Statistics
| Branch: | Revision:

root / qemu-tech.texi @ a74cdab4

History | View | Annotate | Download (22.3 kB)

1 1f673135 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-tech.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 debc7065 bellard
@settitle QEMU Internals
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 1f673135 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU Internals: (qemu-tech).   The QEMU Emulator Internals.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 1f673135 bellard
@iftex
20 1f673135 bellard
@titlepage
21 1f673135 bellard
@sp 7
22 1f673135 bellard
@center @titlefont{QEMU Internals}
23 1f673135 bellard
@sp 3
24 1f673135 bellard
@end titlepage
25 1f673135 bellard
@end iftex
26 1f673135 bellard
27 debc7065 bellard
@ifnottex
28 debc7065 bellard
@node Top
29 debc7065 bellard
@top
30 debc7065 bellard
31 debc7065 bellard
@menu
32 debc7065 bellard
* Introduction::
33 debc7065 bellard
* QEMU Internals::
34 debc7065 bellard
* Regression Tests::
35 debc7065 bellard
* Index::
36 debc7065 bellard
@end menu
37 debc7065 bellard
@end ifnottex
38 debc7065 bellard
39 debc7065 bellard
@contents
40 debc7065 bellard
41 debc7065 bellard
@node Introduction
42 1f673135 bellard
@chapter Introduction
43 1f673135 bellard
44 debc7065 bellard
@menu
45 debc7065 bellard
* intro_features::        Features
46 998a0501 blueswir1
* intro_x86_emulation::   x86 and x86-64 emulation
47 debc7065 bellard
* intro_arm_emulation::   ARM emulation
48 24d4de45 ths
* intro_mips_emulation::  MIPS emulation
49 debc7065 bellard
* intro_ppc_emulation::   PowerPC emulation
50 998a0501 blueswir1
* intro_sparc_emulation:: Sparc32 and Sparc64 emulation
51 998a0501 blueswir1
* intro_other_emulation:: Other CPU emulation
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 1f673135 bellard
@section Features
56 1f673135 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using a portable dynamic
58 1f673135 bellard
translator.
59 1f673135 bellard
60 1f673135 bellard
QEMU has two operating modes:
61 1f673135 bellard
62 1f673135 bellard
@itemize @minus
63 1f673135 bellard
64 5fafdf24 ths
@item
65 998a0501 blueswir1
Full system emulation. In this mode (full platform virtualization),
66 998a0501 blueswir1
QEMU emulates a full system (usually a PC), including a processor and
67 998a0501 blueswir1
various peripherals. It can be used to launch several different
68 998a0501 blueswir1
Operating Systems at once without rebooting the host machine or to
69 998a0501 blueswir1
debug system code.
70 1f673135 bellard
71 5fafdf24 ths
@item
72 998a0501 blueswir1
User mode emulation. In this mode (application level virtualization),
73 998a0501 blueswir1
QEMU can launch processes compiled for one CPU on another CPU, however
74 998a0501 blueswir1
the Operating Systems must match. This can be used for example to ease
75 998a0501 blueswir1
cross-compilation and cross-debugging.
76 1f673135 bellard
@end itemize
77 1f673135 bellard
78 1f673135 bellard
As QEMU requires no host kernel driver to run, it is very safe and
79 1f673135 bellard
easy to use.
80 1f673135 bellard
81 1f673135 bellard
QEMU generic features:
82 1f673135 bellard
83 5fafdf24 ths
@itemize
84 1f673135 bellard
85 1f673135 bellard
@item User space only or full system emulation.
86 1f673135 bellard
87 debc7065 bellard
@item Using dynamic translation to native code for reasonable speed.
88 1f673135 bellard
89 998a0501 blueswir1
@item
90 998a0501 blueswir1
Working on x86, x86_64 and PowerPC32/64 hosts. Being tested on ARM,
91 998a0501 blueswir1
HPPA, Sparc32 and Sparc64. Previous versions had some support for
92 998a0501 blueswir1
Alpha and S390 hosts, but TCG (see below) doesn't support those yet.
93 1f673135 bellard
94 1f673135 bellard
@item Self-modifying code support.
95 1f673135 bellard
96 1f673135 bellard
@item Precise exceptions support.
97 1f673135 bellard
98 5fafdf24 ths
@item The virtual CPU is a library (@code{libqemu}) which can be used
99 ad6a4837 bellard
in other projects (look at @file{qemu/tests/qruncom.c} to have an
100 ad6a4837 bellard
example of user mode @code{libqemu} usage).
101 1f673135 bellard
102 998a0501 blueswir1
@item
103 998a0501 blueswir1
Floating point library supporting both full software emulation and
104 998a0501 blueswir1
native host FPU instructions.
105 998a0501 blueswir1
106 1f673135 bellard
@end itemize
107 1f673135 bellard
108 1f673135 bellard
QEMU user mode emulation features:
109 5fafdf24 ths
@itemize
110 1f673135 bellard
@item Generic Linux system call converter, including most ioctls.
111 1f673135 bellard
112 1f673135 bellard
@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
113 1f673135 bellard
114 5fafdf24 ths
@item Accurate signal handling by remapping host signals to target signals.
115 1f673135 bellard
@end itemize
116 1f673135 bellard
117 998a0501 blueswir1
Linux user emulator (Linux host only) can be used to launch the Wine
118 998a0501 blueswir1
Windows API emulator (@url{http://www.winehq.org}). A Darwin user
119 998a0501 blueswir1
emulator (Darwin hosts only) exists and a BSD user emulator for BSD
120 998a0501 blueswir1
hosts is under development. It would also be possible to develop a
121 998a0501 blueswir1
similar user emulator for Solaris.
122 998a0501 blueswir1
123 1f673135 bellard
QEMU full system emulation features:
124 5fafdf24 ths
@itemize
125 998a0501 blueswir1
@item
126 998a0501 blueswir1
QEMU uses a full software MMU for maximum portability.
127 998a0501 blueswir1
128 998a0501 blueswir1
@item
129 4a1418e0 Anthony Liguori
QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators 
130 4a1418e0 Anthony Liguori
execute some of the guest code natively, while
131 998a0501 blueswir1
continuing to emulate the rest of the machine.
132 998a0501 blueswir1
133 998a0501 blueswir1
@item
134 998a0501 blueswir1
Various hardware devices can be emulated and in some cases, host
135 998a0501 blueswir1
devices (e.g. serial and parallel ports, USB, drives) can be used
136 998a0501 blueswir1
transparently by the guest Operating System. Host device passthrough
137 998a0501 blueswir1
can be used for talking to external physical peripherals (e.g. a
138 998a0501 blueswir1
webcam, modem or tape drive).
139 998a0501 blueswir1
140 998a0501 blueswir1
@item
141 998a0501 blueswir1
Symmetric multiprocessing (SMP) even on a host with a single CPU. On a
142 998a0501 blueswir1
SMP host system, QEMU can use only one CPU fully due to difficulty in
143 998a0501 blueswir1
implementing atomic memory accesses efficiently.
144 998a0501 blueswir1
145 1f673135 bellard
@end itemize
146 1f673135 bellard
147 debc7065 bellard
@node intro_x86_emulation
148 998a0501 blueswir1
@section x86 and x86-64 emulation
149 1f673135 bellard
150 1f673135 bellard
QEMU x86 target features:
151 1f673135 bellard
152 5fafdf24 ths
@itemize
153 1f673135 bellard
154 5fafdf24 ths
@item The virtual x86 CPU supports 16 bit and 32 bit addressing with segmentation.
155 998a0501 blueswir1
LDT/GDT and IDT are emulated. VM86 mode is also supported to run
156 998a0501 blueswir1
DOSEMU. There is some support for MMX/3DNow!, SSE, SSE2, SSE3, SSSE3,
157 998a0501 blueswir1
and SSE4 as well as x86-64 SVM.
158 1f673135 bellard
159 1f673135 bellard
@item Support of host page sizes bigger than 4KB in user mode emulation.
160 1f673135 bellard
161 1f673135 bellard
@item QEMU can emulate itself on x86.
162 1f673135 bellard
163 5fafdf24 ths
@item An extensive Linux x86 CPU test program is included @file{tests/test-i386}.
164 1f673135 bellard
It can be used to test other x86 virtual CPUs.
165 1f673135 bellard
166 1f673135 bellard
@end itemize
167 1f673135 bellard
168 1f673135 bellard
Current QEMU limitations:
169 1f673135 bellard
170 5fafdf24 ths
@itemize
171 1f673135 bellard
172 998a0501 blueswir1
@item Limited x86-64 support.
173 1f673135 bellard
174 1f673135 bellard
@item IPC syscalls are missing.
175 1f673135 bellard
176 5fafdf24 ths
@item The x86 segment limits and access rights are not tested at every
177 1f673135 bellard
memory access (yet). Hopefully, very few OSes seem to rely on that for
178 1f673135 bellard
normal use.
179 1f673135 bellard
180 1f673135 bellard
@end itemize
181 1f673135 bellard
182 debc7065 bellard
@node intro_arm_emulation
183 1f673135 bellard
@section ARM emulation
184 1f673135 bellard
185 1f673135 bellard
@itemize
186 1f673135 bellard
187 1f673135 bellard
@item Full ARM 7 user emulation.
188 1f673135 bellard
189 1f673135 bellard
@item NWFPE FPU support included in user Linux emulation.
190 1f673135 bellard
191 1f673135 bellard
@item Can run most ARM Linux binaries.
192 1f673135 bellard
193 1f673135 bellard
@end itemize
194 1f673135 bellard
195 24d4de45 ths
@node intro_mips_emulation
196 24d4de45 ths
@section MIPS emulation
197 24d4de45 ths
198 24d4de45 ths
@itemize
199 24d4de45 ths
200 24d4de45 ths
@item The system emulation allows full MIPS32/MIPS64 Release 2 emulation,
201 24d4de45 ths
including privileged instructions, FPU and MMU, in both little and big
202 24d4de45 ths
endian modes.
203 24d4de45 ths
204 24d4de45 ths
@item The Linux userland emulation can run many 32 bit MIPS Linux binaries.
205 24d4de45 ths
206 24d4de45 ths
@end itemize
207 24d4de45 ths
208 24d4de45 ths
Current QEMU limitations:
209 24d4de45 ths
210 24d4de45 ths
@itemize
211 24d4de45 ths
212 24d4de45 ths
@item Self-modifying code is not always handled correctly.
213 24d4de45 ths
214 24d4de45 ths
@item 64 bit userland emulation is not implemented.
215 24d4de45 ths
216 24d4de45 ths
@item The system emulation is not complete enough to run real firmware.
217 24d4de45 ths
218 b1f45238 ths
@item The watchpoint debug facility is not implemented.
219 b1f45238 ths
220 24d4de45 ths
@end itemize
221 24d4de45 ths
222 debc7065 bellard
@node intro_ppc_emulation
223 1f673135 bellard
@section PowerPC emulation
224 1f673135 bellard
225 1f673135 bellard
@itemize
226 1f673135 bellard
227 5fafdf24 ths
@item Full PowerPC 32 bit emulation, including privileged instructions,
228 1f673135 bellard
FPU and MMU.
229 1f673135 bellard
230 1f673135 bellard
@item Can run most PowerPC Linux binaries.
231 1f673135 bellard
232 1f673135 bellard
@end itemize
233 1f673135 bellard
234 debc7065 bellard
@node intro_sparc_emulation
235 998a0501 blueswir1
@section Sparc32 and Sparc64 emulation
236 1f673135 bellard
237 1f673135 bellard
@itemize
238 1f673135 bellard
239 f6b647cd blueswir1
@item Full SPARC V8 emulation, including privileged
240 3475187d bellard
instructions, FPU and MMU. SPARC V9 emulation includes most privileged
241 a785e42e blueswir1
and VIS instructions, FPU and I/D MMU. Alignment is fully enforced.
242 1f673135 bellard
243 a785e42e blueswir1
@item Can run most 32-bit SPARC Linux binaries, SPARC32PLUS Linux binaries and
244 a785e42e blueswir1
some 64-bit SPARC Linux binaries.
245 3475187d bellard
246 3475187d bellard
@end itemize
247 3475187d bellard
248 3475187d bellard
Current QEMU limitations:
249 3475187d bellard
250 5fafdf24 ths
@itemize
251 3475187d bellard
252 3475187d bellard
@item IPC syscalls are missing.
253 3475187d bellard
254 1f587329 blueswir1
@item Floating point exception support is buggy.
255 3475187d bellard
256 3475187d bellard
@item Atomic instructions are not correctly implemented.
257 3475187d bellard
258 998a0501 blueswir1
@item There are still some problems with Sparc64 emulators.
259 998a0501 blueswir1
260 998a0501 blueswir1
@end itemize
261 998a0501 blueswir1
262 998a0501 blueswir1
@node intro_other_emulation
263 998a0501 blueswir1
@section Other CPU emulation
264 1f673135 bellard
265 998a0501 blueswir1
In addition to the above, QEMU supports emulation of other CPUs with
266 998a0501 blueswir1
varying levels of success. These are:
267 998a0501 blueswir1
268 998a0501 blueswir1
@itemize
269 998a0501 blueswir1
270 998a0501 blueswir1
@item
271 998a0501 blueswir1
Alpha
272 998a0501 blueswir1
@item
273 998a0501 blueswir1
CRIS
274 998a0501 blueswir1
@item
275 998a0501 blueswir1
M68k
276 998a0501 blueswir1
@item
277 998a0501 blueswir1
SH4
278 1f673135 bellard
@end itemize
279 1f673135 bellard
280 debc7065 bellard
@node QEMU Internals
281 1f673135 bellard
@chapter QEMU Internals
282 1f673135 bellard
283 debc7065 bellard
@menu
284 debc7065 bellard
* QEMU compared to other emulators::
285 debc7065 bellard
* Portable dynamic translation::
286 debc7065 bellard
* Condition code optimisations::
287 debc7065 bellard
* CPU state optimisations::
288 debc7065 bellard
* Translation cache::
289 debc7065 bellard
* Direct block chaining::
290 debc7065 bellard
* Self-modifying code and translated code invalidation::
291 debc7065 bellard
* Exception support::
292 debc7065 bellard
* MMU emulation::
293 998a0501 blueswir1
* Device emulation::
294 debc7065 bellard
* Hardware interrupts::
295 debc7065 bellard
* User emulation specific details::
296 debc7065 bellard
* Bibliography::
297 debc7065 bellard
@end menu
298 debc7065 bellard
299 debc7065 bellard
@node QEMU compared to other emulators
300 1f673135 bellard
@section QEMU compared to other emulators
301 1f673135 bellard
302 1f673135 bellard
Like bochs [3], QEMU emulates an x86 CPU. But QEMU is much faster than
303 1f673135 bellard
bochs as it uses dynamic compilation. Bochs is closely tied to x86 PC
304 1f673135 bellard
emulation while QEMU can emulate several processors.
305 1f673135 bellard
306 1f673135 bellard
Like Valgrind [2], QEMU does user space emulation and dynamic
307 1f673135 bellard
translation. Valgrind is mainly a memory debugger while QEMU has no
308 1f673135 bellard
support for it (QEMU could be used to detect out of bound memory
309 1f673135 bellard
accesses as Valgrind, but it has no support to track uninitialised data
310 1f673135 bellard
as Valgrind does). The Valgrind dynamic translator generates better code
311 1f673135 bellard
than QEMU (in particular it does register allocation) but it is closely
312 1f673135 bellard
tied to an x86 host and target and has no support for precise exceptions
313 1f673135 bellard
and system emulation.
314 1f673135 bellard
315 1f673135 bellard
EM86 [4] is the closest project to user space QEMU (and QEMU still uses
316 1f673135 bellard
some of its code, in particular the ELF file loader). EM86 was limited
317 1f673135 bellard
to an alpha host and used a proprietary and slow interpreter (the
318 1f673135 bellard
interpreter part of the FX!32 Digital Win32 code translator [5]).
319 1f673135 bellard
320 1f673135 bellard
TWIN [6] is a Windows API emulator like Wine. It is less accurate than
321 1f673135 bellard
Wine but includes a protected mode x86 interpreter to launch x86 Windows
322 36d54d15 bellard
executables. Such an approach has greater potential because most of the
323 1f673135 bellard
Windows API is executed natively but it is far more difficult to develop
324 1f673135 bellard
because all the data structures and function parameters exchanged
325 1f673135 bellard
between the API and the x86 code must be converted.
326 1f673135 bellard
327 1f673135 bellard
User mode Linux [7] was the only solution before QEMU to launch a
328 1f673135 bellard
Linux kernel as a process while not needing any host kernel
329 1f673135 bellard
patches. However, user mode Linux requires heavy kernel patches while
330 1f673135 bellard
QEMU accepts unpatched Linux kernels. The price to pay is that QEMU is
331 1f673135 bellard
slower.
332 1f673135 bellard
333 998a0501 blueswir1
The Plex86 [8] PC virtualizer is done in the same spirit as the now
334 998a0501 blueswir1
obsolete qemu-fast system emulator. It requires a patched Linux kernel
335 998a0501 blueswir1
to work (you cannot launch the same kernel on your PC), but the
336 998a0501 blueswir1
patches are really small. As it is a PC virtualizer (no emulation is
337 998a0501 blueswir1
done except for some privileged instructions), it has the potential of
338 998a0501 blueswir1
being faster than QEMU. The downside is that a complicated (and
339 998a0501 blueswir1
potentially unsafe) host kernel patch is needed.
340 1f673135 bellard
341 1f673135 bellard
The commercial PC Virtualizers (VMWare [9], VirtualPC [10], TwoOStwo
342 1f673135 bellard
[11]) are faster than QEMU, but they all need specific, proprietary
343 1f673135 bellard
and potentially unsafe host drivers. Moreover, they are unable to
344 1f673135 bellard
provide cycle exact simulation as an emulator can.
345 1f673135 bellard
346 998a0501 blueswir1
VirtualBox [12], Xen [13] and KVM [14] are based on QEMU. QEMU-SystemC
347 998a0501 blueswir1
[15] uses QEMU to simulate a system where some hardware devices are
348 998a0501 blueswir1
developed in SystemC.
349 998a0501 blueswir1
350 debc7065 bellard
@node Portable dynamic translation
351 1f673135 bellard
@section Portable dynamic translation
352 1f673135 bellard
353 1f673135 bellard
QEMU is a dynamic translator. When it first encounters a piece of code,
354 1f673135 bellard
it converts it to the host instruction set. Usually dynamic translators
355 1f673135 bellard
are very complicated and highly CPU dependent. QEMU uses some tricks
356 1f673135 bellard
which make it relatively easily portable and simple while achieving good
357 1f673135 bellard
performances.
358 1f673135 bellard
359 998a0501 blueswir1
After the release of version 0.9.1, QEMU switched to a new method of
360 998a0501 blueswir1
generating code, Tiny Code Generator or TCG. TCG relaxes the
361 998a0501 blueswir1
dependency on the exact version of the compiler used. The basic idea
362 998a0501 blueswir1
is to split every target instruction into a couple of RISC-like TCG
363 998a0501 blueswir1
ops (see @code{target-i386/translate.c}). Some optimizations can be
364 998a0501 blueswir1
performed at this stage, including liveness analysis and trivial
365 998a0501 blueswir1
constant expression evaluation. TCG ops are then implemented in the
366 998a0501 blueswir1
host CPU back end, also known as TCG target (see
367 998a0501 blueswir1
@code{tcg/i386/tcg-target.c}). For more information, please take a
368 998a0501 blueswir1
look at @code{tcg/README}.
369 1f673135 bellard
370 debc7065 bellard
@node Condition code optimisations
371 1f673135 bellard
@section Condition code optimisations
372 1f673135 bellard
373 998a0501 blueswir1
Lazy evaluation of CPU condition codes (@code{EFLAGS} register on x86)
374 998a0501 blueswir1
is important for CPUs where every instruction sets the condition
375 998a0501 blueswir1
codes. It tends to be less important on conventional RISC systems
376 f0f26a06 Blue Swirl
where condition codes are only updated when explicitly requested. On
377 f0f26a06 Blue Swirl
Sparc64, costly update of both 32 and 64 bit condition codes can be
378 f0f26a06 Blue Swirl
avoided with lazy evaluation.
379 998a0501 blueswir1
380 998a0501 blueswir1
Instead of computing the condition codes after each x86 instruction,
381 998a0501 blueswir1
QEMU just stores one operand (called @code{CC_SRC}), the result
382 998a0501 blueswir1
(called @code{CC_DST}) and the type of operation (called
383 998a0501 blueswir1
@code{CC_OP}). When the condition codes are needed, the condition
384 998a0501 blueswir1
codes can be calculated using this information. In addition, an
385 998a0501 blueswir1
optimized calculation can be performed for some instruction types like
386 998a0501 blueswir1
conditional branches.
387 1f673135 bellard
388 1235fc06 ths
@code{CC_OP} is almost never explicitly set in the generated code
389 1f673135 bellard
because it is known at translation time.
390 1f673135 bellard
391 f0f26a06 Blue Swirl
The lazy condition code evaluation is used on x86, m68k, cris and
392 f0f26a06 Blue Swirl
Sparc. ARM uses a simplified variant for the N and Z flags.
393 1f673135 bellard
394 debc7065 bellard
@node CPU state optimisations
395 1f673135 bellard
@section CPU state optimisations
396 1f673135 bellard
397 998a0501 blueswir1
The target CPUs have many internal states which change the way it
398 998a0501 blueswir1
evaluates instructions. In order to achieve a good speed, the
399 998a0501 blueswir1
translation phase considers that some state information of the virtual
400 998a0501 blueswir1
CPU cannot change in it. The state is recorded in the Translation
401 998a0501 blueswir1
Block (TB). If the state changes (e.g. privilege level), a new TB will
402 998a0501 blueswir1
be generated and the previous TB won't be used anymore until the state
403 998a0501 blueswir1
matches the state recorded in the previous TB. For example, if the SS,
404 998a0501 blueswir1
DS and ES segments have a zero base, then the translator does not even
405 998a0501 blueswir1
generate an addition for the segment base.
406 1f673135 bellard
407 1f673135 bellard
[The FPU stack pointer register is not handled that way yet].
408 1f673135 bellard
409 debc7065 bellard
@node Translation cache
410 1f673135 bellard
@section Translation cache
411 1f673135 bellard
412 15a34c63 bellard
A 16 MByte cache holds the most recently used translations. For
413 1f673135 bellard
simplicity, it is completely flushed when it is full. A translation unit
414 1f673135 bellard
contains just a single basic block (a block of x86 instructions
415 1f673135 bellard
terminated by a jump or by a virtual CPU state change which the
416 1f673135 bellard
translator cannot deduce statically).
417 1f673135 bellard
418 debc7065 bellard
@node Direct block chaining
419 1f673135 bellard
@section Direct block chaining
420 1f673135 bellard
421 1f673135 bellard
After each translated basic block is executed, QEMU uses the simulated
422 1f673135 bellard
Program Counter (PC) and other cpu state informations (such as the CS
423 1f673135 bellard
segment base value) to find the next basic block.
424 1f673135 bellard
425 1f673135 bellard
In order to accelerate the most common cases where the new simulated PC
426 1f673135 bellard
is known, QEMU can patch a basic block so that it jumps directly to the
427 1f673135 bellard
next one.
428 1f673135 bellard
429 1f673135 bellard
The most portable code uses an indirect jump. An indirect jump makes
430 1f673135 bellard
it easier to make the jump target modification atomic. On some host
431 1f673135 bellard
architectures (such as x86 or PowerPC), the @code{JUMP} opcode is
432 1f673135 bellard
directly patched so that the block chaining has no overhead.
433 1f673135 bellard
434 debc7065 bellard
@node Self-modifying code and translated code invalidation
435 1f673135 bellard
@section Self-modifying code and translated code invalidation
436 1f673135 bellard
437 1f673135 bellard
Self-modifying code is a special challenge in x86 emulation because no
438 1f673135 bellard
instruction cache invalidation is signaled by the application when code
439 1f673135 bellard
is modified.
440 1f673135 bellard
441 1f673135 bellard
When translated code is generated for a basic block, the corresponding
442 998a0501 blueswir1
host page is write protected if it is not already read-only. Then, if
443 998a0501 blueswir1
a write access is done to the page, Linux raises a SEGV signal. QEMU
444 998a0501 blueswir1
then invalidates all the translated code in the page and enables write
445 998a0501 blueswir1
accesses to the page.
446 1f673135 bellard
447 1f673135 bellard
Correct translated code invalidation is done efficiently by maintaining
448 1f673135 bellard
a linked list of every translated block contained in a given page. Other
449 5fafdf24 ths
linked lists are also maintained to undo direct block chaining.
450 1f673135 bellard
451 998a0501 blueswir1
On RISC targets, correctly written software uses memory barriers and
452 998a0501 blueswir1
cache flushes, so some of the protection above would not be
453 998a0501 blueswir1
necessary. However, QEMU still requires that the generated code always
454 998a0501 blueswir1
matches the target instructions in memory in order to handle
455 998a0501 blueswir1
exceptions correctly.
456 1f673135 bellard
457 debc7065 bellard
@node Exception support
458 1f673135 bellard
@section Exception support
459 1f673135 bellard
460 1f673135 bellard
longjmp() is used when an exception such as division by zero is
461 5fafdf24 ths
encountered.
462 1f673135 bellard
463 1f673135 bellard
The host SIGSEGV and SIGBUS signal handlers are used to get invalid
464 998a0501 blueswir1
memory accesses. The simulated program counter is found by
465 998a0501 blueswir1
retranslating the corresponding basic block and by looking where the
466 998a0501 blueswir1
host program counter was at the exception point.
467 1f673135 bellard
468 1f673135 bellard
The virtual CPU cannot retrieve the exact @code{EFLAGS} register because
469 1f673135 bellard
in some cases it is not computed because of condition code
470 1f673135 bellard
optimisations. It is not a big concern because the emulated code can
471 1f673135 bellard
still be restarted in any cases.
472 1f673135 bellard
473 debc7065 bellard
@node MMU emulation
474 1f673135 bellard
@section MMU emulation
475 1f673135 bellard
476 998a0501 blueswir1
For system emulation QEMU supports a soft MMU. In that mode, the MMU
477 998a0501 blueswir1
virtual to physical address translation is done at every memory
478 998a0501 blueswir1
access. QEMU uses an address translation cache to speed up the
479 998a0501 blueswir1
translation.
480 1f673135 bellard
481 1f673135 bellard
In order to avoid flushing the translated code each time the MMU
482 1f673135 bellard
mappings change, QEMU uses a physically indexed translation cache. It
483 5fafdf24 ths
means that each basic block is indexed with its physical address.
484 1f673135 bellard
485 1f673135 bellard
When MMU mappings change, only the chaining of the basic blocks is
486 1f673135 bellard
reset (i.e. a basic block can no longer jump directly to another one).
487 1f673135 bellard
488 998a0501 blueswir1
@node Device emulation
489 998a0501 blueswir1
@section Device emulation
490 998a0501 blueswir1
491 998a0501 blueswir1
Systems emulated by QEMU are organized by boards. At initialization
492 998a0501 blueswir1
phase, each board instantiates a number of CPUs, devices, RAM and
493 998a0501 blueswir1
ROM. Each device in turn can assign I/O ports or memory areas (for
494 998a0501 blueswir1
MMIO) to its handlers. When the emulation starts, an access to the
495 998a0501 blueswir1
ports or MMIO memory areas assigned to the device causes the
496 998a0501 blueswir1
corresponding handler to be called.
497 998a0501 blueswir1
498 998a0501 blueswir1
RAM and ROM are handled more optimally, only the offset to the host
499 998a0501 blueswir1
memory needs to be added to the guest address.
500 998a0501 blueswir1
501 998a0501 blueswir1
The video RAM of VGA and other display cards is special: it can be
502 998a0501 blueswir1
read or written directly like RAM, but write accesses cause the memory
503 998a0501 blueswir1
to be marked with VGA_DIRTY flag as well.
504 998a0501 blueswir1
505 998a0501 blueswir1
QEMU supports some device classes like serial and parallel ports, USB,
506 998a0501 blueswir1
drives and network devices, by providing APIs for easier connection to
507 998a0501 blueswir1
the generic, higher level implementations. The API hides the
508 998a0501 blueswir1
implementation details from the devices, like native device use or
509 998a0501 blueswir1
advanced block device formats like QCOW.
510 998a0501 blueswir1
511 998a0501 blueswir1
Usually the devices implement a reset method and register support for
512 998a0501 blueswir1
saving and loading of the device state. The devices can also use
513 998a0501 blueswir1
timers, especially together with the use of bottom halves (BHs).
514 998a0501 blueswir1
515 debc7065 bellard
@node Hardware interrupts
516 1f673135 bellard
@section Hardware interrupts
517 1f673135 bellard
518 1f673135 bellard
In order to be faster, QEMU does not check at every basic block if an
519 e8dc0938 Stefan Weil
hardware interrupt is pending. Instead, the user must asynchronously
520 1f673135 bellard
call a specific function to tell that an interrupt is pending. This
521 1f673135 bellard
function resets the chaining of the currently executing basic
522 1f673135 bellard
block. It ensures that the execution will return soon in the main loop
523 1f673135 bellard
of the CPU emulator. Then the main loop can test if the interrupt is
524 1f673135 bellard
pending and handle it.
525 1f673135 bellard
526 debc7065 bellard
@node User emulation specific details
527 1f673135 bellard
@section User emulation specific details
528 1f673135 bellard
529 1f673135 bellard
@subsection Linux system call translation
530 1f673135 bellard
531 1f673135 bellard
QEMU includes a generic system call translator for Linux. It means that
532 1f673135 bellard
the parameters of the system calls can be converted to fix the
533 1f673135 bellard
endianness and 32/64 bit issues. The IOCTLs are converted with a generic
534 1f673135 bellard
type description system (see @file{ioctls.h} and @file{thunk.c}).
535 1f673135 bellard
536 1f673135 bellard
QEMU supports host CPUs which have pages bigger than 4KB. It records all
537 1f673135 bellard
the mappings the process does and try to emulated the @code{mmap()}
538 1f673135 bellard
system calls in cases where the host @code{mmap()} call would fail
539 1f673135 bellard
because of bad page alignment.
540 1f673135 bellard
541 1f673135 bellard
@subsection Linux signals
542 1f673135 bellard
543 1f673135 bellard
Normal and real-time signals are queued along with their information
544 1f673135 bellard
(@code{siginfo_t}) as it is done in the Linux kernel. Then an interrupt
545 1f673135 bellard
request is done to the virtual CPU. When it is interrupted, one queued
546 1f673135 bellard
signal is handled by generating a stack frame in the virtual CPU as the
547 1f673135 bellard
Linux kernel does. The @code{sigreturn()} system call is emulated to return
548 1f673135 bellard
from the virtual signal handler.
549 1f673135 bellard
550 1f673135 bellard
Some signals (such as SIGALRM) directly come from the host. Other
551 e8dc0938 Stefan Weil
signals are synthesized from the virtual CPU exceptions such as SIGFPE
552 1f673135 bellard
when a division by zero is done (see @code{main.c:cpu_loop()}).
553 1f673135 bellard
554 1f673135 bellard
The blocked signal mask is still handled by the host Linux kernel so
555 1f673135 bellard
that most signal system calls can be redirected directly to the host
556 1f673135 bellard
Linux kernel. Only the @code{sigaction()} and @code{sigreturn()} system
557 1f673135 bellard
calls need to be fully emulated (see @file{signal.c}).
558 1f673135 bellard
559 1f673135 bellard
@subsection clone() system call and threads
560 1f673135 bellard
561 1f673135 bellard
The Linux clone() system call is usually used to create a thread. QEMU
562 1f673135 bellard
uses the host clone() system call so that real host threads are created
563 1f673135 bellard
for each emulated thread. One virtual CPU instance is created for each
564 1f673135 bellard
thread.
565 1f673135 bellard
566 1f673135 bellard
The virtual x86 CPU atomic operations are emulated with a global lock so
567 1f673135 bellard
that their semantic is preserved.
568 1f673135 bellard
569 1f673135 bellard
Note that currently there are still some locking issues in QEMU. In
570 1f673135 bellard
particular, the translated cache flush is not protected yet against
571 1f673135 bellard
reentrancy.
572 1f673135 bellard
573 1f673135 bellard
@subsection Self-virtualization
574 1f673135 bellard
575 1f673135 bellard
QEMU was conceived so that ultimately it can emulate itself. Although
576 1f673135 bellard
it is not very useful, it is an important test to show the power of the
577 1f673135 bellard
emulator.
578 1f673135 bellard
579 1f673135 bellard
Achieving self-virtualization is not easy because there may be address
580 998a0501 blueswir1
space conflicts. QEMU user emulators solve this problem by being an
581 998a0501 blueswir1
executable ELF shared object as the ld-linux.so ELF interpreter. That
582 998a0501 blueswir1
way, it can be relocated at load time.
583 1f673135 bellard
584 debc7065 bellard
@node Bibliography
585 1f673135 bellard
@section Bibliography
586 1f673135 bellard
587 1f673135 bellard
@table @asis
588 1f673135 bellard
589 5fafdf24 ths
@item [1]
590 1f673135 bellard
@url{http://citeseer.nj.nec.com/piumarta98optimizing.html}, Optimizing
591 1f673135 bellard
direct threaded code by selective inlining (1998) by Ian Piumarta, Fabio
592 1f673135 bellard
Riccardi.
593 1f673135 bellard
594 1f673135 bellard
@item [2]
595 1f673135 bellard
@url{http://developer.kde.org/~sewardj/}, Valgrind, an open-source
596 1f673135 bellard
memory debugger for x86-GNU/Linux, by Julian Seward.
597 1f673135 bellard
598 1f673135 bellard
@item [3]
599 1f673135 bellard
@url{http://bochs.sourceforge.net/}, the Bochs IA-32 Emulator Project,
600 1f673135 bellard
by Kevin Lawton et al.
601 1f673135 bellard
602 1f673135 bellard
@item [4]
603 1f673135 bellard
@url{http://www.cs.rose-hulman.edu/~donaldlf/em86/index.html}, the EM86
604 1f673135 bellard
x86 emulator on Alpha-Linux.
605 1f673135 bellard
606 1f673135 bellard
@item [5]
607 debc7065 bellard
@url{http://www.usenix.org/publications/library/proceedings/usenix-nt97/@/full_papers/chernoff/chernoff.pdf},
608 1f673135 bellard
DIGITAL FX!32: Running 32-Bit x86 Applications on Alpha NT, by Anton
609 1f673135 bellard
Chernoff and Ray Hookway.
610 1f673135 bellard
611 1f673135 bellard
@item [6]
612 1f673135 bellard
@url{http://www.willows.com/}, Windows API library emulation from
613 1f673135 bellard
Willows Software.
614 1f673135 bellard
615 1f673135 bellard
@item [7]
616 5fafdf24 ths
@url{http://user-mode-linux.sourceforge.net/},
617 1f673135 bellard
The User-mode Linux Kernel.
618 1f673135 bellard
619 1f673135 bellard
@item [8]
620 5fafdf24 ths
@url{http://www.plex86.org/},
621 1f673135 bellard
The new Plex86 project.
622 1f673135 bellard
623 1f673135 bellard
@item [9]
624 5fafdf24 ths
@url{http://www.vmware.com/},
625 1f673135 bellard
The VMWare PC virtualizer.
626 1f673135 bellard
627 1f673135 bellard
@item [10]
628 5fafdf24 ths
@url{http://www.microsoft.com/windowsxp/virtualpc/},
629 1f673135 bellard
The VirtualPC PC virtualizer.
630 1f673135 bellard
631 1f673135 bellard
@item [11]
632 5fafdf24 ths
@url{http://www.twoostwo.org/},
633 1f673135 bellard
The TwoOStwo PC virtualizer.
634 1f673135 bellard
635 998a0501 blueswir1
@item [12]
636 998a0501 blueswir1
@url{http://virtualbox.org/},
637 998a0501 blueswir1
The VirtualBox PC virtualizer.
638 998a0501 blueswir1
639 998a0501 blueswir1
@item [13]
640 998a0501 blueswir1
@url{http://www.xen.org/},
641 998a0501 blueswir1
The Xen hypervisor.
642 998a0501 blueswir1
643 998a0501 blueswir1
@item [14]
644 998a0501 blueswir1
@url{http://kvm.qumranet.com/kvmwiki/Front_Page},
645 998a0501 blueswir1
Kernel Based Virtual Machine (KVM).
646 998a0501 blueswir1
647 998a0501 blueswir1
@item [15]
648 998a0501 blueswir1
@url{http://www.greensocs.com/projects/QEMUSystemC},
649 998a0501 blueswir1
QEMU-SystemC, a hardware co-simulator.
650 998a0501 blueswir1
651 1f673135 bellard
@end table
652 1f673135 bellard
653 debc7065 bellard
@node Regression Tests
654 1f673135 bellard
@chapter Regression Tests
655 1f673135 bellard
656 1f673135 bellard
In the directory @file{tests/}, various interesting testing programs
657 b1f45238 ths
are available. They are used for regression testing.
658 1f673135 bellard
659 debc7065 bellard
@menu
660 debc7065 bellard
* test-i386::
661 debc7065 bellard
* linux-test::
662 debc7065 bellard
* qruncom.c::
663 debc7065 bellard
@end menu
664 debc7065 bellard
665 debc7065 bellard
@node test-i386
666 1f673135 bellard
@section @file{test-i386}
667 1f673135 bellard
668 1f673135 bellard
This program executes most of the 16 bit and 32 bit x86 instructions and
669 1f673135 bellard
generates a text output. It can be compared with the output obtained with
670 1f673135 bellard
a real CPU or another emulator. The target @code{make test} runs this
671 1f673135 bellard
program and a @code{diff} on the generated output.
672 1f673135 bellard
673 1f673135 bellard
The Linux system call @code{modify_ldt()} is used to create x86 selectors
674 1f673135 bellard
to test some 16 bit addressing and 32 bit with segmentation cases.
675 1f673135 bellard
676 1f673135 bellard
The Linux system call @code{vm86()} is used to test vm86 emulation.
677 1f673135 bellard
678 1f673135 bellard
Various exceptions are raised to test most of the x86 user space
679 1f673135 bellard
exception reporting.
680 1f673135 bellard
681 debc7065 bellard
@node linux-test
682 1f673135 bellard
@section @file{linux-test}
683 1f673135 bellard
684 1f673135 bellard
This program tests various Linux system calls. It is used to verify
685 1f673135 bellard
that the system call parameters are correctly converted between target
686 1f673135 bellard
and host CPUs.
687 1f673135 bellard
688 debc7065 bellard
@node qruncom.c
689 15a34c63 bellard
@section @file{qruncom.c}
690 1f673135 bellard
691 15a34c63 bellard
Example of usage of @code{libqemu} to emulate a user mode i386 CPU.
692 debc7065 bellard
693 debc7065 bellard
@node Index
694 debc7065 bellard
@chapter Index
695 debc7065 bellard
@printindex cp
696 debc7065 bellard
697 debc7065 bellard
@bye