Statistics
| Branch: | Revision:

root / hw / mips_malta.c @ a4bc3afc

History | View | Annotate | Download (21.4 kB)

1
/*
2
 * QEMU Malta board support
3
 *
4
 * Copyright (c) 2006 Aurelien Jarno
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "vl.h"
26

    
27
#ifdef TARGET_WORDS_BIGENDIAN
28
#define BIOS_FILENAME "mips_bios.bin"
29
#else
30
#define BIOS_FILENAME "mipsel_bios.bin"
31
#endif
32

    
33
#ifdef MIPS_HAS_MIPS64
34
#define INITRD_LOAD_ADDR         (int64_t)0x80800000
35
#else
36
#define INITRD_LOAD_ADDR         (int32_t)0x80800000
37
#endif
38

    
39
#define ENVP_ADDR                (int32_t)0x80002000
40
#define VIRT_TO_PHYS_ADDEND         (-((int64_t)(int32_t)0x80000000))
41

    
42
#define ENVP_NB_ENTRIES                 16
43
#define ENVP_ENTRY_SIZE                 256
44

    
45

    
46
extern FILE *logfile;
47

    
48
typedef struct {
49
    uint32_t leds;
50
    uint32_t brk;
51
    uint32_t gpout;
52
    uint32_t i2cin;
53
    uint32_t i2coe;
54
    uint32_t i2cout;
55
    uint32_t i2csel;
56
    CharDriverState *display;
57
    char display_text[9];
58
    SerialState *uart;
59
} MaltaFPGAState;
60

    
61
static PITState *pit;
62

    
63
/* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
64
static void pic_irq_request(void *opaque, int level)
65
{
66
    cpu_mips_irq_request(opaque, 2, level);
67
}
68

    
69
/* Malta FPGA */
70
static void malta_fpga_update_display(void *opaque)
71
{
72
    char leds_text[9];
73
    int i;
74
    MaltaFPGAState *s = opaque;
75

    
76
    for (i = 7 ; i >= 0 ; i--) {
77
        if (s->leds & (1 << i))
78
            leds_text[i] = '#';
79
        else
80
            leds_text[i] = ' ';
81
    }
82
    leds_text[8] = '\0';
83

    
84
    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
85
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
86
}
87

    
88
/*
89
 * EEPROM 24C01 / 24C02 emulation.
90
 *
91
 * Emulation for serial EEPROMs:
92
 * 24C01 - 1024 bit (128 x 8)
93
 * 24C02 - 2048 bit (256 x 8)
94
 *
95
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
96
 */
97

    
98
//~ #define DEBUG
99

    
100
#if defined(DEBUG)
101
#  define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
102
#else
103
#  define logout(fmt, args...) ((void)0)
104
#endif
105

    
106
struct _eeprom24c0x_t {
107
  uint8_t tick;
108
  uint8_t address;
109
  uint8_t command;
110
  uint8_t ack;
111
  uint8_t scl;
112
  uint8_t sda;
113
  uint8_t data;
114
  //~ uint16_t size;
115
  uint8_t contents[256];
116
};
117

    
118
typedef struct _eeprom24c0x_t eeprom24c0x_t;
119

    
120
static eeprom24c0x_t eeprom = {
121
    contents: {
122
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
123
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
124
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
125
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
126
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
127
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
128
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
129
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
130
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
131
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
132
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
133
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
134
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
135
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
136
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
137
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
138
    },
139
};
140

    
141
static uint8_t eeprom24c0x_read()
142
{
143
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
144
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
145
    return eeprom.sda;
146
}
147

    
148
static void eeprom24c0x_write(int scl, int sda)
149
{
150
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
151
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
152
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
153
        if (!sda) {
154
            eeprom.tick = 1;
155
            eeprom.command = 0;
156
        }
157
    } else if (eeprom.tick == 0 && !eeprom.ack) {
158
        /* Waiting for start. */
159
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
160
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
161
    } else if (!eeprom.scl && scl) {
162
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
163
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
164
        if (eeprom.ack) {
165
            logout("\ti2c ack bit = 0\n");
166
            sda = 0;
167
            eeprom.ack = 0;
168
        } else if (eeprom.sda == sda) {
169
            uint8_t bit = (sda != 0);
170
            logout("\ti2c bit = %d\n", bit);
171
            if (eeprom.tick < 9) {
172
                eeprom.command <<= 1;
173
                eeprom.command += bit;
174
                eeprom.tick++;
175
                if (eeprom.tick == 9) {
176
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
177
                    eeprom.ack = 1;
178
                }
179
            } else if (eeprom.tick < 17) {
180
                if (eeprom.command & 1) {
181
                    sda = ((eeprom.data & 0x80) != 0);
182
                }
183
                eeprom.address <<= 1;
184
                eeprom.address += bit;
185
                eeprom.tick++;
186
                eeprom.data <<= 1;
187
                if (eeprom.tick == 17) {
188
                    eeprom.data = eeprom.contents[eeprom.address];
189
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
190
                    eeprom.ack = 1;
191
                    eeprom.tick = 0;
192
                }
193
            } else if (eeprom.tick >= 17) {
194
                sda = 0;
195
            }
196
        } else {
197
            logout("\tsda changed with raising scl\n");
198
        }
199
    } else {
200
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
201
    }
202
    eeprom.scl = scl;
203
    eeprom.sda = sda;
204
}
205

    
206
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
207
{
208
    MaltaFPGAState *s = opaque;
209
    uint32_t val = 0;
210
    uint32_t saddr;
211

    
212
    saddr = (addr & 0xfffff);
213

    
214
    switch (saddr) {
215

    
216
    /* SWITCH Register */
217
    case 0x00200:
218
        val = 0x00000000;                /* All switches closed */
219
        break;
220

    
221
    /* STATUS Register */
222
    case 0x00208:
223
#ifdef TARGET_WORDS_BIGENDIAN
224
        val = 0x00000012;
225
#else
226
        val = 0x00000010;
227
#endif
228
        break;
229

    
230
    /* JMPRS Register */
231
    case 0x00210:
232
        val = 0x00;
233
        break;
234

    
235
    /* LEDBAR Register */
236
    case 0x00408:
237
        val = s->leds;
238
        break;
239

    
240
    /* BRKRES Register */
241
    case 0x00508:
242
        val = s->brk;
243
        break;
244

    
245
    /* UART Registers */
246
    case 0x00900:
247
    case 0x00904:
248
    case 0x00908:
249
    case 0x0090c:
250
    case 0x00910:
251
    case 0x00914:
252
    case 0x00918:
253
    case 0x0091c:
254
        val = serial_mm_readl(s->uart, addr);
255
        break;
256

    
257
    /* GPOUT Register */
258
    case 0x00a00:
259
        val = s->gpout;
260
        break;
261

    
262
    /* XXX: implement a real I2C controller */
263

    
264
    /* GPINP Register */
265
    case 0x00a08:
266
        /* IN = OUT until a real I2C control is implemented */
267
        if (s->i2csel)
268
            val = s->i2cout;
269
        else
270
            val = 0x00;
271
        break;
272

    
273
    /* I2CINP Register */
274
    case 0x00b00:
275
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
276
        break;
277

    
278
    /* I2COE Register */
279
    case 0x00b08:
280
        val = s->i2coe;
281
        break;
282

    
283
    /* I2COUT Register */
284
    case 0x00b10:
285
        val = s->i2cout;
286
        break;
287

    
288
    /* I2CSEL Register */
289
    case 0x00b18:
290
        val = s->i2csel;
291
        break;
292

    
293
    default:
294
#if 0
295
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
296
                addr);
297
#endif
298
        break;
299
    }
300
    return val;
301
}
302

    
303
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
304
                              uint32_t val)
305
{
306
    MaltaFPGAState *s = opaque;
307
    uint32_t saddr;
308

    
309
    saddr = (addr & 0xfffff);
310

    
311
    switch (saddr) {
312

    
313
    /* SWITCH Register */
314
    case 0x00200:
315
        break;
316

    
317
    /* JMPRS Register */
318
    case 0x00210:
319
        break;
320

    
321
    /* LEDBAR Register */
322
    /* XXX: implement a 8-LED array */
323
    case 0x00408:
324
        s->leds = val & 0xff;
325
        break;
326

    
327
    /* ASCIIWORD Register */
328
    case 0x00410:
329
        snprintf(s->display_text, 9, "%08X", val);
330
        malta_fpga_update_display(s);
331
        break;
332

    
333
    /* ASCIIPOS0 to ASCIIPOS7 Registers */
334
    case 0x00418:
335
    case 0x00420:
336
    case 0x00428:
337
    case 0x00430:
338
    case 0x00438:
339
    case 0x00440:
340
    case 0x00448:
341
    case 0x00450:
342
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
343
        malta_fpga_update_display(s);
344
        break;
345

    
346
    /* SOFTRES Register */
347
    case 0x00500:
348
        if (val == 0x42)
349
            qemu_system_reset_request ();
350
        break;
351

    
352
    /* BRKRES Register */
353
    case 0x00508:
354
        s->brk = val & 0xff;
355
        break;
356

    
357
    /* UART Registers */
358
    case 0x00900:
359
    case 0x00904:
360
    case 0x00908:
361
    case 0x0090c:
362
    case 0x00910:
363
    case 0x00914:
364
    case 0x00918:
365
    case 0x0091c:
366
        serial_mm_writel(s->uart, addr, val);
367
        break;
368

    
369
    /* GPOUT Register */
370
    case 0x00a00:
371
        s->gpout = val & 0xff;
372
        break;
373

    
374
    /* I2COE Register */
375
    case 0x00b08:
376
        s->i2coe = val & 0x03;
377
        break;
378

    
379
    /* I2COUT Register */
380
    case 0x00b10:
381
        eeprom24c0x_write(val & 0x02, val & 0x01);
382
        s->i2cout = val;
383
        break;
384

    
385
    /* I2CSEL Register */
386
    case 0x00b18:
387
        s->i2csel = val & 0x01;
388
        break;
389

    
390
    default:
391
#if 0
392
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
393
                addr);
394
#endif
395
        break;
396
    }
397
}
398

    
399
static CPUReadMemoryFunc *malta_fpga_read[] = {
400
   malta_fpga_readl,
401
   malta_fpga_readl,
402
   malta_fpga_readl
403
};
404

    
405
static CPUWriteMemoryFunc *malta_fpga_write[] = {
406
   malta_fpga_writel,
407
   malta_fpga_writel,
408
   malta_fpga_writel
409
};
410

    
411
void malta_fpga_reset(void *opaque)
412
{
413
    MaltaFPGAState *s = opaque;
414

    
415
    s->leds   = 0x00;
416
    s->brk    = 0x0a;
417
    s->gpout  = 0x00;
418
    s->i2cin  = 0x3;
419
    s->i2coe  = 0x0;
420
    s->i2cout = 0x3;
421
    s->i2csel = 0x1;
422

    
423
    s->display_text[8] = '\0';
424
    snprintf(s->display_text, 9, "        ");
425
    malta_fpga_update_display(s);
426
}
427

    
428
MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
429
{
430
    MaltaFPGAState *s;
431
    CharDriverState *uart_chr;
432
    int malta;
433

    
434
    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
435

    
436
    malta = cpu_register_io_memory(0, malta_fpga_read,
437
                                   malta_fpga_write, s);
438

    
439
    cpu_register_physical_memory(base, 0x100000, malta);
440

    
441
    s->display = qemu_chr_open("vc");
442
    qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
443
    qemu_chr_printf(s->display, "+--------+\r\n");
444
    qemu_chr_printf(s->display, "+        +\r\n");
445
    qemu_chr_printf(s->display, "+--------+\r\n");
446
    qemu_chr_printf(s->display, "\n");
447
    qemu_chr_printf(s->display, "Malta ASCII\r\n");
448
    qemu_chr_printf(s->display, "+--------+\r\n");
449
    qemu_chr_printf(s->display, "+        +\r\n");
450
    qemu_chr_printf(s->display, "+--------+\r\n");
451

    
452
    uart_chr = qemu_chr_open("vc");
453
    qemu_chr_printf(uart_chr, "CBUS UART\r\n");
454
    s->uart = serial_mm_init(&cpu_mips_irq_request, env, base, 3, 2,
455
                             uart_chr, 0);
456

    
457
    malta_fpga_reset(s);
458
    qemu_register_reset(malta_fpga_reset, s);
459

    
460
    return s;
461
}
462

    
463
/* Audio support */
464
#ifdef HAS_AUDIO
465
static void audio_init (PCIBus *pci_bus)
466
{
467
    struct soundhw *c;
468
    int audio_enabled = 0;
469

    
470
    for (c = soundhw; !audio_enabled && c->name; ++c) {
471
        audio_enabled = c->enabled;
472
    }
473

    
474
    if (audio_enabled) {
475
        AudioState *s;
476

    
477
        s = AUD_init ();
478
        if (s) {
479
            for (c = soundhw; c->name; ++c) {
480
                if (c->enabled) {
481
                    if (c->isa) {
482
                        fprintf(stderr, "qemu: Unsupported Sound Card: %s\n", c->name);
483
                        exit(1);
484
                    }
485
                    else {
486
                        if (pci_bus) {
487
                            c->init.init_pci (pci_bus, s);
488
                        }
489
                    }
490
                }
491
            }
492
        }
493
    }
494
}
495
#endif
496

    
497
/* Network support */
498
static void network_init (PCIBus *pci_bus)
499
{
500
    int i;
501
    NICInfo *nd;
502

    
503
    for(i = 0; i < nb_nics; i++) {
504
        nd = &nd_table[i];
505
        if (!nd->model) {
506
            nd->model = "pcnet";
507
        }
508
        if (i == 0  && strcmp(nd->model, "pcnet") == 0) {
509
            /* The malta board has a PCNet card using PCI SLOT 11 */
510
            pci_nic_init(pci_bus, nd, 88);
511
        } else {
512
            pci_nic_init(pci_bus, nd, -1);
513
        }
514
    }
515
}
516

    
517
/* ROM and pseudo bootloader
518

519
   The following code implements a very very simple bootloader. It first
520
   loads the registers a0 to a3 to the values expected by the OS, and
521
   then jump at the kernel address.
522

523
   The bootloader should pass the locations of the kernel arguments and
524
   environment variables tables. Those tables contain the 32-bit address
525
   of NULL terminated strings. The environment variables table should be
526
   terminated by a NULL address.
527

528
   For a simpler implementation, the number of kernel arguments is fixed
529
   to two (the name of the kernel and the command line), and the two
530
   tables are actually the same one.
531

532
   The registers a0 to a3 should contain the following values:
533
     a0 - number of kernel arguments
534
     a1 - 32-bit address of the kernel arguments table
535
     a2 - 32-bit address of the environment variables table
536
     a3 - RAM size in bytes
537
*/
538

    
539
static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_addr)
540
{
541
    uint32_t *p;
542

    
543
    /* Small bootloader */
544
    p = (uint32_t *) (phys_ram_base + bios_offset);
545
    stl_raw(p++, 0x0bf00010);                                      /* j 0x1fc00040 */
546
    stl_raw(p++, 0x00000000);                                      /* nop */
547

    
548
    /* Second part of the bootloader */
549
    p = (uint32_t *) (phys_ram_base + bios_offset + 0x040);
550
    stl_raw(p++, 0x3c040000);                                      /* lui a0, 0 */
551
    stl_raw(p++, 0x34840002);                                      /* ori a0, a0, 2 */
552
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
553
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a0, low(ENVP_ADDR) */
554
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
555
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
556
    stl_raw(p++, 0x3c070000 | (env->ram_size >> 16));              /* lui a3, high(env->ram_size) */
557
    stl_raw(p++, 0x34e70000 | (env->ram_size & 0xffff));           /* ori a3, a3, low(env->ram_size) */
558
    stl_raw(p++, 0x3c1f0000 | ((kernel_addr >> 16) & 0xffff));     /* lui ra, high(kernel_addr) */;
559
    stl_raw(p++, 0x37ff0000 | (kernel_addr & 0xffff));             /* ori ra, ra, low(kernel_addr) */
560
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
561
    stl_raw(p++, 0x00000000);                                      /* nop */
562
}
563

    
564
static void prom_set(int index, const char *string, ...)
565
{
566
    va_list ap;
567
    int32_t *p;
568
    int32_t table_addr;
569
    char *s;
570

    
571
    if (index >= ENVP_NB_ENTRIES)
572
        return;
573

    
574
    p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
575
    p += index;
576

    
577
    if (string == NULL) {
578
        stl_raw(p, 0);
579
        return;
580
    }
581

    
582
    table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
583
    s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
584

    
585
    stl_raw(p, table_addr);
586

    
587
    va_start(ap, string);
588
    vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
589
    va_end(ap);
590
}
591

    
592
/* Kernel */
593
static int64_t load_kernel (CPUState *env)
594
{
595
    int64_t kernel_addr = 0;
596
    int index = 0;
597
    long initrd_size;
598

    
599
    if (load_elf(env->kernel_filename, VIRT_TO_PHYS_ADDEND, &kernel_addr) < 0) {
600
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
601
                env->kernel_filename);
602
      exit(1);
603
    }
604

    
605
    /* load initrd */
606
    initrd_size = 0;
607
    if (env->initrd_filename) {
608
        initrd_size = load_image(env->initrd_filename,
609
                                 phys_ram_base + INITRD_LOAD_ADDR + VIRT_TO_PHYS_ADDEND);
610
        if (initrd_size == (target_ulong) -1) {
611
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
612
                    env->initrd_filename);
613
            exit(1);
614
        }
615
    }
616

    
617
    /* Store command line.  */
618
    prom_set(index++, env->kernel_filename);
619
    if (initrd_size > 0)
620
        prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s", INITRD_LOAD_ADDR, initrd_size, env->kernel_cmdline);
621
    else
622
        prom_set(index++, env->kernel_cmdline);
623

    
624
    /* Setup minimum environment variables */
625
    prom_set(index++, "memsize");
626
    prom_set(index++, "%i", env->ram_size);
627
    prom_set(index++, "modetty0");
628
    prom_set(index++, "38400n8r");
629
    prom_set(index++, NULL);
630

    
631
    return kernel_addr;
632
}
633

    
634
static void main_cpu_reset(void *opaque)
635
{
636
    CPUState *env = opaque;
637
    cpu_reset(env);
638

    
639
    /* The bootload does not need to be rewritten as it is located in a
640
       read only location. The kernel location and the arguments table
641
       location does not change. */
642
    if (env->kernel_filename)
643
        load_kernel (env);
644
}
645

    
646
static
647
void mips_malta_init (int ram_size, int vga_ram_size, int boot_device,
648
                      DisplayState *ds, const char **fd_filename, int snapshot,
649
                      const char *kernel_filename, const char *kernel_cmdline,
650
                      const char *initrd_filename, const char *cpu_model)
651
{
652
    char buf[1024];
653
    unsigned long bios_offset;
654
    int64_t kernel_addr;
655
    PCIBus *pci_bus;
656
    CPUState *env;
657
    RTCState *rtc_state;
658
    /* fdctrl_t *floppy_controller; */
659
    MaltaFPGAState *malta_fpga;
660
    int ret;
661
    mips_def_t *def;
662

    
663
    /* init CPUs */
664
    if (cpu_model == NULL) {
665
#ifdef MIPS_HAS_MIPS64
666
        cpu_model = "R4000";
667
#else
668
        cpu_model = "4KEc";
669
#endif
670
    }
671
    if (mips_find_by_name(cpu_model, &def) != 0)
672
        def = NULL;
673
    env = cpu_init();
674
    cpu_mips_register(env, def);
675
    register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
676
    qemu_register_reset(main_cpu_reset, env);
677

    
678
    /* allocate RAM */
679
    cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
680

    
681
    /* Map the bios at two physical locations, as on the real board */
682
    bios_offset = ram_size + vga_ram_size;
683
    cpu_register_physical_memory(0x1e000000LL,
684
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
685
    cpu_register_physical_memory(0x1fc00000LL,
686
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
687

    
688
    /* Load a BIOS image except if a kernel image has been specified. In
689
       the later case, just write a small bootloader to the flash
690
       location. */
691
    if (kernel_filename) {
692
        env->ram_size = ram_size;
693
        env->kernel_filename = kernel_filename;
694
        env->kernel_cmdline = kernel_cmdline;
695
        env->initrd_filename = initrd_filename;
696
        kernel_addr = load_kernel(env);
697
        write_bootloader(env, bios_offset, kernel_addr);
698
    } else {
699
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
700
        ret = load_image(buf, phys_ram_base + bios_offset);
701
        if (ret < 0 || ret > BIOS_SIZE) {
702
            fprintf(stderr, "qemu: Warning, could not load MIPS bios '%s'\n",
703
                    buf);
704
            exit(1);
705
        }
706
    }
707

    
708
    /* Board ID = 0x420 (Malta Board with CoreLV)
709
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
710
       map to the board ID. */
711
    stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
712

    
713
    /* Init internal devices */
714
    cpu_mips_clock_init(env);
715
    cpu_mips_irqctrl_init();
716

    
717
    /* FPGA */
718
    malta_fpga = malta_fpga_init(0x1f000000LL, env);
719

    
720
    /* Interrupt controller */
721
    isa_pic = pic_init(pic_irq_request, env);
722

    
723
    /* Northbridge */
724
    pci_bus = pci_gt64120_init(isa_pic);
725

    
726
    /* Southbridge */
727
    piix4_init(pci_bus, 80);
728
    pci_piix3_ide_init(pci_bus, bs_table, 81);
729
    usb_uhci_init(pci_bus, 82);
730
    piix4_pm_init(pci_bus, 83);
731
    pit = pit_init(0x40, 0);
732
    DMA_init(0);
733

    
734
    /* Super I/O */
735
    kbd_init();
736
    rtc_state = rtc_init(0x70, 8);
737
    if (serial_hds[0])
738
        serial_init(&pic_set_irq_new, isa_pic, 0x3f8, 4, serial_hds[0]);
739
    if (serial_hds[1])
740
        serial_init(&pic_set_irq_new, isa_pic, 0x2f8, 3, serial_hds[1]);
741
    if (parallel_hds[0])
742
        parallel_init(0x378, 7, parallel_hds[0]);
743
    /* XXX: The floppy controller does not work correctly, something is
744
       probably wrong.
745
    floppy_controller = fdctrl_init(6, 2, 0, 0x3f0, fd_table); */
746

    
747
    /* Sound card */
748
#ifdef HAS_AUDIO
749
    audio_init(pci_bus);
750
#endif
751

    
752
    /* Network card */
753
    network_init(pci_bus);
754

    
755
    /* Optional PCI video card */
756
    pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
757
                        ram_size, vga_ram_size);
758
}
759

    
760
QEMUMachine mips_malta_machine = {
761
    "malta",
762
    "MIPS Malta Core LV",
763
    mips_malta_init,
764
};