 0x0;
2419
        break;
2420
    case 0x00001000UL:
2421
        size = 0x1;
2422
        break;
2423
    case 0x00004000UL:
2424
        size = 0x2;
2425
        break;
2426
    case 0x00010000UL:
2427
        size = 0x3;
2428
        break;
2429
    case 0x00040000UL:
2430
        size = 0x4;
2431
        break;
2432
    case 0x00100000UL:
2433
        size = 0x5;
2434
        break;
2435
    case 0x00400000UL:
2436
        size = 0x6;
2437
        break;
2438
    case 0x01000000UL:
2439
        size = 0x7;
2440
        break;
2441
    case 0x04000000UL:
2442
        size = 0x8;
2443
        break;
2444
    case 0x10000000UL:
2445
        size = 0x9;
2446
        break;
2447
    case 0x40000000UL:
2448
        size = 0xA;
2449
        break;
2450
#if defined (TARGET_PPC64)
2451
    case 0x000100000000ULL:
2452
        size = 0xB;
2453
        break;
2454
    case 0x000400000000ULL:
2455
        size = 0xC;
2456
        break;
2457
    case 0x001000000000ULL:
2458
        size = 0xD;
2459
        break;
2460
    case 0x004000000000ULL:
2461
        size = 0xE;
2462
        break;
2463
    case 0x010000000000ULL:
2464
        size = 0xF;
2465
        break;
2466
#endif
2467
    default:
2468
        size = -1;
2469
        break;
2470
    }
2471

    
2472
    return size;
2473
}
2474

    
2475
/* Helpers for 4xx TLB management */
2476
void do_4xx_tlbia (void)
2477
{
2478
    ppcemb_tlb_t *tlb;
2479
    int i;
2480

    
2481
    for (i = 0; i < 64; i++) {
2482
        tlb = &env->tlb[i].tlbe;
2483
        if (tlb->prot & PAGE_VALID) {
2484
#if 0
2485
            end = tlb->EPN + tlb->size;
2486
            for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2487
                tlb_flush_page(env, page);
2488
#endif
2489
            tlb->prot &= ~PAGE_VALID;
2490
        }
2491
    }
2492
    tlb_flush(env, 1);
2493
}
2494

    
2495
void do_4xx_tlbre_lo (void)
2496
{
2497
    ppcemb_tlb_t *tlb;
2498
    int size;
2499

    
2500
    T0 &= 0x3F;
2501
    tlb = &env->tlb[T0].tlbe;
2502
    T0 = tlb->EPN;
2503
    if (tlb->prot & PAGE_VALID)
2504
        T0 |= 0x400;
2505
    size = booke_page_size_to_tlb(tlb->size);
2506
    if (size < 0 || size > 0x7)
2507
        size = 1;
2508
    T0 |= size << 7;
2509
    env->spr[SPR_40x_PID] = tlb->PID;
2510
}
2511

    
2512
void do_4xx_tlbre_hi (void)
2513
{
2514
    ppcemb_tlb_t *tlb;
2515

    
2516
    T0 &= 0x3F;
2517
    tlb = &env->tlb[T0].tlbe;
2518
    T0 = tlb->RPN;
2519
    if (tlb->prot & PAGE_EXEC)
2520
        T0 |= 0x200;
2521
    if (tlb->prot & PAGE_WRITE)
2522
        T0 |= 0x100;
2523
}
2524

    
2525
static int tlb_4xx_search (target_ulong virtual)
2526
{
2527
    ppcemb_tlb_t *tlb;
2528
    target_ulong base, mask;
2529
    int i, ret;
2530

    
2531
    /* Default return value is no match */
2532
    ret = -1;
2533
    for (i = 0; i < 64; i++) {
2534
        tlb = &env->tlb[i].tlbe;
2535
        /* Check TLB validity */
2536
        if (!(tlb->prot & PAGE_VALID))
2537
            continue;
2538
        /* Check TLB PID vs current PID */
2539
        if (tlb->PID != 0 && tlb->PID != env->spr[SPR_40x_PID])
2540
            continue;
2541
        /* Check TLB address vs virtual address */
2542
        base = tlb->EPN;
2543
        mask = ~(tlb->size - 1);
2544
        if ((base & mask) != (virtual & mask))
2545
            continue;
2546
        ret = i;
2547
        break;
2548
    }
2549

    
2550
    return ret;
2551
}
2552

    
2553
void do_4xx_tlbsx (void)
2554
{
2555
    T0 = tlb_4xx_search(T0);
2556
}
2557

    
2558
void do_4xx_tlbsx_ (void)
2559
{
2560
    int tmp = xer_ov;
2561

    
2562
    T0 = tlb_4xx_search(T0);
2563
    if (T0 != -1)
2564
        tmp |= 0x02;
2565
    env->crf[0] = tmp;
2566
}
2567

    
2568
void do_4xx_tlbwe_lo (void)
2569
{
2570
    ppcemb_tlb_t *tlb;
2571
    target_ulong page, end;
2572

    
2573
    T0 &= 0x3F;
2574
    tlb = &env->tlb[T0].tlbe;
2575
    /* Invalidate previous TLB (if it's valid) */
2576
    if (tlb->prot & PAGE_VALID) {
2577
        end = tlb->EPN + tlb->size;
2578
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2579
            tlb_flush_page(env, page);
2580
    }
2581
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2582
    tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
2583
    if (T1 & 0x400)
2584
        tlb->prot |= PAGE_VALID;
2585
    else
2586
        tlb->prot &= ~PAGE_VALID;
2587
    tlb->PID = env->spr[SPR_BOOKE_PID]; /* PID */
2588
    tlb->attr = T1 & 0xFF;
2589
    /* Invalidate new TLB (if valid) */
2590
    if (tlb->prot & PAGE_VALID) {
2591
        end = tlb->EPN + tlb->size;
2592
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2593
            tlb_flush_page(env, page);
2594
    }
2595
}
2596

    
2597
void do_4xx_tlbwe_hi (void)
2598
{
2599
    ppcemb_tlb_t *tlb;
2600

    
2601
    T0 &= 0x3F;
2602
    tlb = &env->tlb[T0].tlbe;
2603
    tlb->RPN = T1 & 0xFFFFFC00;
2604
    tlb->prot = PAGE_READ;
2605
    if (T1 & 0x200)
2606
        tlb->prot |= PAGE_EXEC;
2607
    if (T1 & 0x100)
2608
        tlb->prot |= PAGE_WRITE;
2609
}
2610
#endif /* !CONFIG_USER_ONLY */