Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ a7812ae4

History | View | Annotate | Download (68.9 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21
#include "host-utils.h"
22
#include "helper.h"
23

    
24
#include "helper_regs.h"
25
#include "op_helper.h"
26

    
27
#define MEMSUFFIX _raw
28
#include "op_helper.h"
29
#include "op_helper_mem.h"
30
#if !defined(CONFIG_USER_ONLY)
31
#define MEMSUFFIX _user
32
#include "op_helper.h"
33
#include "op_helper_mem.h"
34
#define MEMSUFFIX _kernel
35
#include "op_helper.h"
36
#include "op_helper_mem.h"
37
#define MEMSUFFIX _hypv
38
#include "op_helper.h"
39
#include "op_helper_mem.h"
40
#endif
41

    
42
//#define DEBUG_OP
43
//#define DEBUG_EXCEPTIONS
44
//#define DEBUG_SOFTWARE_TLB
45

    
46
/*****************************************************************************/
47
/* Exceptions processing helpers */
48

    
49
void do_raise_exception_err (uint32_t exception, int error_code)
50
{
51
#if 0
52
    printf("Raise exception %3x code : %d\n", exception, error_code);
53
#endif
54
    env->exception_index = exception;
55
    env->error_code = error_code;
56
    cpu_loop_exit();
57
}
58

    
59
void do_raise_exception (uint32_t exception)
60
{
61
    do_raise_exception_err(exception, 0);
62
}
63

    
64
/*****************************************************************************/
65
/* Registers load and stores */
66
target_ulong helper_load_cr (void)
67
{
68
    return (env->crf[0] << 28) |
69
           (env->crf[1] << 24) |
70
           (env->crf[2] << 20) |
71
           (env->crf[3] << 16) |
72
           (env->crf[4] << 12) |
73
           (env->crf[5] << 8) |
74
           (env->crf[6] << 4) |
75
           (env->crf[7] << 0);
76
}
77

    
78
void helper_store_cr (target_ulong val, uint32_t mask)
79
{
80
    int i, sh;
81

    
82
    for (i = 0, sh = 7; i < 8; i++, sh--) {
83
        if (mask & (1 << sh))
84
            env->crf[i] = (val >> (sh * 4)) & 0xFUL;
85
    }
86
}
87

    
88
#if defined(TARGET_PPC64)
89
void do_store_pri (int prio)
90
{
91
    env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
92
    env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
93
}
94
#endif
95

    
96
target_ulong ppc_load_dump_spr (int sprn)
97
{
98
    if (loglevel != 0) {
99
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
100
                sprn, sprn, env->spr[sprn]);
101
    }
102

    
103
    return env->spr[sprn];
104
}
105

    
106
void ppc_store_dump_spr (int sprn, target_ulong val)
107
{
108
    if (loglevel != 0) {
109
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
110
                sprn, sprn, env->spr[sprn], val);
111
    }
112
    env->spr[sprn] = val;
113
}
114

    
115
/*****************************************************************************/
116
/* Fixed point operations helpers */
117
#if defined(TARGET_PPC64)
118

    
119
/* multiply high word */
120
uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
121
{
122
    uint64_t tl, th;
123

    
124
    muls64(&tl, &th, arg1, arg2);
125
    return th;
126
}
127

    
128
/* multiply high word unsigned */
129
uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
130
{
131
    uint64_t tl, th;
132

    
133
    mulu64(&tl, &th, arg1, arg2);
134
    return th;
135
}
136

    
137
uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
138
{
139
    int64_t th;
140
    uint64_t tl;
141

    
142
    muls64(&tl, (uint64_t *)&th, arg1, arg2);
143
    /* If th != 0 && th != -1, then we had an overflow */
144
    if (likely((uint64_t)(th + 1) <= 1)) {
145
        env->xer &= ~(1 << XER_OV);
146
    } else {
147
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
148
    }
149
    return (int64_t)tl;
150
}
151
#endif
152

    
153
target_ulong helper_cntlzw (target_ulong t)
154
{
155
    return clz32(t);
156
}
157

    
158
#if defined(TARGET_PPC64)
159
target_ulong helper_cntlzd (target_ulong t)
160
{
161
    return clz64(t);
162
}
163
#endif
164

    
165
/* shift right arithmetic helper */
166
target_ulong helper_sraw (target_ulong value, target_ulong shift)
167
{
168
    int32_t ret;
169

    
170
    if (likely(!(shift & 0x20))) {
171
        if (likely((uint32_t)shift != 0)) {
172
            shift &= 0x1f;
173
            ret = (int32_t)value >> shift;
174
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
175
                env->xer &= ~(1 << XER_CA);
176
            } else {
177
                env->xer |= (1 << XER_CA);
178
            }
179
        } else {
180
            ret = (int32_t)value;
181
            env->xer &= ~(1 << XER_CA);
182
        }
183
    } else {
184
        ret = (int32_t)value >> 31;
185
        if (ret) {
186
            env->xer |= (1 << XER_CA);
187
        } else {
188
            env->xer &= ~(1 << XER_CA);
189
        }
190
    }
191
    return (target_long)ret;
192
}
193

    
194
#if defined(TARGET_PPC64)
195
target_ulong helper_srad (target_ulong value, target_ulong shift)
196
{
197
    int64_t ret;
198

    
199
    if (likely(!(shift & 0x40))) {
200
        if (likely((uint64_t)shift != 0)) {
201
            shift &= 0x3f;
202
            ret = (int64_t)value >> shift;
203
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
204
                env->xer &= ~(1 << XER_CA);
205
            } else {
206
                env->xer |= (1 << XER_CA);
207
            }
208
        } else {
209
            ret = (int64_t)value;
210
            env->xer &= ~(1 << XER_CA);
211
        }
212
    } else {
213
        ret = (int64_t)value >> 63;
214
        if (ret) {
215
            env->xer |= (1 << XER_CA);
216
        } else {
217
            env->xer &= ~(1 << XER_CA);
218
        }
219
    }
220
    return ret;
221
}
222
#endif
223

    
224
target_ulong helper_popcntb (target_ulong val)
225
{
226
    val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
227
    val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
228
    val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
229
    return val;
230
}
231

    
232
#if defined(TARGET_PPC64)
233
target_ulong helper_popcntb_64 (target_ulong val)
234
{
235
    val = (val & 0x5555555555555555ULL) + ((val >>  1) & 0x5555555555555555ULL);
236
    val = (val & 0x3333333333333333ULL) + ((val >>  2) & 0x3333333333333333ULL);
237
    val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & 0x0f0f0f0f0f0f0f0fULL);
238
    return val;
239
}
240
#endif
241

    
242
/*****************************************************************************/
243
/* Floating point operations helpers */
244
static always_inline int fpisneg (float64 d)
245
{
246
    CPU_DoubleU u;
247

    
248
    u.d = d;
249

    
250
    return u.ll >> 63 != 0;
251
}
252

    
253
static always_inline int isden (float64 d)
254
{
255
    CPU_DoubleU u;
256

    
257
    u.d = d;
258

    
259
    return ((u.ll >> 52) & 0x7FF) == 0;
260
}
261

    
262
static always_inline int iszero (float64 d)
263
{
264
    CPU_DoubleU u;
265

    
266
    u.d = d;
267

    
268
    return (u.ll & ~0x8000000000000000ULL) == 0;
269
}
270

    
271
static always_inline int isinfinity (float64 d)
272
{
273
    CPU_DoubleU u;
274

    
275
    u.d = d;
276

    
277
    return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
278
        (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
279
}
280

    
281
#ifdef CONFIG_SOFTFLOAT
282
static always_inline int isfinite (float64 d)
283
{
284
    CPU_DoubleU u;
285

    
286
    u.d = d;
287

    
288
    return (((u.ll >> 52) & 0x7FF) != 0x7FF);
289
}
290

    
291
static always_inline int isnormal (float64 d)
292
{
293
    CPU_DoubleU u;
294

    
295
    u.d = d;
296

    
297
    uint32_t exp = (u.ll >> 52) & 0x7FF;
298
    return ((0 < exp) && (exp < 0x7FF));
299
}
300
#endif
301

    
302
void do_compute_fprf (int set_fprf)
303
{
304
    int isneg;
305

    
306
    isneg = fpisneg(FT0);
307
    if (unlikely(float64_is_nan(FT0))) {
308
        if (float64_is_signaling_nan(FT0)) {
309
            /* Signaling NaN: flags are undefined */
310
            T0 = 0x00;
311
        } else {
312
            /* Quiet NaN */
313
            T0 = 0x11;
314
        }
315
    } else if (unlikely(isinfinity(FT0))) {
316
        /* +/- infinity */
317
        if (isneg)
318
            T0 = 0x09;
319
        else
320
            T0 = 0x05;
321
    } else {
322
        if (iszero(FT0)) {
323
            /* +/- zero */
324
            if (isneg)
325
                T0 = 0x12;
326
            else
327
                T0 = 0x02;
328
        } else {
329
            if (isden(FT0)) {
330
                /* Denormalized numbers */
331
                T0 = 0x10;
332
            } else {
333
                /* Normalized numbers */
334
                T0 = 0x00;
335
            }
336
            if (isneg) {
337
                T0 |= 0x08;
338
            } else {
339
                T0 |= 0x04;
340
            }
341
        }
342
    }
343
    if (set_fprf) {
344
        /* We update FPSCR_FPRF */
345
        env->fpscr &= ~(0x1F << FPSCR_FPRF);
346
        env->fpscr |= T0 << FPSCR_FPRF;
347
    }
348
    /* We just need fpcc to update Rc1 */
349
    T0 &= 0xF;
350
}
351

    
352
/* Floating-point invalid operations exception */
353
static always_inline void fload_invalid_op_excp (int op)
354
{
355
    int ve;
356

    
357
    ve = fpscr_ve;
358
    if (op & POWERPC_EXCP_FP_VXSNAN) {
359
        /* Operation on signaling NaN */
360
        env->fpscr |= 1 << FPSCR_VXSNAN;
361
    }
362
    if (op & POWERPC_EXCP_FP_VXSOFT) {
363
        /* Software-defined condition */
364
        env->fpscr |= 1 << FPSCR_VXSOFT;
365
    }
366
    switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
367
    case POWERPC_EXCP_FP_VXISI:
368
        /* Magnitude subtraction of infinities */
369
        env->fpscr |= 1 << FPSCR_VXISI;
370
        goto update_arith;
371
    case POWERPC_EXCP_FP_VXIDI:
372
        /* Division of infinity by infinity */
373
        env->fpscr |= 1 << FPSCR_VXIDI;
374
        goto update_arith;
375
    case POWERPC_EXCP_FP_VXZDZ:
376
        /* Division of zero by zero */
377
        env->fpscr |= 1 << FPSCR_VXZDZ;
378
        goto update_arith;
379
    case POWERPC_EXCP_FP_VXIMZ:
380
        /* Multiplication of zero by infinity */
381
        env->fpscr |= 1 << FPSCR_VXIMZ;
382
        goto update_arith;
383
    case POWERPC_EXCP_FP_VXVC:
384
        /* Ordered comparison of NaN */
385
        env->fpscr |= 1 << FPSCR_VXVC;
386
        env->fpscr &= ~(0xF << FPSCR_FPCC);
387
        env->fpscr |= 0x11 << FPSCR_FPCC;
388
        /* We must update the target FPR before raising the exception */
389
        if (ve != 0) {
390
            env->exception_index = POWERPC_EXCP_PROGRAM;
391
            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
392
            /* Update the floating-point enabled exception summary */
393
            env->fpscr |= 1 << FPSCR_FEX;
394
            /* Exception is differed */
395
            ve = 0;
396
        }
397
        break;
398
    case POWERPC_EXCP_FP_VXSQRT:
399
        /* Square root of a negative number */
400
        env->fpscr |= 1 << FPSCR_VXSQRT;
401
    update_arith:
402
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
403
        if (ve == 0) {
404
            /* Set the result to quiet NaN */
405
            FT0 = UINT64_MAX;
406
            env->fpscr &= ~(0xF << FPSCR_FPCC);
407
            env->fpscr |= 0x11 << FPSCR_FPCC;
408
        }
409
        break;
410
    case POWERPC_EXCP_FP_VXCVI:
411
        /* Invalid conversion */
412
        env->fpscr |= 1 << FPSCR_VXCVI;
413
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
414
        if (ve == 0) {
415
            /* Set the result to quiet NaN */
416
            FT0 = UINT64_MAX;
417
            env->fpscr &= ~(0xF << FPSCR_FPCC);
418
            env->fpscr |= 0x11 << FPSCR_FPCC;
419
        }
420
        break;
421
    }
422
    /* Update the floating-point invalid operation summary */
423
    env->fpscr |= 1 << FPSCR_VX;
424
    /* Update the floating-point exception summary */
425
    env->fpscr |= 1 << FPSCR_FX;
426
    if (ve != 0) {
427
        /* Update the floating-point enabled exception summary */
428
        env->fpscr |= 1 << FPSCR_FEX;
429
        if (msr_fe0 != 0 || msr_fe1 != 0)
430
            do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
431
    }
432
}
433

    
434
static always_inline void float_zero_divide_excp (void)
435
{
436
    CPU_DoubleU u0, u1;
437

    
438
    env->fpscr |= 1 << FPSCR_ZX;
439
    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
440
    /* Update the floating-point exception summary */
441
    env->fpscr |= 1 << FPSCR_FX;
442
    if (fpscr_ze != 0) {
443
        /* Update the floating-point enabled exception summary */
444
        env->fpscr |= 1 << FPSCR_FEX;
445
        if (msr_fe0 != 0 || msr_fe1 != 0) {
446
            do_raise_exception_err(POWERPC_EXCP_PROGRAM,
447
                                   POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
448
        }
449
    } else {
450
        /* Set the result to infinity */
451
        u0.d = FT0;
452
        u1.d = FT1;
453
        u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
454
        u0.ll |= 0x7FFULL << 52;
455
        FT0 = u0.d;
456
    }
457
}
458

    
459
static always_inline void float_overflow_excp (void)
460
{
461
    env->fpscr |= 1 << FPSCR_OX;
462
    /* Update the floating-point exception summary */
463
    env->fpscr |= 1 << FPSCR_FX;
464
    if (fpscr_oe != 0) {
465
        /* XXX: should adjust the result */
466
        /* Update the floating-point enabled exception summary */
467
        env->fpscr |= 1 << FPSCR_FEX;
468
        /* We must update the target FPR before raising the exception */
469
        env->exception_index = POWERPC_EXCP_PROGRAM;
470
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
471
    } else {
472
        env->fpscr |= 1 << FPSCR_XX;
473
        env->fpscr |= 1 << FPSCR_FI;
474
    }
475
}
476

    
477
static always_inline void float_underflow_excp (void)
478
{
479
    env->fpscr |= 1 << FPSCR_UX;
480
    /* Update the floating-point exception summary */
481
    env->fpscr |= 1 << FPSCR_FX;
482
    if (fpscr_ue != 0) {
483
        /* XXX: should adjust the result */
484
        /* Update the floating-point enabled exception summary */
485
        env->fpscr |= 1 << FPSCR_FEX;
486
        /* We must update the target FPR before raising the exception */
487
        env->exception_index = POWERPC_EXCP_PROGRAM;
488
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
489
    }
490
}
491

    
492
static always_inline void float_inexact_excp (void)
493
{
494
    env->fpscr |= 1 << FPSCR_XX;
495
    /* Update the floating-point exception summary */
496
    env->fpscr |= 1 << FPSCR_FX;
497
    if (fpscr_xe != 0) {
498
        /* Update the floating-point enabled exception summary */
499
        env->fpscr |= 1 << FPSCR_FEX;
500
        /* We must update the target FPR before raising the exception */
501
        env->exception_index = POWERPC_EXCP_PROGRAM;
502
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
503
    }
504
}
505

    
506
static always_inline void fpscr_set_rounding_mode (void)
507
{
508
    int rnd_type;
509

    
510
    /* Set rounding mode */
511
    switch (fpscr_rn) {
512
    case 0:
513
        /* Best approximation (round to nearest) */
514
        rnd_type = float_round_nearest_even;
515
        break;
516
    case 1:
517
        /* Smaller magnitude (round toward zero) */
518
        rnd_type = float_round_to_zero;
519
        break;
520
    case 2:
521
        /* Round toward +infinite */
522
        rnd_type = float_round_up;
523
        break;
524
    default:
525
    case 3:
526
        /* Round toward -infinite */
527
        rnd_type = float_round_down;
528
        break;
529
    }
530
    set_float_rounding_mode(rnd_type, &env->fp_status);
531
}
532

    
533
void do_fpscr_setbit (int bit)
534
{
535
    int prev;
536

    
537
    prev = (env->fpscr >> bit) & 1;
538
    env->fpscr |= 1 << bit;
539
    if (prev == 0) {
540
        switch (bit) {
541
        case FPSCR_VX:
542
            env->fpscr |= 1 << FPSCR_FX;
543
            if (fpscr_ve)
544
                goto raise_ve;
545
        case FPSCR_OX:
546
            env->fpscr |= 1 << FPSCR_FX;
547
            if (fpscr_oe)
548
                goto raise_oe;
549
            break;
550
        case FPSCR_UX:
551
            env->fpscr |= 1 << FPSCR_FX;
552
            if (fpscr_ue)
553
                goto raise_ue;
554
            break;
555
        case FPSCR_ZX:
556
            env->fpscr |= 1 << FPSCR_FX;
557
            if (fpscr_ze)
558
                goto raise_ze;
559
            break;
560
        case FPSCR_XX:
561
            env->fpscr |= 1 << FPSCR_FX;
562
            if (fpscr_xe)
563
                goto raise_xe;
564
            break;
565
        case FPSCR_VXSNAN:
566
        case FPSCR_VXISI:
567
        case FPSCR_VXIDI:
568
        case FPSCR_VXZDZ:
569
        case FPSCR_VXIMZ:
570
        case FPSCR_VXVC:
571
        case FPSCR_VXSOFT:
572
        case FPSCR_VXSQRT:
573
        case FPSCR_VXCVI:
574
            env->fpscr |= 1 << FPSCR_VX;
575
            env->fpscr |= 1 << FPSCR_FX;
576
            if (fpscr_ve != 0)
577
                goto raise_ve;
578
            break;
579
        case FPSCR_VE:
580
            if (fpscr_vx != 0) {
581
            raise_ve:
582
                env->error_code = POWERPC_EXCP_FP;
583
                if (fpscr_vxsnan)
584
                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
585
                if (fpscr_vxisi)
586
                    env->error_code |= POWERPC_EXCP_FP_VXISI;
587
                if (fpscr_vxidi)
588
                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
589
                if (fpscr_vxzdz)
590
                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
591
                if (fpscr_vximz)
592
                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
593
                if (fpscr_vxvc)
594
                    env->error_code |= POWERPC_EXCP_FP_VXVC;
595
                if (fpscr_vxsoft)
596
                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
597
                if (fpscr_vxsqrt)
598
                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
599
                if (fpscr_vxcvi)
600
                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
601
                goto raise_excp;
602
            }
603
            break;
604
        case FPSCR_OE:
605
            if (fpscr_ox != 0) {
606
            raise_oe:
607
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
608
                goto raise_excp;
609
            }
610
            break;
611
        case FPSCR_UE:
612
            if (fpscr_ux != 0) {
613
            raise_ue:
614
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
615
                goto raise_excp;
616
            }
617
            break;
618
        case FPSCR_ZE:
619
            if (fpscr_zx != 0) {
620
            raise_ze:
621
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
622
                goto raise_excp;
623
            }
624
            break;
625
        case FPSCR_XE:
626
            if (fpscr_xx != 0) {
627
            raise_xe:
628
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
629
                goto raise_excp;
630
            }
631
            break;
632
        case FPSCR_RN1:
633
        case FPSCR_RN:
634
            fpscr_set_rounding_mode();
635
            break;
636
        default:
637
            break;
638
        raise_excp:
639
            /* Update the floating-point enabled exception summary */
640
            env->fpscr |= 1 << FPSCR_FEX;
641
                /* We have to update Rc1 before raising the exception */
642
            env->exception_index = POWERPC_EXCP_PROGRAM;
643
            break;
644
        }
645
    }
646
}
647

    
648
#if defined(WORDS_BIGENDIAN)
649
#define WORD0 0
650
#define WORD1 1
651
#else
652
#define WORD0 1
653
#define WORD1 0
654
#endif
655
void do_store_fpscr (uint32_t mask)
656
{
657
    /*
658
     * We use only the 32 LSB of the incoming fpr
659
     */
660
    CPU_DoubleU u;
661
    uint32_t prev, new;
662
    int i;
663

    
664
    u.d = FT0;
665
    prev = env->fpscr;
666
    new = u.l.lower;
667
    new &= ~0x90000000;
668
    new |= prev & 0x90000000;
669
    for (i = 0; i < 7; i++) {
670
        if (mask & (1 << i)) {
671
            env->fpscr &= ~(0xF << (4 * i));
672
            env->fpscr |= new & (0xF << (4 * i));
673
        }
674
    }
675
    /* Update VX and FEX */
676
    if (fpscr_ix != 0)
677
        env->fpscr |= 1 << FPSCR_VX;
678
    else
679
        env->fpscr &= ~(1 << FPSCR_VX);
680
    if ((fpscr_ex & fpscr_eex) != 0) {
681
        env->fpscr |= 1 << FPSCR_FEX;
682
        env->exception_index = POWERPC_EXCP_PROGRAM;
683
        /* XXX: we should compute it properly */
684
        env->error_code = POWERPC_EXCP_FP;
685
    }
686
    else
687
        env->fpscr &= ~(1 << FPSCR_FEX);
688
    fpscr_set_rounding_mode();
689
}
690
#undef WORD0
691
#undef WORD1
692

    
693
#ifdef CONFIG_SOFTFLOAT
694
void do_float_check_status (void)
695
{
696
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
697
        (env->error_code & POWERPC_EXCP_FP)) {
698
        /* Differred floating-point exception after target FPR update */
699
        if (msr_fe0 != 0 || msr_fe1 != 0)
700
            do_raise_exception_err(env->exception_index, env->error_code);
701
    } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
702
        float_overflow_excp();
703
    } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
704
        float_underflow_excp();
705
    } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
706
        float_inexact_excp();
707
    }
708
}
709
#endif
710

    
711
#if USE_PRECISE_EMULATION
712
void do_fadd (void)
713
{
714
    if (unlikely(float64_is_signaling_nan(FT0) ||
715
                 float64_is_signaling_nan(FT1))) {
716
        /* sNaN addition */
717
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
718
    } else if (likely(isfinite(FT0) || isfinite(FT1) ||
719
                      fpisneg(FT0) == fpisneg(FT1))) {
720
        FT0 = float64_add(FT0, FT1, &env->fp_status);
721
    } else {
722
        /* Magnitude subtraction of infinities */
723
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
724
    }
725
}
726

    
727
void do_fsub (void)
728
{
729
    if (unlikely(float64_is_signaling_nan(FT0) ||
730
                 float64_is_signaling_nan(FT1))) {
731
        /* sNaN subtraction */
732
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
733
    } else if (likely(isfinite(FT0) || isfinite(FT1) ||
734
                      fpisneg(FT0) != fpisneg(FT1))) {
735
        FT0 = float64_sub(FT0, FT1, &env->fp_status);
736
    } else {
737
        /* Magnitude subtraction of infinities */
738
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
739
    }
740
}
741

    
742
void do_fmul (void)
743
{
744
    if (unlikely(float64_is_signaling_nan(FT0) ||
745
                 float64_is_signaling_nan(FT1))) {
746
        /* sNaN multiplication */
747
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
748
    } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
749
                        (iszero(FT0) && isinfinity(FT1)))) {
750
        /* Multiplication of zero by infinity */
751
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
752
    } else {
753
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
754
    }
755
}
756

    
757
void do_fdiv (void)
758
{
759
    if (unlikely(float64_is_signaling_nan(FT0) ||
760
                 float64_is_signaling_nan(FT1))) {
761
        /* sNaN division */
762
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
763
    } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
764
        /* Division of infinity by infinity */
765
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
766
    } else if (unlikely(iszero(FT1))) {
767
        if (iszero(FT0)) {
768
            /* Division of zero by zero */
769
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
770
        } else {
771
            /* Division by zero */
772
            float_zero_divide_excp();
773
        }
774
    } else {
775
        FT0 = float64_div(FT0, FT1, &env->fp_status);
776
    }
777
}
778
#endif /* USE_PRECISE_EMULATION */
779

    
780
void do_fctiw (void)
781
{
782
    CPU_DoubleU p;
783

    
784
    if (unlikely(float64_is_signaling_nan(FT0))) {
785
        /* sNaN conversion */
786
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
787
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
788
        /* qNan / infinity conversion */
789
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
790
    } else {
791
        p.ll = float64_to_int32(FT0, &env->fp_status);
792
#if USE_PRECISE_EMULATION
793
        /* XXX: higher bits are not supposed to be significant.
794
         *     to make tests easier, return the same as a real PowerPC 750
795
         */
796
        p.ll |= 0xFFF80000ULL << 32;
797
#endif
798
        FT0 = p.d;
799
    }
800
}
801

    
802
void do_fctiwz (void)
803
{
804
    CPU_DoubleU p;
805

    
806
    if (unlikely(float64_is_signaling_nan(FT0))) {
807
        /* sNaN conversion */
808
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
809
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
810
        /* qNan / infinity conversion */
811
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
812
    } else {
813
        p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
814
#if USE_PRECISE_EMULATION
815
        /* XXX: higher bits are not supposed to be significant.
816
         *     to make tests easier, return the same as a real PowerPC 750
817
         */
818
        p.ll |= 0xFFF80000ULL << 32;
819
#endif
820
        FT0 = p.d;
821
    }
822
}
823

    
824
#if defined(TARGET_PPC64)
825
void do_fcfid (void)
826
{
827
    CPU_DoubleU p;
828

    
829
    p.d = FT0;
830
    FT0 = int64_to_float64(p.ll, &env->fp_status);
831
}
832

    
833
void do_fctid (void)
834
{
835
    CPU_DoubleU p;
836

    
837
    if (unlikely(float64_is_signaling_nan(FT0))) {
838
        /* sNaN conversion */
839
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
840
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
841
        /* qNan / infinity conversion */
842
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
843
    } else {
844
        p.ll = float64_to_int64(FT0, &env->fp_status);
845
        FT0 = p.d;
846
    }
847
}
848

    
849
void do_fctidz (void)
850
{
851
    CPU_DoubleU p;
852

    
853
    if (unlikely(float64_is_signaling_nan(FT0))) {
854
        /* sNaN conversion */
855
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
856
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
857
        /* qNan / infinity conversion */
858
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
859
    } else {
860
        p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
861
        FT0 = p.d;
862
    }
863
}
864

    
865
#endif
866

    
867
static always_inline void do_fri (int rounding_mode)
868
{
869
    if (unlikely(float64_is_signaling_nan(FT0))) {
870
        /* sNaN round */
871
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
872
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
873
        /* qNan / infinity round */
874
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
875
    } else {
876
        set_float_rounding_mode(rounding_mode, &env->fp_status);
877
        FT0 = float64_round_to_int(FT0, &env->fp_status);
878
        /* Restore rounding mode from FPSCR */
879
        fpscr_set_rounding_mode();
880
    }
881
}
882

    
883
void do_frin (void)
884
{
885
    do_fri(float_round_nearest_even);
886
}
887

    
888
void do_friz (void)
889
{
890
    do_fri(float_round_to_zero);
891
}
892

    
893
void do_frip (void)
894
{
895
    do_fri(float_round_up);
896
}
897

    
898
void do_frim (void)
899
{
900
    do_fri(float_round_down);
901
}
902

    
903
#if USE_PRECISE_EMULATION
904
void do_fmadd (void)
905
{
906
    if (unlikely(float64_is_signaling_nan(FT0) ||
907
                 float64_is_signaling_nan(FT1) ||
908
                 float64_is_signaling_nan(FT2))) {
909
        /* sNaN operation */
910
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
911
    } else {
912
#ifdef FLOAT128
913
        /* This is the way the PowerPC specification defines it */
914
        float128 ft0_128, ft1_128;
915

    
916
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
917
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
918
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
919
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
920
        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
921
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
922
#else
923
        /* This is OK on x86 hosts */
924
        FT0 = (FT0 * FT1) + FT2;
925
#endif
926
    }
927
}
928

    
929
void do_fmsub (void)
930
{
931
    if (unlikely(float64_is_signaling_nan(FT0) ||
932
                 float64_is_signaling_nan(FT1) ||
933
                 float64_is_signaling_nan(FT2))) {
934
        /* sNaN operation */
935
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
936
    } else {
937
#ifdef FLOAT128
938
        /* This is the way the PowerPC specification defines it */
939
        float128 ft0_128, ft1_128;
940

    
941
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
942
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
943
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
944
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
945
        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
946
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
947
#else
948
        /* This is OK on x86 hosts */
949
        FT0 = (FT0 * FT1) - FT2;
950
#endif
951
    }
952
}
953
#endif /* USE_PRECISE_EMULATION */
954

    
955
void do_fnmadd (void)
956
{
957
    if (unlikely(float64_is_signaling_nan(FT0) ||
958
                 float64_is_signaling_nan(FT1) ||
959
                 float64_is_signaling_nan(FT2))) {
960
        /* sNaN operation */
961
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
962
    } else {
963
#if USE_PRECISE_EMULATION
964
#ifdef FLOAT128
965
        /* This is the way the PowerPC specification defines it */
966
        float128 ft0_128, ft1_128;
967

    
968
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
969
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
970
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
971
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
972
        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
973
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
974
#else
975
        /* This is OK on x86 hosts */
976
        FT0 = (FT0 * FT1) + FT2;
977
#endif
978
#else
979
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
980
        FT0 = float64_add(FT0, FT2, &env->fp_status);
981
#endif
982
        if (likely(!isnan(FT0)))
983
            FT0 = float64_chs(FT0);
984
    }
985
}
986

    
987
void do_fnmsub (void)
988
{
989
    if (unlikely(float64_is_signaling_nan(FT0) ||
990
                 float64_is_signaling_nan(FT1) ||
991
                 float64_is_signaling_nan(FT2))) {
992
        /* sNaN operation */
993
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
994
    } else {
995
#if USE_PRECISE_EMULATION
996
#ifdef FLOAT128
997
        /* This is the way the PowerPC specification defines it */
998
        float128 ft0_128, ft1_128;
999

    
1000
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
1001
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
1002
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1003
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
1004
        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1005
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
1006
#else
1007
        /* This is OK on x86 hosts */
1008
        FT0 = (FT0 * FT1) - FT2;
1009
#endif
1010
#else
1011
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
1012
        FT0 = float64_sub(FT0, FT2, &env->fp_status);
1013
#endif
1014
        if (likely(!isnan(FT0)))
1015
            FT0 = float64_chs(FT0);
1016
    }
1017
}
1018

    
1019
#if USE_PRECISE_EMULATION
1020
void do_frsp (void)
1021
{
1022
    if (unlikely(float64_is_signaling_nan(FT0))) {
1023
        /* sNaN square root */
1024
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1025
    } else {
1026
        FT0 = float64_to_float32(FT0, &env->fp_status);
1027
    }
1028
}
1029
#endif /* USE_PRECISE_EMULATION */
1030

    
1031
void do_fsqrt (void)
1032
{
1033
    if (unlikely(float64_is_signaling_nan(FT0))) {
1034
        /* sNaN square root */
1035
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1036
    } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1037
        /* Square root of a negative nonzero number */
1038
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1039
    } else {
1040
        FT0 = float64_sqrt(FT0, &env->fp_status);
1041
    }
1042
}
1043

    
1044
void do_fre (void)
1045
{
1046
    CPU_DoubleU p;
1047

    
1048
    if (unlikely(float64_is_signaling_nan(FT0))) {
1049
        /* sNaN reciprocal */
1050
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1051
    } else if (unlikely(iszero(FT0))) {
1052
        /* Zero reciprocal */
1053
        float_zero_divide_excp();
1054
    } else if (likely(isnormal(FT0))) {
1055
        FT0 = float64_div(1.0, FT0, &env->fp_status);
1056
    } else {
1057
        p.d = FT0;
1058
        if (p.ll == 0x8000000000000000ULL) {
1059
            p.ll = 0xFFF0000000000000ULL;
1060
        } else if (p.ll == 0x0000000000000000ULL) {
1061
            p.ll = 0x7FF0000000000000ULL;
1062
        } else if (isnan(FT0)) {
1063
            p.ll = 0x7FF8000000000000ULL;
1064
        } else if (fpisneg(FT0)) {
1065
            p.ll = 0x8000000000000000ULL;
1066
        } else {
1067
            p.ll = 0x0000000000000000ULL;
1068
        }
1069
        FT0 = p.d;
1070
    }
1071
}
1072

    
1073
void do_fres (void)
1074
{
1075
    CPU_DoubleU p;
1076

    
1077
    if (unlikely(float64_is_signaling_nan(FT0))) {
1078
        /* sNaN reciprocal */
1079
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1080
    } else if (unlikely(iszero(FT0))) {
1081
        /* Zero reciprocal */
1082
        float_zero_divide_excp();
1083
    } else if (likely(isnormal(FT0))) {
1084
#if USE_PRECISE_EMULATION
1085
        FT0 = float64_div(1.0, FT0, &env->fp_status);
1086
        FT0 = float64_to_float32(FT0, &env->fp_status);
1087
#else
1088
        FT0 = float32_div(1.0, FT0, &env->fp_status);
1089
#endif
1090
    } else {
1091
        p.d = FT0;
1092
        if (p.ll == 0x8000000000000000ULL) {
1093
            p.ll = 0xFFF0000000000000ULL;
1094
        } else if (p.ll == 0x0000000000000000ULL) {
1095
            p.ll = 0x7FF0000000000000ULL;
1096
        } else if (isnan(FT0)) {
1097
            p.ll = 0x7FF8000000000000ULL;
1098
        } else if (fpisneg(FT0)) {
1099
            p.ll = 0x8000000000000000ULL;
1100
        } else {
1101
            p.ll = 0x0000000000000000ULL;
1102
        }
1103
        FT0 = p.d;
1104
    }
1105
}
1106

    
1107
void do_frsqrte (void)
1108
{
1109
    CPU_DoubleU p;
1110

    
1111
    if (unlikely(float64_is_signaling_nan(FT0))) {
1112
        /* sNaN reciprocal square root */
1113
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1114
    } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1115
        /* Reciprocal square root of a negative nonzero number */
1116
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1117
    } else if (likely(isnormal(FT0))) {
1118
        FT0 = float64_sqrt(FT0, &env->fp_status);
1119
        FT0 = float32_div(1.0, FT0, &env->fp_status);
1120
    } else {
1121
        p.d = FT0;
1122
        if (p.ll == 0x8000000000000000ULL) {
1123
            p.ll = 0xFFF0000000000000ULL;
1124
        } else if (p.ll == 0x0000000000000000ULL) {
1125
            p.ll = 0x7FF0000000000000ULL;
1126
        } else if (isnan(FT0)) {
1127
            p.ll |= 0x000FFFFFFFFFFFFFULL;
1128
        } else if (fpisneg(FT0)) {
1129
            p.ll = 0x7FF8000000000000ULL;
1130
        } else {
1131
            p.ll = 0x0000000000000000ULL;
1132
        }
1133
        FT0 = p.d;
1134
    }
1135
}
1136

    
1137
void do_fsel (void)
1138
{
1139
    if (!fpisneg(FT0) || iszero(FT0))
1140
        FT0 = FT1;
1141
    else
1142
        FT0 = FT2;
1143
}
1144

    
1145
uint32_t helper_fcmpu (void)
1146
{
1147
    uint32_t ret = 0;
1148

    
1149
    if (unlikely(float64_is_signaling_nan(FT0) ||
1150
                 float64_is_signaling_nan(FT1))) {
1151
        /* sNaN comparison */
1152
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1153
    } else {
1154
        if (float64_lt(FT0, FT1, &env->fp_status)) {
1155
            ret = 0x08UL;
1156
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1157
            ret = 0x04UL;
1158
        } else {
1159
            ret = 0x02UL;
1160
        }
1161
    }
1162
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1163
    env->fpscr |= ret << FPSCR_FPRF;
1164
    return ret;
1165
}
1166

    
1167
uint32_t helper_fcmpo (void)
1168
{
1169
    uint32_t ret = 0;
1170

    
1171
    if (unlikely(float64_is_nan(FT0) ||
1172
                 float64_is_nan(FT1))) {
1173
        if (float64_is_signaling_nan(FT0) ||
1174
            float64_is_signaling_nan(FT1)) {
1175
            /* sNaN comparison */
1176
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1177
                                  POWERPC_EXCP_FP_VXVC);
1178
        } else {
1179
            /* qNaN comparison */
1180
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1181
        }
1182
    } else {
1183
        if (float64_lt(FT0, FT1, &env->fp_status)) {
1184
            ret = 0x08UL;
1185
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1186
            ret = 0x04UL;
1187
        } else {
1188
            ret = 0x02UL;
1189
        }
1190
    }
1191
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1192
    env->fpscr |= ret << FPSCR_FPRF;
1193
    return ret;
1194
}
1195

    
1196
#if !defined (CONFIG_USER_ONLY)
1197
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1198

    
1199
void do_store_msr (void)
1200
{
1201
    T0 = hreg_store_msr(env, T0, 0);
1202
    if (T0 != 0) {
1203
        env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1204
        do_raise_exception(T0);
1205
    }
1206
}
1207

    
1208
static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1209
                                    target_ulong msrm, int keep_msrh)
1210
{
1211
#if defined(TARGET_PPC64)
1212
    if (msr & (1ULL << MSR_SF)) {
1213
        nip = (uint64_t)nip;
1214
        msr &= (uint64_t)msrm;
1215
    } else {
1216
        nip = (uint32_t)nip;
1217
        msr = (uint32_t)(msr & msrm);
1218
        if (keep_msrh)
1219
            msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1220
    }
1221
#else
1222
    nip = (uint32_t)nip;
1223
    msr &= (uint32_t)msrm;
1224
#endif
1225
    /* XXX: beware: this is false if VLE is supported */
1226
    env->nip = nip & ~((target_ulong)0x00000003);
1227
    hreg_store_msr(env, msr, 1);
1228
#if defined (DEBUG_OP)
1229
    cpu_dump_rfi(env->nip, env->msr);
1230
#endif
1231
    /* No need to raise an exception here,
1232
     * as rfi is always the last insn of a TB
1233
     */
1234
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1235
}
1236

    
1237
void do_rfi (void)
1238
{
1239
    __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1240
             ~((target_ulong)0xFFFF0000), 1);
1241
}
1242

    
1243
#if defined(TARGET_PPC64)
1244
void do_rfid (void)
1245
{
1246
    __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1247
             ~((target_ulong)0xFFFF0000), 0);
1248
}
1249

    
1250
void do_hrfid (void)
1251
{
1252
    __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1253
             ~((target_ulong)0xFFFF0000), 0);
1254
}
1255
#endif
1256
#endif
1257

    
1258
void do_tw (int flags)
1259
{
1260
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1261
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1262
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1263
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
1264
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
1265
        do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1266
    }
1267
}
1268

    
1269
#if defined(TARGET_PPC64)
1270
void do_td (int flags)
1271
{
1272
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1273
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1274
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1275
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1276
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
1277
        do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1278
}
1279
#endif
1280

    
1281
/*****************************************************************************/
1282
/* PowerPC 601 specific instructions (POWER bridge) */
1283
void do_POWER_abso (void)
1284
{
1285
    if ((int32_t)T0 == INT32_MIN) {
1286
        T0 = INT32_MAX;
1287
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1288
    } else if ((int32_t)T0 < 0) {
1289
        T0 = -T0;
1290
        env->xer &= ~(1 << XER_OV);
1291
    } else {
1292
        env->xer &= ~(1 << XER_OV);
1293
    }
1294
}
1295

    
1296
void do_POWER_clcs (void)
1297
{
1298
    switch (T0) {
1299
    case 0x0CUL:
1300
        /* Instruction cache line size */
1301
        T0 = env->icache_line_size;
1302
        break;
1303
    case 0x0DUL:
1304
        /* Data cache line size */
1305
        T0 = env->dcache_line_size;
1306
        break;
1307
    case 0x0EUL:
1308
        /* Minimum cache line size */
1309
        T0 = env->icache_line_size < env->dcache_line_size ?
1310
            env->icache_line_size : env->dcache_line_size;
1311
        break;
1312
    case 0x0FUL:
1313
        /* Maximum cache line size */
1314
        T0 = env->icache_line_size > env->dcache_line_size ?
1315
            env->icache_line_size : env->dcache_line_size;
1316
        break;
1317
    default:
1318
        /* Undefined */
1319
        break;
1320
    }
1321
}
1322

    
1323
void do_POWER_div (void)
1324
{
1325
    uint64_t tmp;
1326

    
1327
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1328
        (int32_t)T1 == 0) {
1329
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1330
        env->spr[SPR_MQ] = 0;
1331
    } else {
1332
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1333
        env->spr[SPR_MQ] = tmp % T1;
1334
        T0 = tmp / (int32_t)T1;
1335
    }
1336
}
1337

    
1338
void do_POWER_divo (void)
1339
{
1340
    int64_t tmp;
1341

    
1342
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1343
        (int32_t)T1 == 0) {
1344
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1345
        env->spr[SPR_MQ] = 0;
1346
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1347
    } else {
1348
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1349
        env->spr[SPR_MQ] = tmp % T1;
1350
        tmp /= (int32_t)T1;
1351
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1352
            env->xer |= (1 << XER_OV) | (1 << XER_SO);
1353
        } else {
1354
            env->xer &= ~(1 << XER_OV);
1355
        }
1356
        T0 = tmp;
1357
    }
1358
}
1359

    
1360
void do_POWER_divs (void)
1361
{
1362
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1363
        (int32_t)T1 == 0) {
1364
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1365
        env->spr[SPR_MQ] = 0;
1366
    } else {
1367
        env->spr[SPR_MQ] = T0 % T1;
1368
        T0 = (int32_t)T0 / (int32_t)T1;
1369
    }
1370
}
1371

    
1372
void do_POWER_divso (void)
1373
{
1374
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1375
        (int32_t)T1 == 0) {
1376
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1377
        env->spr[SPR_MQ] = 0;
1378
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1379
    } else {
1380
        T0 = (int32_t)T0 / (int32_t)T1;
1381
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1382
        env->xer &= ~(1 << XER_OV);
1383
    }
1384
}
1385

    
1386
void do_POWER_dozo (void)
1387
{
1388
    if ((int32_t)T1 > (int32_t)T0) {
1389
        T2 = T0;
1390
        T0 = T1 - T0;
1391
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1392
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1393
            env->xer |= (1 << XER_OV) | (1 << XER_SO);
1394
        } else {
1395
            env->xer &= ~(1 << XER_OV);
1396
        }
1397
    } else {
1398
        T0 = 0;
1399
        env->xer &= ~(1 << XER_OV);
1400
    }
1401
}
1402

    
1403
void do_POWER_maskg (void)
1404
{
1405
    uint32_t ret;
1406

    
1407
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1408
        ret = UINT32_MAX;
1409
    } else {
1410
        ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1411
            ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
1412
        if ((uint32_t)T0 > (uint32_t)T1)
1413
            ret = ~ret;
1414
    }
1415
    T0 = ret;
1416
}
1417

    
1418
void do_POWER_mulo (void)
1419
{
1420
    uint64_t tmp;
1421

    
1422
    tmp = (uint64_t)T0 * (uint64_t)T1;
1423
    env->spr[SPR_MQ] = tmp >> 32;
1424
    T0 = tmp;
1425
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1426
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1427
    } else {
1428
        env->xer &= ~(1 << XER_OV);
1429
    }
1430
}
1431

    
1432
#if !defined (CONFIG_USER_ONLY)
1433
void do_POWER_rac (void)
1434
{
1435
    mmu_ctx_t ctx;
1436
    int nb_BATs;
1437

    
1438
    /* We don't have to generate many instances of this instruction,
1439
     * as rac is supervisor only.
1440
     */
1441
    /* XXX: FIX THIS: Pretend we have no BAT */
1442
    nb_BATs = env->nb_BATs;
1443
    env->nb_BATs = 0;
1444
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
1445
        T0 = ctx.raddr;
1446
    env->nb_BATs = nb_BATs;
1447
}
1448

    
1449
void do_POWER_rfsvc (void)
1450
{
1451
    __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1452
}
1453

    
1454
void do_store_hid0_601 (void)
1455
{
1456
    uint32_t hid0;
1457

    
1458
    hid0 = env->spr[SPR_HID0];
1459
    if ((T0 ^ hid0) & 0x00000008) {
1460
        /* Change current endianness */
1461
        env->hflags &= ~(1 << MSR_LE);
1462
        env->hflags_nmsr &= ~(1 << MSR_LE);
1463
        env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1464
        env->hflags |= env->hflags_nmsr;
1465
        if (loglevel != 0) {
1466
            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1467
                    __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1468
        }
1469
    }
1470
    env->spr[SPR_HID0] = T0;
1471
}
1472
#endif
1473

    
1474
/*****************************************************************************/
1475
/* 602 specific instructions */
1476
/* mfrom is the most crazy instruction ever seen, imho ! */
1477
/* Real implementation uses a ROM table. Do the same */
1478
#define USE_MFROM_ROM_TABLE
1479
void do_op_602_mfrom (void)
1480
{
1481
    if (likely(T0 < 602)) {
1482
#if defined(USE_MFROM_ROM_TABLE)
1483
#include "mfrom_table.c"
1484
        T0 = mfrom_ROM_table[T0];
1485
#else
1486
        double d;
1487
        /* Extremly decomposed:
1488
         *                    -T0 / 256
1489
         * T0 = 256 * log10(10          + 1.0) + 0.5
1490
         */
1491
        d = T0;
1492
        d = float64_div(d, 256, &env->fp_status);
1493
        d = float64_chs(d);
1494
        d = exp10(d); // XXX: use float emulation function
1495
        d = float64_add(d, 1.0, &env->fp_status);
1496
        d = log10(d); // XXX: use float emulation function
1497
        d = float64_mul(d, 256, &env->fp_status);
1498
        d = float64_add(d, 0.5, &env->fp_status);
1499
        T0 = float64_round_to_int(d, &env->fp_status);
1500
#endif
1501
    } else {
1502
        T0 = 0;
1503
    }
1504
}
1505

    
1506
/*****************************************************************************/
1507
/* Embedded PowerPC specific helpers */
1508

    
1509
/* XXX: to be improved to check access rights when in user-mode */
1510
void do_load_dcr (void)
1511
{
1512
    target_ulong val;
1513

    
1514
    if (unlikely(env->dcr_env == NULL)) {
1515
        if (loglevel != 0) {
1516
            fprintf(logfile, "No DCR environment\n");
1517
        }
1518
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1519
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1520
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1521
        if (loglevel != 0) {
1522
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1523
        }
1524
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1525
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1526
    } else {
1527
        T0 = val;
1528
    }
1529
}
1530

    
1531
void do_store_dcr (void)
1532
{
1533
    if (unlikely(env->dcr_env == NULL)) {
1534
        if (loglevel != 0) {
1535
            fprintf(logfile, "No DCR environment\n");
1536
        }
1537
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1538
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1539
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1540
        if (loglevel != 0) {
1541
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1542
        }
1543
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1544
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1545
    }
1546
}
1547

    
1548
#if !defined(CONFIG_USER_ONLY)
1549
void do_40x_rfci (void)
1550
{
1551
    __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1552
             ~((target_ulong)0xFFFF0000), 0);
1553
}
1554

    
1555
void do_rfci (void)
1556
{
1557
    __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1558
             ~((target_ulong)0x3FFF0000), 0);
1559
}
1560

    
1561
void do_rfdi (void)
1562
{
1563
    __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1564
             ~((target_ulong)0x3FFF0000), 0);
1565
}
1566

    
1567
void do_rfmci (void)
1568
{
1569
    __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1570
             ~((target_ulong)0x3FFF0000), 0);
1571
}
1572

    
1573
void do_load_403_pb (int num)
1574
{
1575
    T0 = env->pb[num];
1576
}
1577

    
1578
void do_store_403_pb (int num)
1579
{
1580
    if (likely(env->pb[num] != T0)) {
1581
        env->pb[num] = T0;
1582
        /* Should be optimized */
1583
        tlb_flush(env, 1);
1584
    }
1585
}
1586
#endif
1587

    
1588
/* 440 specific */
1589
void do_440_dlmzb (void)
1590
{
1591
    target_ulong mask;
1592
    int i;
1593

    
1594
    i = 1;
1595
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1596
        if ((T0 & mask) == 0)
1597
            goto done;
1598
        i++;
1599
    }
1600
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1601
        if ((T1 & mask) == 0)
1602
            break;
1603
        i++;
1604
    }
1605
 done:
1606
    T0 = i;
1607
}
1608

    
1609
/* SPE extension helpers */
1610
/* Use a table to make this quicker */
1611
static uint8_t hbrev[16] = {
1612
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1613
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1614
};
1615

    
1616
static always_inline uint8_t byte_reverse (uint8_t val)
1617
{
1618
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1619
}
1620

    
1621
static always_inline uint32_t word_reverse (uint32_t val)
1622
{
1623
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1624
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1625
}
1626

    
1627
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
1628
target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
1629
{
1630
    uint32_t a, b, d, mask;
1631

    
1632
    mask = UINT32_MAX >> (32 - MASKBITS);
1633
    a = arg1 & mask;
1634
    b = arg2 & mask;
1635
    d = word_reverse(1 + word_reverse(a | ~b));
1636
    return (arg1 & ~mask) | (d & b);
1637
}
1638

    
1639
uint32_t helper_cntlsw32 (uint32_t val)
1640
{
1641
    if (val & 0x80000000)
1642
        return clz32(~val);
1643
    else
1644
        return clz32(val);
1645
}
1646

    
1647
uint32_t helper_cntlzw32 (uint32_t val)
1648
{
1649
    return clz32(val);
1650
}
1651

    
1652
#define DO_SPE_OP1(name)                                                      \
1653
void do_ev##name (void)                                                       \
1654
{                                                                             \
1655
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1656
        (uint64_t)_do_e##name(T0_64);                                         \
1657
}
1658

    
1659
#define DO_SPE_OP2(name)                                                      \
1660
void do_ev##name (void)                                                       \
1661
{                                                                             \
1662
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1663
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1664
}
1665

    
1666
/* Fixed-point vector comparisons */
1667
#define DO_SPE_CMP(name)                                                      \
1668
void do_ev##name (void)                                                       \
1669
{                                                                             \
1670
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
1671
                                               T1_64 >> 32) << 32,            \
1672
                         _do_e##name(T0_64, T1_64));                          \
1673
}
1674

    
1675
static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
1676
{
1677
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1678
}
1679

    
1680
/* Single precision floating-point conversions from/to integer */
1681
static always_inline uint32_t _do_efscfsi (int32_t val)
1682
{
1683
    CPU_FloatU u;
1684

    
1685
    u.f = int32_to_float32(val, &env->spe_status);
1686

    
1687
    return u.l;
1688
}
1689

    
1690
static always_inline uint32_t _do_efscfui (uint32_t val)
1691
{
1692
    CPU_FloatU u;
1693

    
1694
    u.f = uint32_to_float32(val, &env->spe_status);
1695

    
1696
    return u.l;
1697
}
1698

    
1699
static always_inline int32_t _do_efsctsi (uint32_t val)
1700
{
1701
    CPU_FloatU u;
1702

    
1703
    u.l = val;
1704
    /* NaN are not treated the same way IEEE 754 does */
1705
    if (unlikely(isnan(u.f)))
1706
        return 0;
1707

    
1708
    return float32_to_int32(u.f, &env->spe_status);
1709
}
1710

    
1711
static always_inline uint32_t _do_efsctui (uint32_t val)
1712
{
1713
    CPU_FloatU u;
1714

    
1715
    u.l = val;
1716
    /* NaN are not treated the same way IEEE 754 does */
1717
    if (unlikely(isnan(u.f)))
1718
        return 0;
1719

    
1720
    return float32_to_uint32(u.f, &env->spe_status);
1721
}
1722

    
1723
static always_inline int32_t _do_efsctsiz (uint32_t val)
1724
{
1725
    CPU_FloatU u;
1726

    
1727
    u.l = val;
1728
    /* NaN are not treated the same way IEEE 754 does */
1729
    if (unlikely(isnan(u.f)))
1730
        return 0;
1731

    
1732
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1733
}
1734

    
1735
static always_inline uint32_t _do_efsctuiz (uint32_t val)
1736
{
1737
    CPU_FloatU u;
1738

    
1739
    u.l = val;
1740
    /* NaN are not treated the same way IEEE 754 does */
1741
    if (unlikely(isnan(u.f)))
1742
        return 0;
1743

    
1744
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1745
}
1746

    
1747
void do_efscfsi (void)
1748
{
1749
    T0_64 = _do_efscfsi(T0_64);
1750
}
1751

    
1752
void do_efscfui (void)
1753
{
1754
    T0_64 = _do_efscfui(T0_64);
1755
}
1756

    
1757
void do_efsctsi (void)
1758
{
1759
    T0_64 = _do_efsctsi(T0_64);
1760
}
1761

    
1762
void do_efsctui (void)
1763
{
1764
    T0_64 = _do_efsctui(T0_64);
1765
}
1766

    
1767
void do_efsctsiz (void)
1768
{
1769
    T0_64 = _do_efsctsiz(T0_64);
1770
}
1771

    
1772
void do_efsctuiz (void)
1773
{
1774
    T0_64 = _do_efsctuiz(T0_64);
1775
}
1776

    
1777
/* Single precision floating-point conversion to/from fractional */
1778
static always_inline uint32_t _do_efscfsf (uint32_t val)
1779
{
1780
    CPU_FloatU u;
1781
    float32 tmp;
1782

    
1783
    u.f = int32_to_float32(val, &env->spe_status);
1784
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1785
    u.f = float32_div(u.f, tmp, &env->spe_status);
1786

    
1787
    return u.l;
1788
}
1789

    
1790
static always_inline uint32_t _do_efscfuf (uint32_t val)
1791
{
1792
    CPU_FloatU u;
1793
    float32 tmp;
1794

    
1795
    u.f = uint32_to_float32(val, &env->spe_status);
1796
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1797
    u.f = float32_div(u.f, tmp, &env->spe_status);
1798

    
1799
    return u.l;
1800
}
1801

    
1802
static always_inline int32_t _do_efsctsf (uint32_t val)
1803
{
1804
    CPU_FloatU u;
1805
    float32 tmp;
1806

    
1807
    u.l = val;
1808
    /* NaN are not treated the same way IEEE 754 does */
1809
    if (unlikely(isnan(u.f)))
1810
        return 0;
1811
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1812
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1813

    
1814
    return float32_to_int32(u.f, &env->spe_status);
1815
}
1816

    
1817
static always_inline uint32_t _do_efsctuf (uint32_t val)
1818
{
1819
    CPU_FloatU u;
1820
    float32 tmp;
1821

    
1822
    u.l = val;
1823
    /* NaN are not treated the same way IEEE 754 does */
1824
    if (unlikely(isnan(u.f)))
1825
        return 0;
1826
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1827
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1828

    
1829
    return float32_to_uint32(u.f, &env->spe_status);
1830
}
1831

    
1832
static always_inline int32_t _do_efsctsfz (uint32_t val)
1833
{
1834
    CPU_FloatU u;
1835
    float32 tmp;
1836

    
1837
    u.l = val;
1838
    /* NaN are not treated the same way IEEE 754 does */
1839
    if (unlikely(isnan(u.f)))
1840
        return 0;
1841
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1842
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1843

    
1844
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1845
}
1846

    
1847
static always_inline uint32_t _do_efsctufz (uint32_t val)
1848
{
1849
    CPU_FloatU u;
1850
    float32 tmp;
1851

    
1852
    u.l = val;
1853
    /* NaN are not treated the same way IEEE 754 does */
1854
    if (unlikely(isnan(u.f)))
1855
        return 0;
1856
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1857
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1858

    
1859
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1860
}
1861

    
1862
void do_efscfsf (void)
1863
{
1864
    T0_64 = _do_efscfsf(T0_64);
1865
}
1866

    
1867
void do_efscfuf (void)
1868
{
1869
    T0_64 = _do_efscfuf(T0_64);
1870
}
1871

    
1872
void do_efsctsf (void)
1873
{
1874
    T0_64 = _do_efsctsf(T0_64);
1875
}
1876

    
1877
void do_efsctuf (void)
1878
{
1879
    T0_64 = _do_efsctuf(T0_64);
1880
}
1881

    
1882
void do_efsctsfz (void)
1883
{
1884
    T0_64 = _do_efsctsfz(T0_64);
1885
}
1886

    
1887
void do_efsctufz (void)
1888
{
1889
    T0_64 = _do_efsctufz(T0_64);
1890
}
1891

    
1892
/* Double precision floating point helpers */
1893
static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1894
{
1895
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1896
    return _do_efdtstlt(op1, op2);
1897
}
1898

    
1899
static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1900
{
1901
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1902
    return _do_efdtstgt(op1, op2);
1903
}
1904

    
1905
static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1906
{
1907
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1908
    return _do_efdtsteq(op1, op2);
1909
}
1910

    
1911
void do_efdcmplt (void)
1912
{
1913
    T0 = _do_efdcmplt(T0_64, T1_64);
1914
}
1915

    
1916
void do_efdcmpgt (void)
1917
{
1918
    T0 = _do_efdcmpgt(T0_64, T1_64);
1919
}
1920

    
1921
void do_efdcmpeq (void)
1922
{
1923
    T0 = _do_efdcmpeq(T0_64, T1_64);
1924
}
1925

    
1926
/* Double precision floating-point conversion to/from integer */
1927
static always_inline uint64_t _do_efdcfsi (int64_t val)
1928
{
1929
    CPU_DoubleU u;
1930

    
1931
    u.d = int64_to_float64(val, &env->spe_status);
1932

    
1933
    return u.ll;
1934
}
1935

    
1936
static always_inline uint64_t _do_efdcfui (uint64_t val)
1937
{
1938
    CPU_DoubleU u;
1939

    
1940
    u.d = uint64_to_float64(val, &env->spe_status);
1941

    
1942
    return u.ll;
1943
}
1944

    
1945
static always_inline int64_t _do_efdctsi (uint64_t val)
1946
{
1947
    CPU_DoubleU u;
1948

    
1949
    u.ll = val;
1950
    /* NaN are not treated the same way IEEE 754 does */
1951
    if (unlikely(isnan(u.d)))
1952
        return 0;
1953

    
1954
    return float64_to_int64(u.d, &env->spe_status);
1955
}
1956

    
1957
static always_inline uint64_t _do_efdctui (uint64_t val)
1958
{
1959
    CPU_DoubleU u;
1960

    
1961
    u.ll = val;
1962
    /* NaN are not treated the same way IEEE 754 does */
1963
    if (unlikely(isnan(u.d)))
1964
        return 0;
1965

    
1966
    return float64_to_uint64(u.d, &env->spe_status);
1967
}
1968

    
1969
static always_inline int64_t _do_efdctsiz (uint64_t val)
1970
{
1971
    CPU_DoubleU u;
1972

    
1973
    u.ll = val;
1974
    /* NaN are not treated the same way IEEE 754 does */
1975
    if (unlikely(isnan(u.d)))
1976
        return 0;
1977

    
1978
    return float64_to_int64_round_to_zero(u.d, &env->spe_status);
1979
}
1980

    
1981
static always_inline uint64_t _do_efdctuiz (uint64_t val)
1982
{
1983
    CPU_DoubleU u;
1984

    
1985
    u.ll = val;
1986
    /* NaN are not treated the same way IEEE 754 does */
1987
    if (unlikely(isnan(u.d)))
1988
        return 0;
1989

    
1990
    return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
1991
}
1992

    
1993
void do_efdcfsi (void)
1994
{
1995
    T0_64 = _do_efdcfsi(T0_64);
1996
}
1997

    
1998
void do_efdcfui (void)
1999
{
2000
    T0_64 = _do_efdcfui(T0_64);
2001
}
2002

    
2003
void do_efdctsi (void)
2004
{
2005
    T0_64 = _do_efdctsi(T0_64);
2006
}
2007

    
2008
void do_efdctui (void)
2009
{
2010
    T0_64 = _do_efdctui(T0_64);
2011
}
2012

    
2013
void do_efdctsiz (void)
2014
{
2015
    T0_64 = _do_efdctsiz(T0_64);
2016
}
2017

    
2018
void do_efdctuiz (void)
2019
{
2020
    T0_64 = _do_efdctuiz(T0_64);
2021
}
2022

    
2023
/* Double precision floating-point conversion to/from fractional */
2024
static always_inline uint64_t _do_efdcfsf (int64_t val)
2025
{
2026
    CPU_DoubleU u;
2027
    float64 tmp;
2028

    
2029
    u.d = int32_to_float64(val, &env->spe_status);
2030
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2031
    u.d = float64_div(u.d, tmp, &env->spe_status);
2032

    
2033
    return u.ll;
2034
}
2035

    
2036
static always_inline uint64_t _do_efdcfuf (uint64_t val)
2037
{
2038
    CPU_DoubleU u;
2039
    float64 tmp;
2040

    
2041
    u.d = uint32_to_float64(val, &env->spe_status);
2042
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2043
    u.d = float64_div(u.d, tmp, &env->spe_status);
2044

    
2045
    return u.ll;
2046
}
2047

    
2048
static always_inline int64_t _do_efdctsf (uint64_t val)
2049
{
2050
    CPU_DoubleU u;
2051
    float64 tmp;
2052

    
2053
    u.ll = val;
2054
    /* NaN are not treated the same way IEEE 754 does */
2055
    if (unlikely(isnan(u.d)))
2056
        return 0;
2057
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2058
    u.d = float64_mul(u.d, tmp, &env->spe_status);
2059

    
2060
    return float64_to_int32(u.d, &env->spe_status);
2061
}
2062

    
2063
static always_inline uint64_t _do_efdctuf (uint64_t val)
2064
{
2065
    CPU_DoubleU u;
2066
    float64 tmp;
2067

    
2068
    u.ll = val;
2069
    /* NaN are not treated the same way IEEE 754 does */
2070
    if (unlikely(isnan(u.d)))
2071
        return 0;
2072
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2073
    u.d = float64_mul(u.d, tmp, &env->spe_status);
2074

    
2075
    return float64_to_uint32(u.d, &env->spe_status);
2076
}
2077

    
2078
static always_inline int64_t _do_efdctsfz (uint64_t val)
2079
{
2080
    CPU_DoubleU u;
2081
    float64 tmp;
2082

    
2083
    u.ll = val;
2084
    /* NaN are not treated the same way IEEE 754 does */
2085
    if (unlikely(isnan(u.d)))
2086
        return 0;
2087
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2088
    u.d = float64_mul(u.d, tmp, &env->spe_status);
2089

    
2090
    return float64_to_int32_round_to_zero(u.d, &env->spe_status);
2091
}
2092

    
2093
static always_inline uint64_t _do_efdctufz (uint64_t val)
2094
{
2095
    CPU_DoubleU u;
2096
    float64 tmp;
2097

    
2098
    u.ll = val;
2099
    /* NaN are not treated the same way IEEE 754 does */
2100
    if (unlikely(isnan(u.d)))
2101
        return 0;
2102
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2103
    u.d = float64_mul(u.d, tmp, &env->spe_status);
2104

    
2105
    return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
2106
}
2107

    
2108
void do_efdcfsf (void)
2109
{
2110
    T0_64 = _do_efdcfsf(T0_64);
2111
}
2112

    
2113
void do_efdcfuf (void)
2114
{
2115
    T0_64 = _do_efdcfuf(T0_64);
2116
}
2117

    
2118
void do_efdctsf (void)
2119
{
2120
    T0_64 = _do_efdctsf(T0_64);
2121
}
2122

    
2123
void do_efdctuf (void)
2124
{
2125
    T0_64 = _do_efdctuf(T0_64);
2126
}
2127

    
2128
void do_efdctsfz (void)
2129
{
2130
    T0_64 = _do_efdctsfz(T0_64);
2131
}
2132

    
2133
void do_efdctufz (void)
2134
{
2135
    T0_64 = _do_efdctufz(T0_64);
2136
}
2137

    
2138
/* Floating point conversion between single and double precision */
2139
static always_inline uint32_t _do_efscfd (uint64_t val)
2140
{
2141
    CPU_DoubleU u1;
2142
    CPU_FloatU u2;
2143

    
2144
    u1.ll = val;
2145
    u2.f = float64_to_float32(u1.d, &env->spe_status);
2146

    
2147
    return u2.l;
2148
}
2149

    
2150
static always_inline uint64_t _do_efdcfs (uint32_t val)
2151
{
2152
    CPU_DoubleU u2;
2153
    CPU_FloatU u1;
2154

    
2155
    u1.l = val;
2156
    u2.d = float32_to_float64(u1.f, &env->spe_status);
2157

    
2158
    return u2.ll;
2159
}
2160

    
2161
void do_efscfd (void)
2162
{
2163
    T0_64 = _do_efscfd(T0_64);
2164
}
2165

    
2166
void do_efdcfs (void)
2167
{
2168
    T0_64 = _do_efdcfs(T0_64);
2169
}
2170

    
2171
/* Single precision fixed-point vector arithmetic */
2172
/* evfsabs */
2173
DO_SPE_OP1(fsabs);
2174
/* evfsnabs */
2175
DO_SPE_OP1(fsnabs);
2176
/* evfsneg */
2177
DO_SPE_OP1(fsneg);
2178
/* evfsadd */
2179
DO_SPE_OP2(fsadd);
2180
/* evfssub */
2181
DO_SPE_OP2(fssub);
2182
/* evfsmul */
2183
DO_SPE_OP2(fsmul);
2184
/* evfsdiv */
2185
DO_SPE_OP2(fsdiv);
2186

    
2187
/* Single-precision floating-point comparisons */
2188
static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2189
{
2190
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2191
    return _do_efststlt(op1, op2);
2192
}
2193

    
2194
static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2195
{
2196
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2197
    return _do_efststgt(op1, op2);
2198
}
2199

    
2200
static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2201
{
2202
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2203
    return _do_efststeq(op1, op2);
2204
}
2205

    
2206
void do_efscmplt (void)
2207
{
2208
    T0 = _do_efscmplt(T0_64, T1_64);
2209
}
2210

    
2211
void do_efscmpgt (void)
2212
{
2213
    T0 = _do_efscmpgt(T0_64, T1_64);
2214
}
2215

    
2216
void do_efscmpeq (void)
2217
{
2218
    T0 = _do_efscmpeq(T0_64, T1_64);
2219
}
2220

    
2221
/* Single-precision floating-point vector comparisons */
2222
/* evfscmplt */
2223
DO_SPE_CMP(fscmplt);
2224
/* evfscmpgt */
2225
DO_SPE_CMP(fscmpgt);
2226
/* evfscmpeq */
2227
DO_SPE_CMP(fscmpeq);
2228
/* evfststlt */
2229
DO_SPE_CMP(fststlt);
2230
/* evfststgt */
2231
DO_SPE_CMP(fststgt);
2232
/* evfststeq */
2233
DO_SPE_CMP(fststeq);
2234

    
2235
/* Single-precision floating-point vector conversions */
2236
/* evfscfsi */
2237
DO_SPE_OP1(fscfsi);
2238
/* evfscfui */
2239
DO_SPE_OP1(fscfui);
2240
/* evfscfuf */
2241
DO_SPE_OP1(fscfuf);
2242
/* evfscfsf */
2243
DO_SPE_OP1(fscfsf);
2244
/* evfsctsi */
2245
DO_SPE_OP1(fsctsi);
2246
/* evfsctui */
2247
DO_SPE_OP1(fsctui);
2248
/* evfsctsiz */
2249
DO_SPE_OP1(fsctsiz);
2250
/* evfsctuiz */
2251
DO_SPE_OP1(fsctuiz);
2252
/* evfsctsf */
2253
DO_SPE_OP1(fsctsf);
2254
/* evfsctuf */
2255
DO_SPE_OP1(fsctuf);
2256

    
2257
/*****************************************************************************/
2258
/* Softmmu support */
2259
#if !defined (CONFIG_USER_ONLY)
2260

    
2261
#define MMUSUFFIX _mmu
2262

    
2263
#define SHIFT 0
2264
#include "softmmu_template.h"
2265

    
2266
#define SHIFT 1
2267
#include "softmmu_template.h"
2268

    
2269
#define SHIFT 2
2270
#include "softmmu_template.h"
2271

    
2272
#define SHIFT 3
2273
#include "softmmu_template.h"
2274

    
2275
/* try to fill the TLB and return an exception if error. If retaddr is
2276
   NULL, it means that the function was called in C code (i.e. not
2277
   from generated code or from helper.c) */
2278
/* XXX: fix it to restore all registers */
2279
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2280
{
2281
    TranslationBlock *tb;
2282
    CPUState *saved_env;
2283
    unsigned long pc;
2284
    int ret;
2285

    
2286
    /* XXX: hack to restore env in all cases, even if not called from
2287
       generated code */
2288
    saved_env = env;
2289
    env = cpu_single_env;
2290
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2291
    if (unlikely(ret != 0)) {
2292
        if (likely(retaddr)) {
2293
            /* now we have a real cpu fault */
2294
            pc = (unsigned long)retaddr;
2295
            tb = tb_find_pc(pc);
2296
            if (likely(tb)) {
2297
                /* the PC is inside the translated code. It means that we have
2298
                   a virtual CPU fault */
2299
                cpu_restore_state(tb, env, pc, NULL);
2300
            }
2301
        }
2302
        do_raise_exception_err(env->exception_index, env->error_code);
2303
    }
2304
    env = saved_env;
2305
}
2306

    
2307
/* Software driven TLBs management */
2308
/* PowerPC 602/603 software TLB load instructions helpers */
2309
void do_load_6xx_tlb (int is_code)
2310
{
2311
    target_ulong RPN, CMP, EPN;
2312
    int way;
2313

    
2314
    RPN = env->spr[SPR_RPA];
2315
    if (is_code) {
2316
        CMP = env->spr[SPR_ICMP];
2317
        EPN = env->spr[SPR_IMISS];
2318
    } else {
2319
        CMP = env->spr[SPR_DCMP];
2320
        EPN = env->spr[SPR_DMISS];
2321
    }
2322
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2323
#if defined (DEBUG_SOFTWARE_TLB)
2324
    if (loglevel != 0) {
2325
        fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2326
                " PTE1 " ADDRX " way %d\n",
2327
                __func__, T0, EPN, CMP, RPN, way);
2328
    }
2329
#endif
2330
    /* Store this TLB */
2331
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2332
                     way, is_code, CMP, RPN);
2333
}
2334

    
2335
void do_load_74xx_tlb (int is_code)
2336
{
2337
    target_ulong RPN, CMP, EPN;
2338
    int way;
2339

    
2340
    RPN = env->spr[SPR_PTELO];
2341
    CMP = env->spr[SPR_PTEHI];
2342
    EPN = env->spr[SPR_TLBMISS] & ~0x3;
2343
    way = env->spr[SPR_TLBMISS] & 0x3;
2344
#if defined (DEBUG_SOFTWARE_TLB)
2345
    if (loglevel != 0) {
2346
        fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
2347
                " PTE1 " ADDRX " way %d\n",
2348
                __func__, T0, EPN, CMP, RPN, way);
2349
    }
2350
#endif
2351
    /* Store this TLB */
2352
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2353
                     way, is_code, CMP, RPN);
2354
}
2355

    
2356
static always_inline target_ulong booke_tlb_to_page_size (int size)
2357
{
2358
    return 1024 << (2 * size);
2359
}
2360

    
2361
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2362
{
2363
    int size;
2364

    
2365
    switch (page_size) {
2366
    case 0x00000400UL:
2367
        size = 0x0;
2368
        break;
2369
    case 0x00001000UL:
2370
        size = 0x1;
2371
        break;
2372
    case 0x00004000UL:
2373
        size = 0x2;
2374
        break;
2375
    case 0x00010000UL:
2376
        size = 0x3;
2377
        break;
2378
    case 0x00040000UL:
2379
        size = 0x4;
2380
        break;
2381
    case 0x00100000UL:
2382
        size = 0x5;
2383
        break;
2384
    case 0x00400000UL:
2385
        size = 0x6;
2386
        break;
2387
    case 0x01000000UL:
2388
        size = 0x7;
2389
        break;
2390
    case 0x04000000UL:
2391
        size = 0x8;
2392
        break;
2393
    case 0x10000000UL:
2394
        size = 0x9;
2395
        break;
2396
    case 0x40000000UL:
2397
        size = 0xA;
2398
        break;
2399
#if defined (TARGET_PPC64)
2400
    case 0x000100000000ULL:
2401
        size = 0xB;
2402
        break;
2403
    case 0x000400000000ULL:
2404
        size = 0xC;
2405
        break;
2406
    case 0x001000000000ULL:
2407
        size = 0xD;
2408
        break;
2409
    case 0x004000000000ULL:
2410
        size = 0xE;
2411
        break;
2412
    case 0x010000000000ULL:
2413
        size = 0xF;
2414
        break;
2415
#endif
2416
    default:
2417
        size = -1;
2418
        break;
2419
    }
2420

    
2421
    return size;
2422
}
2423

    
2424
/* Helpers for 4xx TLB management */
2425
void do_4xx_tlbre_lo (void)
2426
{
2427
    ppcemb_tlb_t *tlb;
2428
    int size;
2429

    
2430
    T0 &= 0x3F;
2431
    tlb = &env->tlb[T0].tlbe;
2432
    T0 = tlb->EPN;
2433
    if (tlb->prot & PAGE_VALID)
2434
        T0 |= 0x400;
2435
    size = booke_page_size_to_tlb(tlb->size);
2436
    if (size < 0 || size > 0x7)
2437
        size = 1;
2438
    T0 |= size << 7;
2439
    env->spr[SPR_40x_PID] = tlb->PID;
2440
}
2441

    
2442
void do_4xx_tlbre_hi (void)
2443
{
2444
    ppcemb_tlb_t *tlb;
2445

    
2446
    T0 &= 0x3F;
2447
    tlb = &env->tlb[T0].tlbe;
2448
    T0 = tlb->RPN;
2449
    if (tlb->prot & PAGE_EXEC)
2450
        T0 |= 0x200;
2451
    if (tlb->prot & PAGE_WRITE)
2452
        T0 |= 0x100;
2453
}
2454

    
2455
void do_4xx_tlbwe_hi (void)
2456
{
2457
    ppcemb_tlb_t *tlb;
2458
    target_ulong page, end;
2459

    
2460
#if defined (DEBUG_SOFTWARE_TLB)
2461
    if (loglevel != 0) {
2462
        fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
2463
    }
2464
#endif
2465
    T0 &= 0x3F;
2466
    tlb = &env->tlb[T0].tlbe;
2467
    /* Invalidate previous TLB (if it's valid) */
2468
    if (tlb->prot & PAGE_VALID) {
2469
        end = tlb->EPN + tlb->size;
2470
#if defined (DEBUG_SOFTWARE_TLB)
2471
        if (loglevel != 0) {
2472
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2473
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2474
        }
2475
#endif
2476
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2477
            tlb_flush_page(env, page);
2478
    }
2479
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2480
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2481
     * If this ever occurs, one should use the ppcemb target instead
2482
     * of the ppc or ppc64 one
2483
     */
2484
    if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2485
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2486
                  "are not supported (%d)\n",
2487
                  tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2488
    }
2489
    tlb->EPN = T1 & ~(tlb->size - 1);
2490
    if (T1 & 0x40)
2491
        tlb->prot |= PAGE_VALID;
2492
    else
2493
        tlb->prot &= ~PAGE_VALID;
2494
    if (T1 & 0x20) {
2495
        /* XXX: TO BE FIXED */
2496
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2497
    }
2498
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2499
    tlb->attr = T1 & 0xFF;
2500
#if defined (DEBUG_SOFTWARE_TLB)
2501
    if (loglevel != 0) {
2502
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2503
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2504
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2505
                tlb->prot & PAGE_READ ? 'r' : '-',
2506
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2507
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2508
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2509
    }
2510
#endif
2511
    /* Invalidate new TLB (if valid) */
2512
    if (tlb->prot & PAGE_VALID) {
2513
        end = tlb->EPN + tlb->size;
2514
#if defined (DEBUG_SOFTWARE_TLB)
2515
        if (loglevel != 0) {
2516
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2517
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2518
        }
2519
#endif
2520
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2521
            tlb_flush_page(env, page);
2522
    }
2523
}
2524

    
2525
void do_4xx_tlbwe_lo (void)
2526
{
2527
    ppcemb_tlb_t *tlb;
2528

    
2529
#if defined (DEBUG_SOFTWARE_TLB)
2530
    if (loglevel != 0) {
2531
        fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
2532
    }
2533
#endif
2534
    T0 &= 0x3F;
2535
    tlb = &env->tlb[T0].tlbe;
2536
    tlb->RPN = T1 & 0xFFFFFC00;
2537
    tlb->prot = PAGE_READ;
2538
    if (T1 & 0x200)
2539
        tlb->prot |= PAGE_EXEC;
2540
    if (T1 & 0x100)
2541
        tlb->prot |= PAGE_WRITE;
2542
#if defined (DEBUG_SOFTWARE_TLB)
2543
    if (loglevel != 0) {
2544
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2545
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2546
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2547
                tlb->prot & PAGE_READ ? 'r' : '-',
2548
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2549
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2550
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2551
    }
2552
#endif
2553
}
2554

    
2555
/* PowerPC 440 TLB management */
2556
void do_440_tlbwe (int word)
2557
{
2558
    ppcemb_tlb_t *tlb;
2559
    target_ulong EPN, RPN, size;
2560
    int do_flush_tlbs;
2561

    
2562
#if defined (DEBUG_SOFTWARE_TLB)
2563
    if (loglevel != 0) {
2564
        fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
2565
                __func__, word, T0, T1);
2566
    }
2567
#endif
2568
    do_flush_tlbs = 0;
2569
    T0 &= 0x3F;
2570
    tlb = &env->tlb[T0].tlbe;
2571
    switch (word) {
2572
    default:
2573
        /* Just here to please gcc */
2574
    case 0:
2575
        EPN = T1 & 0xFFFFFC00;
2576
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
2577
            do_flush_tlbs = 1;
2578
        tlb->EPN = EPN;
2579
        size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
2580
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
2581
            do_flush_tlbs = 1;
2582
        tlb->size = size;
2583
        tlb->attr &= ~0x1;
2584
        tlb->attr |= (T1 >> 8) & 1;
2585
        if (T1 & 0x200) {
2586
            tlb->prot |= PAGE_VALID;
2587
        } else {
2588
            if (tlb->prot & PAGE_VALID) {
2589
                tlb->prot &= ~PAGE_VALID;
2590
                do_flush_tlbs = 1;
2591
            }
2592
        }
2593
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
2594
        if (do_flush_tlbs)
2595
            tlb_flush(env, 1);
2596
        break;
2597
    case 1:
2598
        RPN = T1 & 0xFFFFFC0F;
2599
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
2600
            tlb_flush(env, 1);
2601
        tlb->RPN = RPN;
2602
        break;
2603
    case 2:
2604
        tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
2605
        tlb->prot = tlb->prot & PAGE_VALID;
2606
        if (T1 & 0x1)
2607
            tlb->prot |= PAGE_READ << 4;
2608
        if (T1 & 0x2)
2609
            tlb->prot |= PAGE_WRITE << 4;
2610
        if (T1 & 0x4)
2611
            tlb->prot |= PAGE_EXEC << 4;
2612
        if (T1 & 0x8)
2613
            tlb->prot |= PAGE_READ;
2614
        if (T1 & 0x10)
2615
            tlb->prot |= PAGE_WRITE;
2616
        if (T1 & 0x20)
2617
            tlb->prot |= PAGE_EXEC;
2618
        break;
2619
    }
2620
}
2621

    
2622
void do_440_tlbre (int word)
2623
{
2624
    ppcemb_tlb_t *tlb;
2625
    int size;
2626

    
2627
    T0 &= 0x3F;
2628
    tlb = &env->tlb[T0].tlbe;
2629
    switch (word) {
2630
    default:
2631
        /* Just here to please gcc */
2632
    case 0:
2633
        T0 = tlb->EPN;
2634
        size = booke_page_size_to_tlb(tlb->size);
2635
        if (size < 0 || size > 0xF)
2636
            size = 1;
2637
        T0 |= size << 4;
2638
        if (tlb->attr & 0x1)
2639
            T0 |= 0x100;
2640
        if (tlb->prot & PAGE_VALID)
2641
            T0 |= 0x200;
2642
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
2643
        env->spr[SPR_440_MMUCR] |= tlb->PID;
2644
        break;
2645
    case 1:
2646
        T0 = tlb->RPN;
2647
        break;
2648
    case 2:
2649
        T0 = tlb->attr & ~0x1;
2650
        if (tlb->prot & (PAGE_READ << 4))
2651
            T0 |= 0x1;
2652
        if (tlb->prot & (PAGE_WRITE << 4))
2653
            T0 |= 0x2;
2654
        if (tlb->prot & (PAGE_EXEC << 4))
2655
            T0 |= 0x4;
2656
        if (tlb->prot & PAGE_READ)
2657
            T0 |= 0x8;
2658
        if (tlb->prot & PAGE_WRITE)
2659
            T0 |= 0x10;
2660
        if (tlb->prot & PAGE_EXEC)
2661
            T0 |= 0x20;
2662
        break;
2663
    }
2664
}
2665
#endif /* !CONFIG_USER_ONLY */