root / hw / slavio_timer.c @ a702b353
History | View | Annotate | Download (10.4 kB)
1 |
/*
|
---|---|
2 |
* QEMU Sparc SLAVIO timer controller emulation
|
3 |
*
|
4 |
* Copyright (c) 2003-2005 Fabrice Bellard
|
5 |
*
|
6 |
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
* of this software and associated documentation files (the "Software"), to deal
|
8 |
* in the Software without restriction, including without limitation the rights
|
9 |
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
* copies of the Software, and to permit persons to whom the Software is
|
11 |
* furnished to do so, subject to the following conditions:
|
12 |
*
|
13 |
* The above copyright notice and this permission notice shall be included in
|
14 |
* all copies or substantial portions of the Software.
|
15 |
*
|
16 |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
19 |
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
22 |
* THE SOFTWARE.
|
23 |
*/
|
24 |
#include "vl.h" |
25 |
|
26 |
//#define DEBUG_TIMER
|
27 |
|
28 |
#ifdef DEBUG_TIMER
|
29 |
#define DPRINTF(fmt, args...) \
|
30 |
do { printf("TIMER: " fmt , ##args); } while (0) |
31 |
#else
|
32 |
#define DPRINTF(fmt, args...)
|
33 |
#endif
|
34 |
|
35 |
/*
|
36 |
* Registers of hardware timer in sun4m.
|
37 |
*
|
38 |
* This is the timer/counter part of chip STP2001 (Slave I/O), also
|
39 |
* produced as NCR89C105. See
|
40 |
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
|
41 |
*
|
42 |
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
|
43 |
* are zero. Bit 31 is 1 when count has been reached.
|
44 |
*
|
45 |
* Per-CPU timers interrupt local CPU, system timer uses normal
|
46 |
* interrupt routing.
|
47 |
*
|
48 |
*/
|
49 |
|
50 |
#define MAX_CPUS 16 |
51 |
|
52 |
typedef struct SLAVIO_TIMERState { |
53 |
qemu_irq irq; |
54 |
ptimer_state *timer; |
55 |
uint32_t count, counthigh, reached; |
56 |
uint64_t limit; |
57 |
// processor only
|
58 |
int running;
|
59 |
struct SLAVIO_TIMERState *master;
|
60 |
int slave_index;
|
61 |
// system only
|
62 |
struct SLAVIO_TIMERState *slave[MAX_CPUS];
|
63 |
uint32_t slave_mode; |
64 |
} SLAVIO_TIMERState; |
65 |
|
66 |
#define TIMER_MAXADDR 0x1f |
67 |
#define SYS_TIMER_SIZE 0x14 |
68 |
#define CPU_TIMER_SIZE 0x10 |
69 |
|
70 |
static int slavio_timer_is_user(SLAVIO_TIMERState *s) |
71 |
{ |
72 |
return s->master && (s->master->slave_mode & (1 << s->slave_index)); |
73 |
} |
74 |
|
75 |
// Update count, set irq, update expire_time
|
76 |
// Convert from ptimer countdown units
|
77 |
static void slavio_timer_get_out(SLAVIO_TIMERState *s) |
78 |
{ |
79 |
uint64_t count; |
80 |
|
81 |
count = s->limit - (ptimer_get_count(s->timer) << 9);
|
82 |
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh, |
83 |
s->count); |
84 |
s->count = count & 0xfffffe00;
|
85 |
s->counthigh = count >> 32;
|
86 |
} |
87 |
|
88 |
// timer callback
|
89 |
static void slavio_timer_irq(void *opaque) |
90 |
{ |
91 |
SLAVIO_TIMERState *s = opaque; |
92 |
|
93 |
slavio_timer_get_out(s); |
94 |
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
|
95 |
if (!slavio_timer_is_user(s)) {
|
96 |
s->reached = 0x80000000;
|
97 |
qemu_irq_raise(s->irq); |
98 |
} |
99 |
} |
100 |
|
101 |
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) |
102 |
{ |
103 |
SLAVIO_TIMERState *s = opaque; |
104 |
uint32_t saddr, ret; |
105 |
|
106 |
saddr = (addr & TIMER_MAXADDR) >> 2;
|
107 |
switch (saddr) {
|
108 |
case 0: |
109 |
// read limit (system counter mode) or read most signifying
|
110 |
// part of counter (user mode)
|
111 |
if (slavio_timer_is_user(s)) {
|
112 |
// read user timer MSW
|
113 |
slavio_timer_get_out(s); |
114 |
ret = s->counthigh; |
115 |
} else {
|
116 |
// read limit
|
117 |
// clear irq
|
118 |
qemu_irq_lower(s->irq); |
119 |
s->reached = 0;
|
120 |
ret = s->limit & 0x7fffffff;
|
121 |
} |
122 |
break;
|
123 |
case 1: |
124 |
// read counter and reached bit (system mode) or read lsbits
|
125 |
// of counter (user mode)
|
126 |
slavio_timer_get_out(s); |
127 |
if (slavio_timer_is_user(s)) // read user timer LSW |
128 |
ret = s->count & 0xfffffe00;
|
129 |
else // read limit |
130 |
ret = (s->count & 0x7ffffe00) | s->reached;
|
131 |
break;
|
132 |
case 3: |
133 |
// only available in processor counter/timer
|
134 |
// read start/stop status
|
135 |
ret = s->running; |
136 |
break;
|
137 |
case 4: |
138 |
// only available in system counter
|
139 |
// read user/system mode
|
140 |
ret = s->slave_mode; |
141 |
break;
|
142 |
default:
|
143 |
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr); |
144 |
ret = 0;
|
145 |
break;
|
146 |
} |
147 |
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret); |
148 |
|
149 |
return ret;
|
150 |
} |
151 |
|
152 |
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) |
153 |
{ |
154 |
SLAVIO_TIMERState *s = opaque; |
155 |
uint32_t saddr; |
156 |
int reload = 0; |
157 |
|
158 |
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val); |
159 |
saddr = (addr & TIMER_MAXADDR) >> 2;
|
160 |
switch (saddr) {
|
161 |
case 0: |
162 |
if (slavio_timer_is_user(s)) {
|
163 |
// set user counter MSW, reset counter
|
164 |
qemu_irq_lower(s->irq); |
165 |
s->limit = 0x7ffffffffffffe00ULL;
|
166 |
DPRINTF("processor %d user timer reset\n", s->slave_index);
|
167 |
ptimer_set_limit(s->timer, s->limit >> 9, 1); |
168 |
} else {
|
169 |
// set limit, reset counter
|
170 |
qemu_irq_lower(s->irq); |
171 |
s->limit = val & 0x7ffffe00ULL;
|
172 |
if (!s->limit)
|
173 |
s->limit = 0x7ffffe00ULL;
|
174 |
ptimer_set_limit(s->timer, s->limit >> 9, 1); |
175 |
} |
176 |
break;
|
177 |
case 1: |
178 |
if (slavio_timer_is_user(s)) {
|
179 |
// set user counter LSW, reset counter
|
180 |
qemu_irq_lower(s->irq); |
181 |
s->limit = 0x7ffffffffffffe00ULL;
|
182 |
DPRINTF("processor %d user timer reset\n", s->slave_index);
|
183 |
ptimer_set_limit(s->timer, s->limit >> 9, 1); |
184 |
} else
|
185 |
DPRINTF("not user timer\n");
|
186 |
break;
|
187 |
case 2: |
188 |
// set limit without resetting counter
|
189 |
s->limit = val & 0x7ffffe00ULL;
|
190 |
if (!s->limit)
|
191 |
s->limit = 0x7ffffe00ULL;
|
192 |
ptimer_set_limit(s->timer, s->limit >> 9, reload);
|
193 |
break;
|
194 |
case 3: |
195 |
if (slavio_timer_is_user(s)) {
|
196 |
// start/stop user counter
|
197 |
if ((val & 1) && !s->running) { |
198 |
DPRINTF("processor %d user timer started\n", s->slave_index);
|
199 |
ptimer_run(s->timer, 0);
|
200 |
s->running = 1;
|
201 |
} else if (!(val & 1) && s->running) { |
202 |
DPRINTF("processor %d user timer stopped\n", s->slave_index);
|
203 |
ptimer_stop(s->timer); |
204 |
s->running = 0;
|
205 |
} |
206 |
} |
207 |
break;
|
208 |
case 4: |
209 |
if (s->master == NULL) { |
210 |
unsigned int i; |
211 |
|
212 |
for (i = 0; i < MAX_CPUS; i++) { |
213 |
if (val & (1 << i)) { |
214 |
qemu_irq_lower(s->slave[i]->irq); |
215 |
s->slave[i]->limit = -1ULL;
|
216 |
} |
217 |
if ((val & (1 << i)) != (s->slave_mode & (1 << i))) { |
218 |
ptimer_stop(s->slave[i]->timer); |
219 |
ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9, 1); |
220 |
DPRINTF("processor %d timer changed\n", s->slave[i]->slave_index);
|
221 |
ptimer_run(s->slave[i]->timer, 0);
|
222 |
} |
223 |
} |
224 |
s->slave_mode = val & ((1 << MAX_CPUS) - 1); |
225 |
} else
|
226 |
DPRINTF("not system timer\n");
|
227 |
break;
|
228 |
default:
|
229 |
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr); |
230 |
break;
|
231 |
} |
232 |
} |
233 |
|
234 |
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = { |
235 |
slavio_timer_mem_readl, |
236 |
slavio_timer_mem_readl, |
237 |
slavio_timer_mem_readl, |
238 |
}; |
239 |
|
240 |
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = { |
241 |
slavio_timer_mem_writel, |
242 |
slavio_timer_mem_writel, |
243 |
slavio_timer_mem_writel, |
244 |
}; |
245 |
|
246 |
static void slavio_timer_save(QEMUFile *f, void *opaque) |
247 |
{ |
248 |
SLAVIO_TIMERState *s = opaque; |
249 |
|
250 |
qemu_put_be64s(f, &s->limit); |
251 |
qemu_put_be32s(f, &s->count); |
252 |
qemu_put_be32s(f, &s->counthigh); |
253 |
qemu_put_be32(f, 0); // Was irq |
254 |
qemu_put_be32s(f, &s->reached); |
255 |
qemu_put_be32s(f, &s->running); |
256 |
qemu_put_be32s(f, 0); // Was mode |
257 |
qemu_put_ptimer(f, s->timer); |
258 |
} |
259 |
|
260 |
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) |
261 |
{ |
262 |
SLAVIO_TIMERState *s = opaque; |
263 |
uint32_t tmp; |
264 |
|
265 |
if (version_id != 2) |
266 |
return -EINVAL;
|
267 |
|
268 |
qemu_get_be64s(f, &s->limit); |
269 |
qemu_get_be32s(f, &s->count); |
270 |
qemu_get_be32s(f, &s->counthigh); |
271 |
qemu_get_be32s(f, &tmp); // Was irq
|
272 |
qemu_get_be32s(f, &s->reached); |
273 |
qemu_get_be32s(f, &s->running); |
274 |
qemu_get_be32s(f, &tmp); // Was mode
|
275 |
qemu_get_ptimer(f, s->timer); |
276 |
|
277 |
return 0; |
278 |
} |
279 |
|
280 |
static void slavio_timer_reset(void *opaque) |
281 |
{ |
282 |
SLAVIO_TIMERState *s = opaque; |
283 |
|
284 |
if (slavio_timer_is_user(s))
|
285 |
s->limit = 0x7ffffffffffffe00ULL;
|
286 |
else
|
287 |
s->limit = 0x7ffffe00ULL;
|
288 |
s->count = 0;
|
289 |
s->reached = 0;
|
290 |
ptimer_set_limit(s->timer, s->limit >> 9, 1); |
291 |
ptimer_run(s->timer, 0);
|
292 |
s->running = 1;
|
293 |
qemu_irq_lower(s->irq); |
294 |
} |
295 |
|
296 |
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
|
297 |
qemu_irq irq, |
298 |
SLAVIO_TIMERState *master, |
299 |
int slave_index)
|
300 |
{ |
301 |
int slavio_timer_io_memory;
|
302 |
SLAVIO_TIMERState *s; |
303 |
QEMUBH *bh; |
304 |
|
305 |
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
|
306 |
if (!s)
|
307 |
return s;
|
308 |
s->irq = irq; |
309 |
s->master = master; |
310 |
s->slave_index = slave_index; |
311 |
bh = qemu_bh_new(slavio_timer_irq, s); |
312 |
s->timer = ptimer_init(bh); |
313 |
ptimer_set_period(s->timer, 500ULL);
|
314 |
|
315 |
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
|
316 |
slavio_timer_mem_write, s); |
317 |
if (master)
|
318 |
cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory); |
319 |
else
|
320 |
cpu_register_physical_memory(addr, SYS_TIMER_SIZE, slavio_timer_io_memory); |
321 |
register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s); |
322 |
qemu_register_reset(slavio_timer_reset, s); |
323 |
slavio_timer_reset(s); |
324 |
|
325 |
return s;
|
326 |
} |
327 |
|
328 |
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
|
329 |
qemu_irq *cpu_irqs) |
330 |
{ |
331 |
SLAVIO_TIMERState *master; |
332 |
unsigned int i; |
333 |
|
334 |
master = slavio_timer_init(base + 0x10000ULL, master_irq, NULL, 0); |
335 |
|
336 |
for (i = 0; i < MAX_CPUS; i++) { |
337 |
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t) |
338 |
(i * TARGET_PAGE_SIZE), |
339 |
cpu_irqs[i], master, i); |
340 |
} |
341 |
} |