Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ a750fc0b

History | View | Annotate | Download (62 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21

    
22
#include "op_helper.h"
23

    
24
#define MEMSUFFIX _raw
25
#include "op_helper.h"
26
#include "op_helper_mem.h"
27
#if !defined(CONFIG_USER_ONLY)
28
#define MEMSUFFIX _user
29
#include "op_helper.h"
30
#include "op_helper_mem.h"
31
#define MEMSUFFIX _kernel
32
#include "op_helper.h"
33
#include "op_helper_mem.h"
34
#endif
35

    
36
//#define DEBUG_OP
37
//#define DEBUG_EXCEPTIONS
38
//#define DEBUG_SOFTWARE_TLB
39
//#define FLUSH_ALL_TLBS
40

    
41
/*****************************************************************************/
42
/* Exceptions processing helpers */
43

    
44
void do_raise_exception_err (uint32_t exception, int error_code)
45
{
46
#if 0
47
    printf("Raise exception %3x code : %d\n", exception, error_code);
48
#endif
49
    switch (exception) {
50
    case EXCP_PROGRAM:
51
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
52
            return;
53
        break;
54
    default:
55
        break;
56
    }
57
    env->exception_index = exception;
58
    env->error_code = error_code;
59
    cpu_loop_exit();
60
}
61

    
62
void do_raise_exception (uint32_t exception)
63
{
64
    do_raise_exception_err(exception, 0);
65
}
66

    
67
void cpu_dump_EA (target_ulong EA);
68
void do_print_mem_EA (target_ulong EA)
69
{
70
    cpu_dump_EA(EA);
71
}
72

    
73
/*****************************************************************************/
74
/* Registers load and stores */
75
void do_load_cr (void)
76
{
77
    T0 = (env->crf[0] << 28) |
78
        (env->crf[1] << 24) |
79
        (env->crf[2] << 20) |
80
        (env->crf[3] << 16) |
81
        (env->crf[4] << 12) |
82
        (env->crf[5] << 8) |
83
        (env->crf[6] << 4) |
84
        (env->crf[7] << 0);
85
}
86

    
87
void do_store_cr (uint32_t mask)
88
{
89
    int i, sh;
90

    
91
    for (i = 0, sh = 7; i < 8; i++, sh--) {
92
        if (mask & (1 << sh))
93
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
94
    }
95
}
96

    
97
void do_load_xer (void)
98
{
99
    T0 = (xer_so << XER_SO) |
100
        (xer_ov << XER_OV) |
101
        (xer_ca << XER_CA) |
102
        (xer_bc << XER_BC) |
103
        (xer_cmp << XER_CMP);
104
}
105

    
106
void do_store_xer (void)
107
{
108
    xer_so = (T0 >> XER_SO) & 0x01;
109
    xer_ov = (T0 >> XER_OV) & 0x01;
110
    xer_ca = (T0 >> XER_CA) & 0x01;
111
    xer_cmp = (T0 >> XER_CMP) & 0xFF;
112
    xer_bc = (T0 >> XER_BC) & 0x7F;
113
}
114

    
115
void do_load_fpscr (void)
116
{
117
    /* The 32 MSB of the target fpr are undefined.
118
     * They'll be zero...
119
     */
120
    union {
121
        float64 d;
122
        struct {
123
            uint32_t u[2];
124
        } s;
125
    } u;
126
    int i;
127

    
128
#if defined(WORDS_BIGENDIAN)
129
#define WORD0 0
130
#define WORD1 1
131
#else
132
#define WORD0 1
133
#define WORD1 0
134
#endif
135
    u.s.u[WORD0] = 0;
136
    u.s.u[WORD1] = 0;
137
    for (i = 0; i < 8; i++)
138
        u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
139
    FT0 = u.d;
140
}
141

    
142
void do_store_fpscr (uint32_t mask)
143
{
144
    /*
145
     * We use only the 32 LSB of the incoming fpr
146
     */
147
    union {
148
        double d;
149
        struct {
150
            uint32_t u[2];
151
        } s;
152
    } u;
153
    int i, rnd_type;
154

    
155
    u.d = FT0;
156
    if (mask & 0x80)
157
        env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
158
    for (i = 1; i < 7; i++) {
159
        if (mask & (1 << (7 - i)))
160
            env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
161
    }
162
    /* TODO: update FEX & VX */
163
    /* Set rounding mode */
164
    switch (env->fpscr[0] & 0x3) {
165
    case 0:
166
        /* Best approximation (round to nearest) */
167
        rnd_type = float_round_nearest_even;
168
        break;
169
    case 1:
170
        /* Smaller magnitude (round toward zero) */
171
        rnd_type = float_round_to_zero;
172
        break;
173
    case 2:
174
        /* Round toward +infinite */
175
        rnd_type = float_round_up;
176
        break;
177
    default:
178
    case 3:
179
        /* Round toward -infinite */
180
        rnd_type = float_round_down;
181
        break;
182
    }
183
    set_float_rounding_mode(rnd_type, &env->fp_status);
184
}
185

    
186
target_ulong ppc_load_dump_spr (int sprn)
187
{
188
    if (loglevel != 0) {
189
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
190
                sprn, sprn, env->spr[sprn]);
191
    }
192

    
193
    return env->spr[sprn];
194
}
195

    
196
void ppc_store_dump_spr (int sprn, target_ulong val)
197
{
198
    if (loglevel != 0) {
199
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
200
                sprn, sprn, env->spr[sprn], val);
201
    }
202
    env->spr[sprn] = val;
203
}
204

    
205
/*****************************************************************************/
206
/* Fixed point operations helpers */
207
#if defined(TARGET_PPC64)
208
static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
209
{
210
    *plow += a;
211
    /* carry test */
212
    if (*plow < a)
213
        (*phigh)++;
214
    *phigh += b;
215
}
216

    
217
static void neg128 (uint64_t *plow, uint64_t *phigh)
218
{
219
    *plow = ~*plow;
220
    *phigh = ~*phigh;
221
    add128(plow, phigh, 1, 0);
222
}
223

    
224
static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
225
{
226
    uint32_t a0, a1, b0, b1;
227
    uint64_t v;
228

    
229
    a0 = a;
230
    a1 = a >> 32;
231

    
232
    b0 = b;
233
    b1 = b >> 32;
234

    
235
    v = (uint64_t)a0 * (uint64_t)b0;
236
    *plow = v;
237
    *phigh = 0;
238

    
239
    v = (uint64_t)a0 * (uint64_t)b1;
240
    add128(plow, phigh, v << 32, v >> 32);
241

    
242
    v = (uint64_t)a1 * (uint64_t)b0;
243
    add128(plow, phigh, v << 32, v >> 32);
244

    
245
    v = (uint64_t)a1 * (uint64_t)b1;
246
    *phigh += v;
247
#if defined(DEBUG_MULDIV)
248
    printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
249
           a, b, *phigh, *plow);
250
#endif
251
}
252

    
253
void do_mul64 (uint64_t *plow, uint64_t *phigh)
254
{
255
    mul64(plow, phigh, T0, T1);
256
}
257

    
258
static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
259
{
260
    int sa, sb;
261

    
262
    sa = (a < 0);
263
    if (sa)
264
        a = -a;
265
    sb = (b < 0);
266
    if (sb)
267
        b = -b;
268
    mul64(plow, phigh, a, b);
269
    if (sa ^ sb) {
270
        neg128(plow, phigh);
271
    }
272
}
273

    
274
void do_imul64 (uint64_t *plow, uint64_t *phigh)
275
{
276
    imul64(plow, phigh, T0, T1);
277
}
278
#endif
279

    
280
void do_adde (void)
281
{
282
    T2 = T0;
283
    T0 += T1 + xer_ca;
284
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
285
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
286
        xer_ca = 0;
287
    } else {
288
        xer_ca = 1;
289
    }
290
}
291

    
292
#if defined(TARGET_PPC64)
293
void do_adde_64 (void)
294
{
295
    T2 = T0;
296
    T0 += T1 + xer_ca;
297
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
298
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
299
        xer_ca = 0;
300
    } else {
301
        xer_ca = 1;
302
    }
303
}
304
#endif
305

    
306
void do_addmeo (void)
307
{
308
    T1 = T0;
309
    T0 += xer_ca + (-1);
310
    if (likely(!((uint32_t)T1 &
311
                 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
312
        xer_ov = 0;
313
    } else {
314
        xer_ov = 1;
315
        xer_so = 1;
316
    }
317
    if (likely(T1 != 0))
318
        xer_ca = 1;
319
}
320

    
321
#if defined(TARGET_PPC64)
322
void do_addmeo_64 (void)
323
{
324
    T1 = T0;
325
    T0 += xer_ca + (-1);
326
    if (likely(!((uint64_t)T1 &
327
                 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
328
        xer_ov = 0;
329
    } else {
330
        xer_ov = 1;
331
        xer_so = 1;
332
    }
333
    if (likely(T1 != 0))
334
        xer_ca = 1;
335
}
336
#endif
337

    
338
void do_divwo (void)
339
{
340
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
341
                 (int32_t)T1 == 0))) {
342
        xer_ov = 0;
343
        T0 = (int32_t)T0 / (int32_t)T1;
344
    } else {
345
        xer_ov = 1;
346
        xer_so = 1;
347
        T0 = (-1) * ((uint32_t)T0 >> 31);
348
    }
349
}
350

    
351
#if defined(TARGET_PPC64)
352
void do_divdo (void)
353
{
354
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
355
                 (int64_t)T1 == 0))) {
356
        xer_ov = 0;
357
        T0 = (int64_t)T0 / (int64_t)T1;
358
    } else {
359
        xer_ov = 1;
360
        xer_so = 1;
361
        T0 = (-1ULL) * ((uint64_t)T0 >> 63);
362
    }
363
}
364
#endif
365

    
366
void do_divwuo (void)
367
{
368
    if (likely((uint32_t)T1 != 0)) {
369
        xer_ov = 0;
370
        T0 = (uint32_t)T0 / (uint32_t)T1;
371
    } else {
372
        xer_ov = 1;
373
        xer_so = 1;
374
        T0 = 0;
375
    }
376
}
377

    
378
#if defined(TARGET_PPC64)
379
void do_divduo (void)
380
{
381
    if (likely((uint64_t)T1 != 0)) {
382
        xer_ov = 0;
383
        T0 = (uint64_t)T0 / (uint64_t)T1;
384
    } else {
385
        xer_ov = 1;
386
        xer_so = 1;
387
        T0 = 0;
388
    }
389
}
390
#endif
391

    
392
void do_mullwo (void)
393
{
394
    int64_t res = (int64_t)T0 * (int64_t)T1;
395

    
396
    if (likely((int32_t)res == res)) {
397
        xer_ov = 0;
398
    } else {
399
        xer_ov = 1;
400
        xer_so = 1;
401
    }
402
    T0 = (int32_t)res;
403
}
404

    
405
#if defined(TARGET_PPC64)
406
void do_mulldo (void)
407
{
408
    int64_t th;
409
    uint64_t tl;
410

    
411
    do_imul64(&tl, &th);
412
    if (likely(th == 0)) {
413
        xer_ov = 0;
414
    } else {
415
        xer_ov = 1;
416
        xer_so = 1;
417
    }
418
    T0 = (int64_t)tl;
419
}
420
#endif
421

    
422
void do_nego (void)
423
{
424
    if (likely((int32_t)T0 != INT32_MIN)) {
425
        xer_ov = 0;
426
        T0 = -(int32_t)T0;
427
    } else {
428
        xer_ov = 1;
429
        xer_so = 1;
430
    }
431
}
432

    
433
#if defined(TARGET_PPC64)
434
void do_nego_64 (void)
435
{
436
    if (likely((int64_t)T0 != INT64_MIN)) {
437
        xer_ov = 0;
438
        T0 = -(int64_t)T0;
439
    } else {
440
        xer_ov = 1;
441
        xer_so = 1;
442
    }
443
}
444
#endif
445

    
446
void do_subfe (void)
447
{
448
    T0 = T1 + ~T0 + xer_ca;
449
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
450
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
451
        xer_ca = 0;
452
    } else {
453
        xer_ca = 1;
454
    }
455
}
456

    
457
#if defined(TARGET_PPC64)
458
void do_subfe_64 (void)
459
{
460
    T0 = T1 + ~T0 + xer_ca;
461
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
462
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
463
        xer_ca = 0;
464
    } else {
465
        xer_ca = 1;
466
    }
467
}
468
#endif
469

    
470
void do_subfmeo (void)
471
{
472
    T1 = T0;
473
    T0 = ~T0 + xer_ca - 1;
474
    if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
475
                 (1UL << 31)))) {
476
        xer_ov = 0;
477
    } else {
478
        xer_ov = 1;
479
        xer_so = 1;
480
    }
481
    if (likely((uint32_t)T1 != UINT32_MAX))
482
        xer_ca = 1;
483
}
484

    
485
#if defined(TARGET_PPC64)
486
void do_subfmeo_64 (void)
487
{
488
    T1 = T0;
489
    T0 = ~T0 + xer_ca - 1;
490
    if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
491
                 (1ULL << 63)))) {
492
        xer_ov = 0;
493
    } else {
494
        xer_ov = 1;
495
        xer_so = 1;
496
    }
497
    if (likely((uint64_t)T1 != UINT64_MAX))
498
        xer_ca = 1;
499
}
500
#endif
501

    
502
void do_subfzeo (void)
503
{
504
    T1 = T0;
505
    T0 = ~T0 + xer_ca;
506
    if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
507
                 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
508
        xer_ov = 0;
509
    } else {
510
        xer_ov = 1;
511
        xer_so = 1;
512
    }
513
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
514
        xer_ca = 0;
515
    } else {
516
        xer_ca = 1;
517
    }
518
}
519

    
520
#if defined(TARGET_PPC64)
521
void do_subfzeo_64 (void)
522
{
523
    T1 = T0;
524
    T0 = ~T0 + xer_ca;
525
    if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
526
                 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
527
        xer_ov = 0;
528
    } else {
529
        xer_ov = 1;
530
        xer_so = 1;
531
    }
532
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
533
        xer_ca = 0;
534
    } else {
535
        xer_ca = 1;
536
    }
537
}
538
#endif
539

    
540
/* shift right arithmetic helper */
541
void do_sraw (void)
542
{
543
    int32_t ret;
544

    
545
    if (likely(!(T1 & 0x20UL))) {
546
        if (likely((uint32_t)T1 != 0)) {
547
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
548
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
549
                xer_ca = 0;
550
            } else {
551
                xer_ca = 1;
552
            }
553
        } else {
554
            ret = T0;
555
            xer_ca = 0;
556
        }
557
    } else {
558
        ret = (-1) * ((uint32_t)T0 >> 31);
559
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
560
            xer_ca = 0;
561
        } else {
562
            xer_ca = 1;
563
        }
564
    }
565
    T0 = ret;
566
}
567

    
568
#if defined(TARGET_PPC64)
569
void do_srad (void)
570
{
571
    int64_t ret;
572

    
573
    if (likely(!(T1 & 0x40UL))) {
574
        if (likely((uint64_t)T1 != 0)) {
575
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
576
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
577
                xer_ca = 0;
578
            } else {
579
                xer_ca = 1;
580
            }
581
        } else {
582
            ret = T0;
583
            xer_ca = 0;
584
        }
585
    } else {
586
        ret = (-1) * ((uint64_t)T0 >> 63);
587
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
588
            xer_ca = 0;
589
        } else {
590
            xer_ca = 1;
591
        }
592
    }
593
    T0 = ret;
594
}
595
#endif
596

    
597
static inline int popcnt (uint32_t val)
598
{
599
    int i;
600

    
601
    for (i = 0; val != 0;)
602
        val = val ^ (val - 1);
603

    
604
    return i;
605
}
606

    
607
void do_popcntb (void)
608
{
609
    uint32_t ret;
610
    int i;
611

    
612
    ret = 0;
613
    for (i = 0; i < 32; i += 8)
614
        ret |= popcnt((T0 >> i) & 0xFF) << i;
615
    T0 = ret;
616
}
617

    
618
#if defined(TARGET_PPC64)
619
void do_popcntb_64 (void)
620
{
621
    uint64_t ret;
622
    int i;
623

    
624
    ret = 0;
625
    for (i = 0; i < 64; i += 8)
626
        ret |= popcnt((T0 >> i) & 0xFF) << i;
627
    T0 = ret;
628
}
629
#endif
630

    
631
/*****************************************************************************/
632
/* Floating point operations helpers */
633
void do_fctiw (void)
634
{
635
    union {
636
        double d;
637
        uint64_t i;
638
    } p;
639

    
640
    p.i = float64_to_int32(FT0, &env->fp_status);
641
#if USE_PRECISE_EMULATION
642
    /* XXX: higher bits are not supposed to be significant.
643
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
644
     */
645
    p.i |= 0xFFF80000ULL << 32;
646
#endif
647
    FT0 = p.d;
648
}
649

    
650
void do_fctiwz (void)
651
{
652
    union {
653
        double d;
654
        uint64_t i;
655
    } p;
656

    
657
    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
658
#if USE_PRECISE_EMULATION
659
    /* XXX: higher bits are not supposed to be significant.
660
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
661
     */
662
    p.i |= 0xFFF80000ULL << 32;
663
#endif
664
    FT0 = p.d;
665
}
666

    
667
#if defined(TARGET_PPC64)
668
void do_fcfid (void)
669
{
670
    union {
671
        double d;
672
        uint64_t i;
673
    } p;
674

    
675
    p.d = FT0;
676
    FT0 = int64_to_float64(p.i, &env->fp_status);
677
}
678

    
679
void do_fctid (void)
680
{
681
    union {
682
        double d;
683
        uint64_t i;
684
    } p;
685

    
686
    p.i = float64_to_int64(FT0, &env->fp_status);
687
    FT0 = p.d;
688
}
689

    
690
void do_fctidz (void)
691
{
692
    union {
693
        double d;
694
        uint64_t i;
695
    } p;
696

    
697
    p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
698
    FT0 = p.d;
699
}
700

    
701
#endif
702

    
703
#if USE_PRECISE_EMULATION
704
void do_fmadd (void)
705
{
706
#ifdef FLOAT128
707
    float128 ft0_128, ft1_128;
708

    
709
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
710
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
711
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
712
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
713
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
714
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
715
#else
716
    /* This is OK on x86 hosts */
717
    FT0 = (FT0 * FT1) + FT2;
718
#endif
719
}
720

    
721
void do_fmsub (void)
722
{
723
#ifdef FLOAT128
724
    float128 ft0_128, ft1_128;
725

    
726
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
727
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
728
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
729
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
730
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
731
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
732
#else
733
    /* This is OK on x86 hosts */
734
    FT0 = (FT0 * FT1) - FT2;
735
#endif
736
}
737
#endif /* USE_PRECISE_EMULATION */
738

    
739
void do_fnmadd (void)
740
{
741
#if USE_PRECISE_EMULATION
742
#ifdef FLOAT128
743
    float128 ft0_128, ft1_128;
744

    
745
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
746
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
747
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
748
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
749
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
750
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
751
#else
752
    /* This is OK on x86 hosts */
753
    FT0 = (FT0 * FT1) + FT2;
754
#endif
755
#else
756
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
757
    FT0 = float64_add(FT0, FT2, &env->fp_status);
758
#endif
759
    if (likely(!isnan(FT0)))
760
        FT0 = float64_chs(FT0);
761
}
762

    
763
void do_fnmsub (void)
764
{
765
#if USE_PRECISE_EMULATION
766
#ifdef FLOAT128
767
    float128 ft0_128, ft1_128;
768

    
769
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
770
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
771
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
772
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
773
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
774
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
775
#else
776
    /* This is OK on x86 hosts */
777
    FT0 = (FT0 * FT1) - FT2;
778
#endif
779
#else
780
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
781
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
782
#endif
783
    if (likely(!isnan(FT0)))
784
        FT0 = float64_chs(FT0);
785
}
786

    
787
void do_fsqrt (void)
788
{
789
    FT0 = float64_sqrt(FT0, &env->fp_status);
790
}
791

    
792
void do_fres (void)
793
{
794
    union {
795
        double d;
796
        uint64_t i;
797
    } p;
798

    
799
    if (likely(isnormal(FT0))) {
800
#if USE_PRECISE_EMULATION
801
        FT0 = float64_div(1.0, FT0, &env->fp_status);
802
        FT0 = float64_to_float32(FT0, &env->fp_status);
803
#else
804
        FT0 = float32_div(1.0, FT0, &env->fp_status);
805
#endif
806
    } else {
807
        p.d = FT0;
808
        if (p.i == 0x8000000000000000ULL) {
809
            p.i = 0xFFF0000000000000ULL;
810
        } else if (p.i == 0x0000000000000000ULL) {
811
            p.i = 0x7FF0000000000000ULL;
812
        } else if (isnan(FT0)) {
813
            p.i = 0x7FF8000000000000ULL;
814
        } else if (FT0 < 0.0) {
815
            p.i = 0x8000000000000000ULL;
816
        } else {
817
            p.i = 0x0000000000000000ULL;
818
        }
819
        FT0 = p.d;
820
    }
821
}
822

    
823
void do_frsqrte (void)
824
{
825
    union {
826
        double d;
827
        uint64_t i;
828
    } p;
829

    
830
    if (likely(isnormal(FT0) && FT0 > 0.0)) {
831
        FT0 = float64_sqrt(FT0, &env->fp_status);
832
        FT0 = float32_div(1.0, FT0, &env->fp_status);
833
    } else {
834
        p.d = FT0;
835
        if (p.i == 0x8000000000000000ULL) {
836
            p.i = 0xFFF0000000000000ULL;
837
        } else if (p.i == 0x0000000000000000ULL) {
838
            p.i = 0x7FF0000000000000ULL;
839
        } else if (isnan(FT0)) {
840
            if (!(p.i & 0x0008000000000000ULL))
841
                p.i |= 0x000FFFFFFFFFFFFFULL;
842
        } else if (FT0 < 0) {
843
            p.i = 0x7FF8000000000000ULL;
844
        } else {
845
            p.i = 0x0000000000000000ULL;
846
        }
847
        FT0 = p.d;
848
    }
849
}
850

    
851
void do_fsel (void)
852
{
853
    if (FT0 >= 0)
854
        FT0 = FT1;
855
    else
856
        FT0 = FT2;
857
}
858

    
859
void do_fcmpu (void)
860
{
861
    if (likely(!isnan(FT0) && !isnan(FT1))) {
862
        if (float64_lt(FT0, FT1, &env->fp_status)) {
863
            T0 = 0x08UL;
864
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
865
            T0 = 0x04UL;
866
        } else {
867
            T0 = 0x02UL;
868
        }
869
    } else {
870
        T0 = 0x01UL;
871
        env->fpscr[4] |= 0x1;
872
        env->fpscr[6] |= 0x1;
873
    }
874
    env->fpscr[3] = T0;
875
}
876

    
877
void do_fcmpo (void)
878
{
879
    env->fpscr[4] &= ~0x1;
880
    if (likely(!isnan(FT0) && !isnan(FT1))) {
881
        if (float64_lt(FT0, FT1, &env->fp_status)) {
882
            T0 = 0x08UL;
883
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
884
            T0 = 0x04UL;
885
        } else {
886
            T0 = 0x02UL;
887
        }
888
    } else {
889
        T0 = 0x01UL;
890
        env->fpscr[4] |= 0x1;
891
        if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
892
            /* Quiet NaN case */
893
            env->fpscr[6] |= 0x1;
894
            if (!(env->fpscr[1] & 0x8))
895
                env->fpscr[4] |= 0x8;
896
        } else {
897
            env->fpscr[4] |= 0x8;
898
        }
899
    }
900
    env->fpscr[3] = T0;
901
}
902

    
903
#if !defined (CONFIG_USER_ONLY)
904
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
905
void do_rfi (void)
906
{
907
#if defined(TARGET_PPC64)
908
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
909
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
910
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
911
    } else {
912
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
913
        ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
914
    }
915
#else
916
    env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
917
    do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
918
#endif
919
#if defined (DEBUG_OP)
920
    cpu_dump_rfi(env->nip, do_load_msr(env));
921
#endif
922
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
923
}
924

    
925
#if defined(TARGET_PPC64)
926
void do_rfid (void)
927
{
928
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
929
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
930
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
931
    } else {
932
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
933
        do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
934
    }
935
#if defined (DEBUG_OP)
936
    cpu_dump_rfi(env->nip, do_load_msr(env));
937
#endif
938
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
939
}
940
#endif
941
#endif
942

    
943
void do_tw (int flags)
944
{
945
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
946
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
947
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
948
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
949
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
950
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
951
    }
952
}
953

    
954
#if defined(TARGET_PPC64)
955
void do_td (int flags)
956
{
957
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
958
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
959
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
960
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
961
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
962
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
963
}
964
#endif
965

    
966
/*****************************************************************************/
967
/* PowerPC 601 specific instructions (POWER bridge) */
968
void do_POWER_abso (void)
969
{
970
    if ((uint32_t)T0 == INT32_MIN) {
971
        T0 = INT32_MAX;
972
        xer_ov = 1;
973
        xer_so = 1;
974
    } else {
975
        T0 = -T0;
976
        xer_ov = 0;
977
    }
978
}
979

    
980
void do_POWER_clcs (void)
981
{
982
    switch (T0) {
983
    case 0x0CUL:
984
        /* Instruction cache line size */
985
        T0 = ICACHE_LINE_SIZE;
986
        break;
987
    case 0x0DUL:
988
        /* Data cache line size */
989
        T0 = DCACHE_LINE_SIZE;
990
        break;
991
    case 0x0EUL:
992
        /* Minimum cache line size */
993
        T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
994
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
995
        break;
996
    case 0x0FUL:
997
        /* Maximum cache line size */
998
        T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
999
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
1000
        break;
1001
    default:
1002
        /* Undefined */
1003
        break;
1004
    }
1005
}
1006

    
1007
void do_POWER_div (void)
1008
{
1009
    uint64_t tmp;
1010

    
1011
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1012
        T0 = (long)((-1) * (T0 >> 31));
1013
        env->spr[SPR_MQ] = 0;
1014
    } else {
1015
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1016
        env->spr[SPR_MQ] = tmp % T1;
1017
        T0 = tmp / (int32_t)T1;
1018
    }
1019
}
1020

    
1021
void do_POWER_divo (void)
1022
{
1023
    int64_t tmp;
1024

    
1025
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1026
        T0 = (long)((-1) * (T0 >> 31));
1027
        env->spr[SPR_MQ] = 0;
1028
        xer_ov = 1;
1029
        xer_so = 1;
1030
    } else {
1031
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1032
        env->spr[SPR_MQ] = tmp % T1;
1033
        tmp /= (int32_t)T1;
1034
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1035
            xer_ov = 1;
1036
            xer_so = 1;
1037
        } else {
1038
            xer_ov = 0;
1039
        }
1040
        T0 = tmp;
1041
    }
1042
}
1043

    
1044
void do_POWER_divs (void)
1045
{
1046
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1047
        T0 = (long)((-1) * (T0 >> 31));
1048
        env->spr[SPR_MQ] = 0;
1049
    } else {
1050
        env->spr[SPR_MQ] = T0 % T1;
1051
        T0 = (int32_t)T0 / (int32_t)T1;
1052
    }
1053
}
1054

    
1055
void do_POWER_divso (void)
1056
{
1057
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1058
        T0 = (long)((-1) * (T0 >> 31));
1059
        env->spr[SPR_MQ] = 0;
1060
        xer_ov = 1;
1061
        xer_so = 1;
1062
    } else {
1063
        T0 = (int32_t)T0 / (int32_t)T1;
1064
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1065
        xer_ov = 0;
1066
    }
1067
}
1068

    
1069
void do_POWER_dozo (void)
1070
{
1071
    if ((int32_t)T1 > (int32_t)T0) {
1072
        T2 = T0;
1073
        T0 = T1 - T0;
1074
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1075
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1076
            xer_ov = 1;
1077
            xer_so = 1;
1078
        } else {
1079
            xer_ov = 0;
1080
        }
1081
    } else {
1082
        T0 = 0;
1083
        xer_ov = 0;
1084
    }
1085
}
1086

    
1087
void do_POWER_maskg (void)
1088
{
1089
    uint32_t ret;
1090

    
1091
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1092
        ret = -1;
1093
    } else {
1094
        ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1095
            (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1096
        if ((uint32_t)T0 > (uint32_t)T1)
1097
            ret = ~ret;
1098
    }
1099
    T0 = ret;
1100
}
1101

    
1102
void do_POWER_mulo (void)
1103
{
1104
    uint64_t tmp;
1105

    
1106
    tmp = (uint64_t)T0 * (uint64_t)T1;
1107
    env->spr[SPR_MQ] = tmp >> 32;
1108
    T0 = tmp;
1109
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1110
        xer_ov = 1;
1111
        xer_so = 1;
1112
    } else {
1113
        xer_ov = 0;
1114
    }
1115
}
1116

    
1117
#if !defined (CONFIG_USER_ONLY)
1118
void do_POWER_rac (void)
1119
{
1120
#if 0
1121
    mmu_ctx_t ctx;
1122

1123
    /* We don't have to generate many instances of this instruction,
1124
     * as rac is supervisor only.
1125
     */
1126
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1127
        T0 = ctx.raddr;
1128
#endif
1129
}
1130

    
1131
void do_POWER_rfsvc (void)
1132
{
1133
    env->nip = env->lr & ~0x00000003UL;
1134
    T0 = env->ctr & 0x0000FFFFUL;
1135
    do_store_msr(env, T0);
1136
#if defined (DEBUG_OP)
1137
    cpu_dump_rfi(env->nip, do_load_msr(env));
1138
#endif
1139
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1140
}
1141

    
1142
/* PowerPC 601 BAT management helper */
1143
void do_store_601_batu (int nr)
1144
{
1145
    do_store_ibatu(env, nr, (uint32_t)T0);
1146
    env->DBAT[0][nr] = env->IBAT[0][nr];
1147
    env->DBAT[1][nr] = env->IBAT[1][nr];
1148
}
1149
#endif
1150

    
1151
/*****************************************************************************/
1152
/* 602 specific instructions */
1153
/* mfrom is the most crazy instruction ever seen, imho ! */
1154
/* Real implementation uses a ROM table. Do the same */
1155
#define USE_MFROM_ROM_TABLE
1156
void do_op_602_mfrom (void)
1157
{
1158
    if (likely(T0 < 602)) {
1159
#if defined(USE_MFROM_ROM_TABLE)
1160
#include "mfrom_table.c"
1161
        T0 = mfrom_ROM_table[T0];
1162
#else
1163
        double d;
1164
        /* Extremly decomposed:
1165
         *                    -T0 / 256
1166
         * T0 = 256 * log10(10          + 1.0) + 0.5
1167
         */
1168
        d = T0;
1169
        d = float64_div(d, 256, &env->fp_status);
1170
        d = float64_chs(d);
1171
        d = exp10(d); // XXX: use float emulation function
1172
        d = float64_add(d, 1.0, &env->fp_status);
1173
        d = log10(d); // XXX: use float emulation function
1174
        d = float64_mul(d, 256, &env->fp_status);
1175
        d = float64_add(d, 0.5, &env->fp_status);
1176
        T0 = float64_round_to_int(d, &env->fp_status);
1177
#endif
1178
    } else {
1179
        T0 = 0;
1180
    }
1181
}
1182

    
1183
/*****************************************************************************/
1184
/* Embedded PowerPC specific helpers */
1185
void do_405_check_ov (void)
1186
{
1187
    if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1188
               !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1189
        xer_ov = 0;
1190
    } else {
1191
        xer_ov = 1;
1192
        xer_so = 1;
1193
    }
1194
}
1195

    
1196
void do_405_check_sat (void)
1197
{
1198
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1199
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1200
        /* Saturate result */
1201
        if (T2 >> 31) {
1202
            T0 = INT32_MIN;
1203
        } else {
1204
            T0 = INT32_MAX;
1205
        }
1206
    }
1207
}
1208

    
1209
/* XXX: to be improved to check access rights when in user-mode */
1210
void do_load_dcr (void)
1211
{
1212
    target_ulong val;
1213

    
1214
    if (unlikely(env->dcr_env == NULL)) {
1215
        if (loglevel != 0) {
1216
            fprintf(logfile, "No DCR environment\n");
1217
        }
1218
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1219
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1220
        if (loglevel != 0) {
1221
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1222
        }
1223
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1224
    } else {
1225
        T0 = val;
1226
    }
1227
}
1228

    
1229
void do_store_dcr (void)
1230
{
1231
    if (unlikely(env->dcr_env == NULL)) {
1232
        if (loglevel != 0) {
1233
            fprintf(logfile, "No DCR environment\n");
1234
        }
1235
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1236
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1237
        if (loglevel != 0) {
1238
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1239
        }
1240
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1241
    }
1242
}
1243

    
1244
#if !defined(CONFIG_USER_ONLY)
1245
void do_40x_rfci (void)
1246
{
1247
    env->nip = env->spr[SPR_40x_SRR2];
1248
    do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
1249
#if defined (DEBUG_OP)
1250
    cpu_dump_rfi(env->nip, do_load_msr(env));
1251
#endif
1252
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1253
}
1254

    
1255
void do_rfci (void)
1256
{
1257
#if defined(TARGET_PPC64)
1258
    if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
1259
        env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
1260
    } else
1261
#endif
1262
    {
1263
        env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
1264
    }
1265
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
1266
#if defined (DEBUG_OP)
1267
    cpu_dump_rfi(env->nip, do_load_msr(env));
1268
#endif
1269
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1270
}
1271

    
1272
void do_rfdi (void)
1273
{
1274
#if defined(TARGET_PPC64)
1275
    if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
1276
        env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
1277
    } else
1278
#endif
1279
    {
1280
        env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
1281
    }
1282
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
1283
#if defined (DEBUG_OP)
1284
    cpu_dump_rfi(env->nip, do_load_msr(env));
1285
#endif
1286
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1287
}
1288

    
1289
void do_rfmci (void)
1290
{
1291
#if defined(TARGET_PPC64)
1292
    if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
1293
        env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
1294
    } else
1295
#endif
1296
    {
1297
        env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
1298
    }
1299
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
1300
#if defined (DEBUG_OP)
1301
    cpu_dump_rfi(env->nip, do_load_msr(env));
1302
#endif
1303
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1304
}
1305

    
1306
void do_load_403_pb (int num)
1307
{
1308
    T0 = env->pb[num];
1309
}
1310

    
1311
void do_store_403_pb (int num)
1312
{
1313
    if (likely(env->pb[num] != T0)) {
1314
        env->pb[num] = T0;
1315
        /* Should be optimized */
1316
        tlb_flush(env, 1);
1317
    }
1318
}
1319
#endif
1320

    
1321
/* 440 specific */
1322
void do_440_dlmzb (void)
1323
{
1324
    target_ulong mask;
1325
    int i;
1326

    
1327
    i = 1;
1328
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1329
        if ((T0 & mask) == 0)
1330
            goto done;
1331
        i++;
1332
    }
1333
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1334
        if ((T1 & mask) == 0)
1335
            break;
1336
        i++;
1337
    }
1338
 done:
1339
    T0 = i;
1340
}
1341

    
1342
#if defined(TARGET_PPCEMB)
1343
/* SPE extension helpers */
1344
/* Use a table to make this quicker */
1345
static uint8_t hbrev[16] = {
1346
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1347
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1348
};
1349

    
1350
static inline uint8_t byte_reverse (uint8_t val)
1351
{
1352
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1353
}
1354

    
1355
static inline uint32_t word_reverse (uint32_t val)
1356
{
1357
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1358
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1359
}
1360

    
1361
#define MASKBITS 16 // Random value - to be fixed
1362
void do_brinc (void)
1363
{
1364
    uint32_t a, b, d, mask;
1365

    
1366
    mask = (uint32_t)(-1UL) >> MASKBITS;
1367
    b = T1_64 & mask;
1368
    a = T0_64 & mask;
1369
    d = word_reverse(1 + word_reverse(a | ~mask));
1370
    T0_64 = (T0_64 & ~mask) | (d & mask);
1371
}
1372

    
1373
#define DO_SPE_OP2(name)                                                      \
1374
void do_ev##name (void)                                                       \
1375
{                                                                             \
1376
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1377
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1378
}
1379

    
1380
#define DO_SPE_OP1(name)                                                      \
1381
void do_ev##name (void)                                                       \
1382
{                                                                             \
1383
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1384
        (uint64_t)_do_e##name(T0_64);                                         \
1385
}
1386

    
1387
/* Fixed-point vector arithmetic */
1388
static inline uint32_t _do_eabs (uint32_t val)
1389
{
1390
    if (val != 0x80000000)
1391
        val &= ~0x80000000;
1392

    
1393
    return val;
1394
}
1395

    
1396
static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1397
{
1398
    return op1 + op2;
1399
}
1400

    
1401
static inline int _do_ecntlsw (uint32_t val)
1402
{
1403
    if (val & 0x80000000)
1404
        return _do_cntlzw(~val);
1405
    else
1406
        return _do_cntlzw(val);
1407
}
1408

    
1409
static inline int _do_ecntlzw (uint32_t val)
1410
{
1411
    return _do_cntlzw(val);
1412
}
1413

    
1414
static inline uint32_t _do_eneg (uint32_t val)
1415
{
1416
    if (val != 0x80000000)
1417
        val ^= 0x80000000;
1418

    
1419
    return val;
1420
}
1421

    
1422
static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1423
{
1424
    return rotl32(op1, op2);
1425
}
1426

    
1427
static inline uint32_t _do_erndw (uint32_t val)
1428
{
1429
    return (val + 0x000080000000) & 0xFFFF0000;
1430
}
1431

    
1432
static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1433
{
1434
    /* No error here: 6 bits are used */
1435
    return op1 << (op2 & 0x3F);
1436
}
1437

    
1438
static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1439
{
1440
    /* No error here: 6 bits are used */
1441
    return op1 >> (op2 & 0x3F);
1442
}
1443

    
1444
static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1445
{
1446
    /* No error here: 6 bits are used */
1447
    return op1 >> (op2 & 0x3F);
1448
}
1449

    
1450
static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1451
{
1452
    return op2 - op1;
1453
}
1454

    
1455
/* evabs */
1456
DO_SPE_OP1(abs);
1457
/* evaddw */
1458
DO_SPE_OP2(addw);
1459
/* evcntlsw */
1460
DO_SPE_OP1(cntlsw);
1461
/* evcntlzw */
1462
DO_SPE_OP1(cntlzw);
1463
/* evneg */
1464
DO_SPE_OP1(neg);
1465
/* evrlw */
1466
DO_SPE_OP2(rlw);
1467
/* evrnd */
1468
DO_SPE_OP1(rndw);
1469
/* evslw */
1470
DO_SPE_OP2(slw);
1471
/* evsrws */
1472
DO_SPE_OP2(srws);
1473
/* evsrwu */
1474
DO_SPE_OP2(srwu);
1475
/* evsubfw */
1476
DO_SPE_OP2(subfw);
1477

    
1478
/* evsel is a little bit more complicated... */
1479
static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1480
{
1481
    if (n)
1482
        return op1;
1483
    else
1484
        return op2;
1485
}
1486

    
1487
void do_evsel (void)
1488
{
1489
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1490
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1491
}
1492

    
1493
/* Fixed-point vector comparisons */
1494
#define DO_SPE_CMP(name)                                                      \
1495
void do_ev##name (void)                                                       \
1496
{                                                                             \
1497
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
1498
                                               T1_64 >> 32) << 32,            \
1499
                         _do_e##name(T0_64, T1_64));                          \
1500
}
1501

    
1502
static inline uint32_t _do_evcmp_merge (int t0, int t1)
1503
{
1504
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1505
}
1506
static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1507
{
1508
    return op1 == op2 ? 1 : 0;
1509
}
1510

    
1511
static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1512
{
1513
    return op1 > op2 ? 1 : 0;
1514
}
1515

    
1516
static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1517
{
1518
    return op1 > op2 ? 1 : 0;
1519
}
1520

    
1521
static inline int _do_ecmplts (int32_t op1, int32_t op2)
1522
{
1523
    return op1 < op2 ? 1 : 0;
1524
}
1525

    
1526
static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1527
{
1528
    return op1 < op2 ? 1 : 0;
1529
}
1530

    
1531
/* evcmpeq */
1532
DO_SPE_CMP(cmpeq);
1533
/* evcmpgts */
1534
DO_SPE_CMP(cmpgts);
1535
/* evcmpgtu */
1536
DO_SPE_CMP(cmpgtu);
1537
/* evcmplts */
1538
DO_SPE_CMP(cmplts);
1539
/* evcmpltu */
1540
DO_SPE_CMP(cmpltu);
1541

    
1542
/* Single precision floating-point conversions from/to integer */
1543
static inline uint32_t _do_efscfsi (int32_t val)
1544
{
1545
    union {
1546
        uint32_t u;
1547
        float32 f;
1548
    } u;
1549

    
1550
    u.f = int32_to_float32(val, &env->spe_status);
1551

    
1552
    return u.u;
1553
}
1554

    
1555
static inline uint32_t _do_efscfui (uint32_t val)
1556
{
1557
    union {
1558
        uint32_t u;
1559
        float32 f;
1560
    } u;
1561

    
1562
    u.f = uint32_to_float32(val, &env->spe_status);
1563

    
1564
    return u.u;
1565
}
1566

    
1567
static inline int32_t _do_efsctsi (uint32_t val)
1568
{
1569
    union {
1570
        int32_t u;
1571
        float32 f;
1572
    } u;
1573

    
1574
    u.u = val;
1575
    /* NaN are not treated the same way IEEE 754 does */
1576
    if (unlikely(isnan(u.f)))
1577
        return 0;
1578

    
1579
    return float32_to_int32(u.f, &env->spe_status);
1580
}
1581

    
1582
static inline uint32_t _do_efsctui (uint32_t val)
1583
{
1584
    union {
1585
        int32_t u;
1586
        float32 f;
1587
    } u;
1588

    
1589
    u.u = val;
1590
    /* NaN are not treated the same way IEEE 754 does */
1591
    if (unlikely(isnan(u.f)))
1592
        return 0;
1593

    
1594
    return float32_to_uint32(u.f, &env->spe_status);
1595
}
1596

    
1597
static inline int32_t _do_efsctsiz (uint32_t val)
1598
{
1599
    union {
1600
        int32_t u;
1601
        float32 f;
1602
    } u;
1603

    
1604
    u.u = val;
1605
    /* NaN are not treated the same way IEEE 754 does */
1606
    if (unlikely(isnan(u.f)))
1607
        return 0;
1608

    
1609
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1610
}
1611

    
1612
static inline uint32_t _do_efsctuiz (uint32_t val)
1613
{
1614
    union {
1615
        int32_t u;
1616
        float32 f;
1617
    } u;
1618

    
1619
    u.u = val;
1620
    /* NaN are not treated the same way IEEE 754 does */
1621
    if (unlikely(isnan(u.f)))
1622
        return 0;
1623

    
1624
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1625
}
1626

    
1627
void do_efscfsi (void)
1628
{
1629
    T0_64 = _do_efscfsi(T0_64);
1630
}
1631

    
1632
void do_efscfui (void)
1633
{
1634
    T0_64 = _do_efscfui(T0_64);
1635
}
1636

    
1637
void do_efsctsi (void)
1638
{
1639
    T0_64 = _do_efsctsi(T0_64);
1640
}
1641

    
1642
void do_efsctui (void)
1643
{
1644
    T0_64 = _do_efsctui(T0_64);
1645
}
1646

    
1647
void do_efsctsiz (void)
1648
{
1649
    T0_64 = _do_efsctsiz(T0_64);
1650
}
1651

    
1652
void do_efsctuiz (void)
1653
{
1654
    T0_64 = _do_efsctuiz(T0_64);
1655
}
1656

    
1657
/* Single precision floating-point conversion to/from fractional */
1658
static inline uint32_t _do_efscfsf (uint32_t val)
1659
{
1660
    union {
1661
        uint32_t u;
1662
        float32 f;
1663
    } u;
1664
    float32 tmp;
1665

    
1666
    u.f = int32_to_float32(val, &env->spe_status);
1667
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1668
    u.f = float32_div(u.f, tmp, &env->spe_status);
1669

    
1670
    return u.u;
1671
}
1672

    
1673
static inline uint32_t _do_efscfuf (uint32_t val)
1674
{
1675
    union {
1676
        uint32_t u;
1677
        float32 f;
1678
    } u;
1679
    float32 tmp;
1680

    
1681
    u.f = uint32_to_float32(val, &env->spe_status);
1682
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1683
    u.f = float32_div(u.f, tmp, &env->spe_status);
1684

    
1685
    return u.u;
1686
}
1687

    
1688
static inline int32_t _do_efsctsf (uint32_t val)
1689
{
1690
    union {
1691
        int32_t u;
1692
        float32 f;
1693
    } u;
1694
    float32 tmp;
1695

    
1696
    u.u = val;
1697
    /* NaN are not treated the same way IEEE 754 does */
1698
    if (unlikely(isnan(u.f)))
1699
        return 0;
1700
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1701
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1702

    
1703
    return float32_to_int32(u.f, &env->spe_status);
1704
}
1705

    
1706
static inline uint32_t _do_efsctuf (uint32_t val)
1707
{
1708
    union {
1709
        int32_t u;
1710
        float32 f;
1711
    } u;
1712
    float32 tmp;
1713

    
1714
    u.u = val;
1715
    /* NaN are not treated the same way IEEE 754 does */
1716
    if (unlikely(isnan(u.f)))
1717
        return 0;
1718
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1719
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1720

    
1721
    return float32_to_uint32(u.f, &env->spe_status);
1722
}
1723

    
1724
static inline int32_t _do_efsctsfz (uint32_t val)
1725
{
1726
    union {
1727
        int32_t u;
1728
        float32 f;
1729
    } u;
1730
    float32 tmp;
1731

    
1732
    u.u = val;
1733
    /* NaN are not treated the same way IEEE 754 does */
1734
    if (unlikely(isnan(u.f)))
1735
        return 0;
1736
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1737
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1738

    
1739
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1740
}
1741

    
1742
static inline uint32_t _do_efsctufz (uint32_t val)
1743
{
1744
    union {
1745
        int32_t u;
1746
        float32 f;
1747
    } u;
1748
    float32 tmp;
1749

    
1750
    u.u = val;
1751
    /* NaN are not treated the same way IEEE 754 does */
1752
    if (unlikely(isnan(u.f)))
1753
        return 0;
1754
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1755
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1756

    
1757
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1758
}
1759

    
1760
void do_efscfsf (void)
1761
{
1762
    T0_64 = _do_efscfsf(T0_64);
1763
}
1764

    
1765
void do_efscfuf (void)
1766
{
1767
    T0_64 = _do_efscfuf(T0_64);
1768
}
1769

    
1770
void do_efsctsf (void)
1771
{
1772
    T0_64 = _do_efsctsf(T0_64);
1773
}
1774

    
1775
void do_efsctuf (void)
1776
{
1777
    T0_64 = _do_efsctuf(T0_64);
1778
}
1779

    
1780
void do_efsctsfz (void)
1781
{
1782
    T0_64 = _do_efsctsfz(T0_64);
1783
}
1784

    
1785
void do_efsctufz (void)
1786
{
1787
    T0_64 = _do_efsctufz(T0_64);
1788
}
1789

    
1790
/* Double precision floating point helpers */
1791
static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1792
{
1793
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1794
    return _do_efdtstlt(op1, op2);
1795
}
1796

    
1797
static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1798
{
1799
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1800
    return _do_efdtstgt(op1, op2);
1801
}
1802

    
1803
static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1804
{
1805
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1806
    return _do_efdtsteq(op1, op2);
1807
}
1808

    
1809
void do_efdcmplt (void)
1810
{
1811
    T0 = _do_efdcmplt(T0_64, T1_64);
1812
}
1813

    
1814
void do_efdcmpgt (void)
1815
{
1816
    T0 = _do_efdcmpgt(T0_64, T1_64);
1817
}
1818

    
1819
void do_efdcmpeq (void)
1820
{
1821
    T0 = _do_efdcmpeq(T0_64, T1_64);
1822
}
1823

    
1824
/* Double precision floating-point conversion to/from integer */
1825
static inline uint64_t _do_efdcfsi (int64_t val)
1826
{
1827
    union {
1828
        uint64_t u;
1829
        float64 f;
1830
    } u;
1831

    
1832
    u.f = int64_to_float64(val, &env->spe_status);
1833

    
1834
    return u.u;
1835
}
1836

    
1837
static inline uint64_t _do_efdcfui (uint64_t val)
1838
{
1839
    union {
1840
        uint64_t u;
1841
        float64 f;
1842
    } u;
1843

    
1844
    u.f = uint64_to_float64(val, &env->spe_status);
1845

    
1846
    return u.u;
1847
}
1848

    
1849
static inline int64_t _do_efdctsi (uint64_t val)
1850
{
1851
    union {
1852
        int64_t u;
1853
        float64 f;
1854
    } u;
1855

    
1856
    u.u = val;
1857
    /* NaN are not treated the same way IEEE 754 does */
1858
    if (unlikely(isnan(u.f)))
1859
        return 0;
1860

    
1861
    return float64_to_int64(u.f, &env->spe_status);
1862
}
1863

    
1864
static inline uint64_t _do_efdctui (uint64_t val)
1865
{
1866
    union {
1867
        int64_t u;
1868
        float64 f;
1869
    } u;
1870

    
1871
    u.u = val;
1872
    /* NaN are not treated the same way IEEE 754 does */
1873
    if (unlikely(isnan(u.f)))
1874
        return 0;
1875

    
1876
    return float64_to_uint64(u.f, &env->spe_status);
1877
}
1878

    
1879
static inline int64_t _do_efdctsiz (uint64_t val)
1880
{
1881
    union {
1882
        int64_t u;
1883
        float64 f;
1884
    } u;
1885

    
1886
    u.u = val;
1887
    /* NaN are not treated the same way IEEE 754 does */
1888
    if (unlikely(isnan(u.f)))
1889
        return 0;
1890

    
1891
    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1892
}
1893

    
1894
static inline uint64_t _do_efdctuiz (uint64_t val)
1895
{
1896
    union {
1897
        int64_t u;
1898
        float64 f;
1899
    } u;
1900

    
1901
    u.u = val;
1902
    /* NaN are not treated the same way IEEE 754 does */
1903
    if (unlikely(isnan(u.f)))
1904
        return 0;
1905

    
1906
    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1907
}
1908

    
1909
void do_efdcfsi (void)
1910
{
1911
    T0_64 = _do_efdcfsi(T0_64);
1912
}
1913

    
1914
void do_efdcfui (void)
1915
{
1916
    T0_64 = _do_efdcfui(T0_64);
1917
}
1918

    
1919
void do_efdctsi (void)
1920
{
1921
    T0_64 = _do_efdctsi(T0_64);
1922
}
1923

    
1924
void do_efdctui (void)
1925
{
1926
    T0_64 = _do_efdctui(T0_64);
1927
}
1928

    
1929
void do_efdctsiz (void)
1930
{
1931
    T0_64 = _do_efdctsiz(T0_64);
1932
}
1933

    
1934
void do_efdctuiz (void)
1935
{
1936
    T0_64 = _do_efdctuiz(T0_64);
1937
}
1938

    
1939
/* Double precision floating-point conversion to/from fractional */
1940
static inline uint64_t _do_efdcfsf (int64_t val)
1941
{
1942
    union {
1943
        uint64_t u;
1944
        float64 f;
1945
    } u;
1946
    float64 tmp;
1947

    
1948
    u.f = int32_to_float64(val, &env->spe_status);
1949
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1950
    u.f = float64_div(u.f, tmp, &env->spe_status);
1951

    
1952
    return u.u;
1953
}
1954

    
1955
static inline uint64_t _do_efdcfuf (uint64_t val)
1956
{
1957
    union {
1958
        uint64_t u;
1959
        float64 f;
1960
    } u;
1961
    float64 tmp;
1962

    
1963
    u.f = uint32_to_float64(val, &env->spe_status);
1964
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1965
    u.f = float64_div(u.f, tmp, &env->spe_status);
1966

    
1967
    return u.u;
1968
}
1969

    
1970
static inline int64_t _do_efdctsf (uint64_t val)
1971
{
1972
    union {
1973
        int64_t u;
1974
        float64 f;
1975
    } u;
1976
    float64 tmp;
1977

    
1978
    u.u = val;
1979
    /* NaN are not treated the same way IEEE 754 does */
1980
    if (unlikely(isnan(u.f)))
1981
        return 0;
1982
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1983
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1984

    
1985
    return float64_to_int32(u.f, &env->spe_status);
1986
}
1987

    
1988
static inline uint64_t _do_efdctuf (uint64_t val)
1989
{
1990
    union {
1991
        int64_t u;
1992
        float64 f;
1993
    } u;
1994
    float64 tmp;
1995

    
1996
    u.u = val;
1997
    /* NaN are not treated the same way IEEE 754 does */
1998
    if (unlikely(isnan(u.f)))
1999
        return 0;
2000
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2001
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2002

    
2003
    return float64_to_uint32(u.f, &env->spe_status);
2004
}
2005

    
2006
static inline int64_t _do_efdctsfz (uint64_t val)
2007
{
2008
    union {
2009
        int64_t u;
2010
        float64 f;
2011
    } u;
2012
    float64 tmp;
2013

    
2014
    u.u = val;
2015
    /* NaN are not treated the same way IEEE 754 does */
2016
    if (unlikely(isnan(u.f)))
2017
        return 0;
2018
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2019
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2020

    
2021
    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2022
}
2023

    
2024
static inline uint64_t _do_efdctufz (uint64_t val)
2025
{
2026
    union {
2027
        int64_t u;
2028
        float64 f;
2029
    } u;
2030
    float64 tmp;
2031

    
2032
    u.u = val;
2033
    /* NaN are not treated the same way IEEE 754 does */
2034
    if (unlikely(isnan(u.f)))
2035
        return 0;
2036
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2037
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2038

    
2039
    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2040
}
2041

    
2042
void do_efdcfsf (void)
2043
{
2044
    T0_64 = _do_efdcfsf(T0_64);
2045
}
2046

    
2047
void do_efdcfuf (void)
2048
{
2049
    T0_64 = _do_efdcfuf(T0_64);
2050
}
2051

    
2052
void do_efdctsf (void)
2053
{
2054
    T0_64 = _do_efdctsf(T0_64);
2055
}
2056

    
2057
void do_efdctuf (void)
2058
{
2059
    T0_64 = _do_efdctuf(T0_64);
2060
}
2061

    
2062
void do_efdctsfz (void)
2063
{
2064
    T0_64 = _do_efdctsfz(T0_64);
2065
}
2066

    
2067
void do_efdctufz (void)
2068
{
2069
    T0_64 = _do_efdctufz(T0_64);
2070
}
2071

    
2072
/* Floating point conversion between single and double precision */
2073
static inline uint32_t _do_efscfd (uint64_t val)
2074
{
2075
    union {
2076
        uint64_t u;
2077
        float64 f;
2078
    } u1;
2079
    union {
2080
        uint32_t u;
2081
        float32 f;
2082
    } u2;
2083

    
2084
    u1.u = val;
2085
    u2.f = float64_to_float32(u1.f, &env->spe_status);
2086

    
2087
    return u2.u;
2088
}
2089

    
2090
static inline uint64_t _do_efdcfs (uint32_t val)
2091
{
2092
    union {
2093
        uint64_t u;
2094
        float64 f;
2095
    } u2;
2096
    union {
2097
        uint32_t u;
2098
        float32 f;
2099
    } u1;
2100

    
2101
    u1.u = val;
2102
    u2.f = float32_to_float64(u1.f, &env->spe_status);
2103

    
2104
    return u2.u;
2105
}
2106

    
2107
void do_efscfd (void)
2108
{
2109
    T0_64 = _do_efscfd(T0_64);
2110
}
2111

    
2112
void do_efdcfs (void)
2113
{
2114
    T0_64 = _do_efdcfs(T0_64);
2115
}
2116

    
2117
/* Single precision fixed-point vector arithmetic */
2118
/* evfsabs */
2119
DO_SPE_OP1(fsabs);
2120
/* evfsnabs */
2121
DO_SPE_OP1(fsnabs);
2122
/* evfsneg */
2123
DO_SPE_OP1(fsneg);
2124
/* evfsadd */
2125
DO_SPE_OP2(fsadd);
2126
/* evfssub */
2127
DO_SPE_OP2(fssub);
2128
/* evfsmul */
2129
DO_SPE_OP2(fsmul);
2130
/* evfsdiv */
2131
DO_SPE_OP2(fsdiv);
2132

    
2133
/* Single-precision floating-point comparisons */
2134
static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2135
{
2136
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2137
    return _do_efststlt(op1, op2);
2138
}
2139

    
2140
static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2141
{
2142
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2143
    return _do_efststgt(op1, op2);
2144
}
2145

    
2146
static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2147
{
2148
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2149
    return _do_efststeq(op1, op2);
2150
}
2151

    
2152
void do_efscmplt (void)
2153
{
2154
    T0 = _do_efscmplt(T0_64, T1_64);
2155
}
2156

    
2157
void do_efscmpgt (void)
2158
{
2159
    T0 = _do_efscmpgt(T0_64, T1_64);
2160
}
2161

    
2162
void do_efscmpeq (void)
2163
{
2164
    T0 = _do_efscmpeq(T0_64, T1_64);
2165
}
2166

    
2167
/* Single-precision floating-point vector comparisons */
2168
/* evfscmplt */
2169
DO_SPE_CMP(fscmplt);
2170
/* evfscmpgt */
2171
DO_SPE_CMP(fscmpgt);
2172
/* evfscmpeq */
2173
DO_SPE_CMP(fscmpeq);
2174
/* evfststlt */
2175
DO_SPE_CMP(fststlt);
2176
/* evfststgt */
2177
DO_SPE_CMP(fststgt);
2178
/* evfststeq */
2179
DO_SPE_CMP(fststeq);
2180

    
2181
/* Single-precision floating-point vector conversions */
2182
/* evfscfsi */
2183
DO_SPE_OP1(fscfsi);
2184
/* evfscfui */
2185
DO_SPE_OP1(fscfui);
2186
/* evfscfuf */
2187
DO_SPE_OP1(fscfuf);
2188
/* evfscfsf */
2189
DO_SPE_OP1(fscfsf);
2190
/* evfsctsi */
2191
DO_SPE_OP1(fsctsi);
2192
/* evfsctui */
2193
DO_SPE_OP1(fsctui);
2194
/* evfsctsiz */
2195
DO_SPE_OP1(fsctsiz);
2196
/* evfsctuiz */
2197
DO_SPE_OP1(fsctuiz);
2198
/* evfsctsf */
2199
DO_SPE_OP1(fsctsf);
2200
/* evfsctuf */
2201
DO_SPE_OP1(fsctuf);
2202
#endif /* defined(TARGET_PPCEMB) */
2203

    
2204
/*****************************************************************************/
2205
/* Softmmu support */
2206
#if !defined (CONFIG_USER_ONLY)
2207

    
2208
#define MMUSUFFIX _mmu
2209
#define GETPC() (__builtin_return_address(0))
2210

    
2211
#define SHIFT 0
2212
#include "softmmu_template.h"
2213

    
2214
#define SHIFT 1
2215
#include "softmmu_template.h"
2216

    
2217
#define SHIFT 2
2218
#include "softmmu_template.h"
2219

    
2220
#define SHIFT 3
2221
#include "softmmu_template.h"
2222

    
2223
/* try to fill the TLB and return an exception if error. If retaddr is
2224
   NULL, it means that the function was called in C code (i.e. not
2225
   from generated code or from helper.c) */
2226
/* XXX: fix it to restore all registers */
2227
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2228
{
2229
    TranslationBlock *tb;
2230
    CPUState *saved_env;
2231
    target_phys_addr_t pc;
2232
    int ret;
2233

    
2234
    /* XXX: hack to restore env in all cases, even if not called from
2235
       generated code */
2236
    saved_env = env;
2237
    env = cpu_single_env;
2238
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2239
    if (unlikely(ret != 0)) {
2240
        if (likely(retaddr)) {
2241
            /* now we have a real cpu fault */
2242
            pc = (target_phys_addr_t)(unsigned long)retaddr;
2243
            tb = tb_find_pc(pc);
2244
            if (likely(tb)) {
2245
                /* the PC is inside the translated code. It means that we have
2246
                   a virtual CPU fault */
2247
                cpu_restore_state(tb, env, pc, NULL);
2248
            }
2249
        }
2250
        do_raise_exception_err(env->exception_index, env->error_code);
2251
    }
2252
    env = saved_env;
2253
}
2254

    
2255
/* TLB invalidation helpers */
2256
void do_tlbia (void)
2257
{
2258
    ppc_tlb_invalidate_all(env);
2259
}
2260

    
2261
void do_tlbie (void)
2262
{
2263
    T0 = (uint32_t)T0;
2264
#if !defined(FLUSH_ALL_TLBS)
2265
    /* XXX: Remove thoses tests */
2266
    if (unlikely(env->mmu_model == POWERPC_MMU_SOFT_6xx)) {
2267
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2268
        if (env->id_tlbs == 1)
2269
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2270
    } else if (unlikely(env->mmu_model == POWERPC_MMU_SOFT_4xx)) {
2271
        ppc4xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2272
                                   env->spr[SPR_40x_PID]);
2273
    } else {
2274
        /* tlbie invalidate TLBs for all segments */
2275
        T0 &= TARGET_PAGE_MASK;
2276
        T0 &= ~((target_ulong)-1 << 28);
2277
        /* XXX: this case should be optimized,
2278
         * giving a mask to tlb_flush_page
2279
         */
2280
        tlb_flush_page(env, T0 | (0x0 << 28));
2281
        tlb_flush_page(env, T0 | (0x1 << 28));
2282
        tlb_flush_page(env, T0 | (0x2 << 28));
2283
        tlb_flush_page(env, T0 | (0x3 << 28));
2284
        tlb_flush_page(env, T0 | (0x4 << 28));
2285
        tlb_flush_page(env, T0 | (0x5 << 28));
2286
        tlb_flush_page(env, T0 | (0x6 << 28));
2287
        tlb_flush_page(env, T0 | (0x7 << 28));
2288
        tlb_flush_page(env, T0 | (0x8 << 28));
2289
        tlb_flush_page(env, T0 | (0x9 << 28));
2290
        tlb_flush_page(env, T0 | (0xA << 28));
2291
        tlb_flush_page(env, T0 | (0xB << 28));
2292
        tlb_flush_page(env, T0 | (0xC << 28));
2293
        tlb_flush_page(env, T0 | (0xD << 28));
2294
        tlb_flush_page(env, T0 | (0xE << 28));
2295
        tlb_flush_page(env, T0 | (0xF << 28));
2296
    }
2297
#else
2298
    do_tlbia();
2299
#endif
2300
}
2301

    
2302
#if defined(TARGET_PPC64)
2303
void do_tlbie_64 (void)
2304
{
2305
    T0 = (uint64_t)T0;
2306
#if !defined(FLUSH_ALL_TLBS)
2307
    if (unlikely(env->mmu_model == POWERPC_MMU_SOFT_6xx)) {
2308
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2309
        if (env->id_tlbs == 1)
2310
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2311
    } else if (unlikely(env->mmu_model == POWERPC_MMU_SOFT_4xx)) {
2312
        /* XXX: TODO */
2313
#if 0
2314
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2315
                                     env->spr[SPR_BOOKE_PID]);
2316
#endif
2317
    } else {
2318
        /* tlbie invalidate TLBs for all segments
2319
         * As we have 2^36 segments, invalidate all qemu TLBs
2320
         */
2321
#if 0
2322
        T0 &= TARGET_PAGE_MASK;
2323
        T0 &= ~((target_ulong)-1 << 28);
2324
        /* XXX: this case should be optimized,
2325
         * giving a mask to tlb_flush_page
2326
         */
2327
        tlb_flush_page(env, T0 | (0x0 << 28));
2328
        tlb_flush_page(env, T0 | (0x1 << 28));
2329
        tlb_flush_page(env, T0 | (0x2 << 28));
2330
        tlb_flush_page(env, T0 | (0x3 << 28));
2331
        tlb_flush_page(env, T0 | (0x4 << 28));
2332
        tlb_flush_page(env, T0 | (0x5 << 28));
2333
        tlb_flush_page(env, T0 | (0x6 << 28));
2334
        tlb_flush_page(env, T0 | (0x7 << 28));
2335
        tlb_flush_page(env, T0 | (0x8 << 28));
2336
        tlb_flush_page(env, T0 | (0x9 << 28));
2337
        tlb_flush_page(env, T0 | (0xA << 28));
2338
        tlb_flush_page(env, T0 | (0xB << 28));
2339
        tlb_flush_page(env, T0 | (0xC << 28));
2340
        tlb_flush_page(env, T0 | (0xD << 28));
2341
        tlb_flush_page(env, T0 | (0xE << 28));
2342
        tlb_flush_page(env, T0 | (0xF << 28));
2343
#else
2344
        tlb_flush(env, 1);
2345
#endif
2346
    }
2347
#else
2348
    do_tlbia();
2349
#endif
2350
}
2351
#endif
2352

    
2353
#if defined(TARGET_PPC64)
2354
void do_slbia (void)
2355
{
2356
    /* XXX: TODO */
2357
    tlb_flush(env, 1);
2358
}
2359

    
2360
void do_slbie (void)
2361
{
2362
    /* XXX: TODO */
2363
    tlb_flush(env, 1);
2364
}
2365
#endif
2366

    
2367
/* Software driven TLBs management */
2368
/* PowerPC 602/603 software TLB load instructions helpers */
2369
void do_load_6xx_tlb (int is_code)
2370
{
2371
    target_ulong RPN, CMP, EPN;
2372
    int way;
2373

    
2374
    RPN = env->spr[SPR_RPA];
2375
    if (is_code) {
2376
        CMP = env->spr[SPR_ICMP];
2377
        EPN = env->spr[SPR_IMISS];
2378
    } else {
2379
        CMP = env->spr[SPR_DCMP];
2380
        EPN = env->spr[SPR_DMISS];
2381
    }
2382
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2383
#if defined (DEBUG_SOFTWARE_TLB)
2384
    if (loglevel != 0) {
2385
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2386
                __func__, (unsigned long)T0, (unsigned long)EPN,
2387
                (unsigned long)CMP, (unsigned long)RPN, way);
2388
    }
2389
#endif
2390
    /* Store this TLB */
2391
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2392
                     way, is_code, CMP, RPN);
2393
}
2394

    
2395
static target_ulong booke_tlb_to_page_size (int size)
2396
{
2397
    return 1024 << (2 * size);
2398
}
2399

    
2400
static int booke_page_size_to_tlb (target_ulong page_size)
2401
{
2402
    int size;
2403

    
2404
    switch (page_size) {
2405
    case 0x00000400UL:
2406
        size = 0x0;
2407
        break;
2408
    case 0x00001000UL:
2409
        size = 0x1;
2410
        break;
2411
    case 0x00004000UL:
2412
        size = 0x2;
2413
        break;
2414
    case 0x00010000UL:
2415
        size = 0x3;
2416
        break;
2417
    case 0x00040000UL:
2418
        size = 0x4;
2419
        break;
2420
    case 0x00100000UL:
2421
        size = 0x5;
2422
        break;
2423
    case 0x00400000UL:
2424
        size = 0x6;
2425
        break;
2426
    case 0x01000000UL:
2427
        size = 0x7;
2428
        break;
2429
    case 0x04000000UL:
2430
        size = 0x8;
2431
        break;
2432
    case 0x10000000UL:
2433
        size = 0x9;
2434
        break;
2435
    case 0x40000000UL:
2436
        size = 0xA;
2437
        break;
2438
#if defined (TARGET_PPC64)
2439
    case 0x000100000000ULL:
2440
        size = 0xB;
2441
        break;
2442
    case 0x000400000000ULL:
2443
        size = 0xC;
2444
        break;
2445
    case 0x001000000000ULL:
2446
        size = 0xD;
2447
        break;
2448
    case 0x004000000000ULL:
2449
        size = 0xE;
2450
        break;
2451
    case 0x010000000000ULL:
2452
        size = 0xF;
2453
        break;
2454
#endif
2455
    default:
2456
        size = -1;
2457
        break;
2458
    }
2459

    
2460
    return size;
2461
}
2462

    
2463
/* Helpers for 4xx TLB management */
2464
void do_4xx_tlbre_lo (void)
2465
{
2466
    ppcemb_tlb_t *tlb;
2467
    int size;
2468

    
2469
    T0 &= 0x3F;
2470
    tlb = &env->tlb[T0].tlbe;
2471
    T0 = tlb->EPN;
2472
    if (tlb->prot & PAGE_VALID)
2473
        T0 |= 0x400;
2474
    size = booke_page_size_to_tlb(tlb->size);
2475
    if (size < 0 || size > 0x7)
2476
        size = 1;
2477
    T0 |= size << 7;
2478
    env->spr[SPR_40x_PID] = tlb->PID;
2479
}
2480

    
2481
void do_4xx_tlbre_hi (void)
2482
{
2483
    ppcemb_tlb_t *tlb;
2484

    
2485
    T0 &= 0x3F;
2486
    tlb = &env->tlb[T0].tlbe;
2487
    T0 = tlb->RPN;
2488
    if (tlb->prot & PAGE_EXEC)
2489
        T0 |= 0x200;
2490
    if (tlb->prot & PAGE_WRITE)
2491
        T0 |= 0x100;
2492
}
2493

    
2494
void do_4xx_tlbsx (void)
2495
{
2496
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]);
2497
}
2498

    
2499
void do_4xx_tlbsx_ (void)
2500
{
2501
    int tmp = xer_so;
2502

    
2503
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]);
2504
    if (T0 != -1)
2505
        tmp |= 0x02;
2506
    env->crf[0] = tmp;
2507
}
2508

    
2509
void do_4xx_tlbwe_hi (void)
2510
{
2511
    ppcemb_tlb_t *tlb;
2512
    target_ulong page, end;
2513

    
2514
#if defined (DEBUG_SOFTWARE_TLB)
2515
    if (loglevel != 0) {
2516
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2517
    }
2518
#endif
2519
    T0 &= 0x3F;
2520
    tlb = &env->tlb[T0].tlbe;
2521
    /* Invalidate previous TLB (if it's valid) */
2522
    if (tlb->prot & PAGE_VALID) {
2523
        end = tlb->EPN + tlb->size;
2524
#if defined (DEBUG_SOFTWARE_TLB)
2525
        if (loglevel != 0) {
2526
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2527
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2528
        }
2529
#endif
2530
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2531
            tlb_flush_page(env, page);
2532
    }
2533
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2534
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2535
     * If this ever occurs, one should use the ppcemb target instead
2536
     * of the ppc or ppc64 one
2537
     */
2538
    if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2539
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2540
                  "are not supported (%d)\n",
2541
                  tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2542
    }
2543
    tlb->EPN = T1 & ~(tlb->size - 1);
2544
    if (T1 & 0x40)
2545
        tlb->prot |= PAGE_VALID;
2546
    else
2547
        tlb->prot &= ~PAGE_VALID;
2548
    if (T1 & 0x20) {
2549
        /* XXX: TO BE FIXED */
2550
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2551
    }
2552
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2553
    tlb->attr = T1 & 0xFF;
2554
#if defined (DEBUG_SOFTWARE_TLB)
2555
    if (loglevel != 0) {
2556
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2557
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2558
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2559
                tlb->prot & PAGE_READ ? 'r' : '-',
2560
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2561
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2562
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2563
    }
2564
#endif
2565
    /* Invalidate new TLB (if valid) */
2566
    if (tlb->prot & PAGE_VALID) {
2567
        end = tlb->EPN + tlb->size;
2568
#if defined (DEBUG_SOFTWARE_TLB)
2569
        if (loglevel != 0) {
2570
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2571
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2572
        }
2573
#endif
2574
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2575
            tlb_flush_page(env, page);
2576
    }
2577
}
2578

    
2579
void do_4xx_tlbwe_lo (void)
2580
{
2581
    ppcemb_tlb_t *tlb;
2582

    
2583
#if defined (DEBUG_SOFTWARE_TLB)
2584
    if (loglevel != 0) {
2585
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2586
    }
2587
#endif
2588
    T0 &= 0x3F;
2589
    tlb = &env->tlb[T0].tlbe;
2590
    tlb->RPN = T1 & 0xFFFFFC00;
2591
    tlb->prot = PAGE_READ;
2592
    if (T1 & 0x200)
2593
        tlb->prot |= PAGE_EXEC;
2594
    if (T1 & 0x100)
2595
        tlb->prot |= PAGE_WRITE;
2596
#if defined (DEBUG_SOFTWARE_TLB)
2597
    if (loglevel != 0) {
2598
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2599
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2600
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2601
                tlb->prot & PAGE_READ ? 'r' : '-',
2602
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2603
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2604
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2605
    }
2606
#endif
2607
}
2608

    
2609
/* PowerPC 440 TLB management */
2610
void do_440_tlbwe (int word)
2611
{
2612
    ppcemb_tlb_t *tlb;
2613
    target_ulong EPN, RPN, size;
2614
    int do_flush_tlbs;
2615

    
2616
#if defined (DEBUG_SOFTWARE_TLB)
2617
    if (loglevel != 0) {
2618
        fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
2619
                __func__, word, T0, T1);
2620
    }
2621
#endif
2622
    do_flush_tlbs = 0;
2623
    T0 &= 0x3F;
2624
    tlb = &env->tlb[T0].tlbe;
2625
    switch (word) {
2626
    default:
2627
        /* Just here to please gcc */
2628
    case 0:
2629
        EPN = T1 & 0xFFFFFC00;
2630
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
2631
            do_flush_tlbs = 1;
2632
        tlb->EPN = EPN;
2633
        size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
2634
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
2635
            do_flush_tlbs = 1;
2636
        tlb->size = size;
2637
        tlb->attr &= ~0x1;
2638
        tlb->attr |= (T1 >> 8) & 1;
2639
        if (T1 & 0x200) {
2640
            tlb->prot |= PAGE_VALID;
2641
        } else {
2642
            if (tlb->prot & PAGE_VALID) {
2643
                tlb->prot &= ~PAGE_VALID;
2644
                do_flush_tlbs = 1;
2645
            }
2646
        }
2647
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
2648
        if (do_flush_tlbs)
2649
            tlb_flush(env, 1);
2650
        break;
2651
    case 1:
2652
        RPN = T1 & 0xFFFFFC0F;
2653
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
2654
            tlb_flush(env, 1);
2655
        tlb->RPN = RPN;
2656
        break;
2657
    case 2:
2658
        tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
2659
        tlb->prot = tlb->prot & PAGE_VALID;
2660
        if (T1 & 0x1)
2661
            tlb->prot |= PAGE_READ << 4;
2662
        if (T1 & 0x2)
2663
            tlb->prot |= PAGE_WRITE << 4;
2664
        if (T1 & 0x4)
2665
            tlb->prot |= PAGE_EXEC << 4;
2666
        if (T1 & 0x8)
2667
            tlb->prot |= PAGE_READ;
2668
        if (T1 & 0x10)
2669
            tlb->prot |= PAGE_WRITE;
2670
        if (T1 & 0x20)
2671
            tlb->prot |= PAGE_EXEC;
2672
        break;
2673
    }
2674
}
2675

    
2676
void do_440_tlbsx (void)
2677
{
2678
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_440_MMUCR] & 0xFF);
2679
}
2680

    
2681
void do_440_tlbsx_ (void)
2682
{
2683
    int tmp = xer_so;
2684

    
2685
    T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_440_MMUCR] & 0xFF);
2686
    if (T0 != -1)
2687
        tmp |= 0x02;
2688
    env->crf[0] = tmp;
2689
}
2690

    
2691
void do_440_tlbre (int word)
2692
{
2693
    ppcemb_tlb_t *tlb;
2694
    int size;
2695

    
2696
    T0 &= 0x3F;
2697
    tlb = &env->tlb[T0].tlbe;
2698
    switch (word) {
2699
    default:
2700
        /* Just here to please gcc */
2701
    case 0:
2702
        T0 = tlb->EPN;
2703
        size = booke_page_size_to_tlb(tlb->size);
2704
        if (size < 0 || size > 0xF)
2705
            size = 1;
2706
        T0 |= size << 4;
2707
        if (tlb->attr & 0x1)
2708
            T0 |= 0x100;
2709
        if (tlb->prot & PAGE_VALID)
2710
            T0 |= 0x200;
2711
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
2712
        env->spr[SPR_440_MMUCR] |= tlb->PID;
2713
        break;
2714
    case 1:
2715
        T0 = tlb->RPN;
2716
        break;
2717
    case 2:
2718
        T0 = tlb->attr & ~0x1;
2719
        if (tlb->prot & (PAGE_READ << 4))
2720
            T0 |= 0x1;
2721
        if (tlb->prot & (PAGE_WRITE << 4))
2722
            T0 |= 0x2;
2723
        if (tlb->prot & (PAGE_EXEC << 4))
2724
            T0 |= 0x4;
2725
        if (tlb->prot & PAGE_READ)
2726
            T0 |= 0x8;
2727
        if (tlb->prot & PAGE_WRITE)
2728
            T0 |= 0x10;
2729
        if (tlb->prot & PAGE_EXEC)
2730
            T0 |= 0x20;
2731
        break;
2732
    }
2733
}
2734
#endif /* !CONFIG_USER_ONLY */