Statistics
| Branch: | Revision:

root / qemu-doc.texi @ a785e42e

History | View | Annotate | Download (76.3 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Freescale MCF5208EVB (ColdFire V2).
85
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86
@end itemize
87

    
88
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
89

    
90
@node Installation
91
@chapter Installation
92

    
93
If you want to compile QEMU yourself, see @ref{compilation}.
94

    
95
@menu
96
* install_linux::   Linux
97
* install_windows:: Windows
98
* install_mac::     Macintosh
99
@end menu
100

    
101
@node install_linux
102
@section Linux
103

    
104
If a precompiled package is available for your distribution - you just
105
have to install it. Otherwise, see @ref{compilation}.
106

    
107
@node install_windows
108
@section Windows
109

    
110
Download the experimental binary installer at
111
@url{http://www.free.oszoo.org/@/download.html}.
112

    
113
@node install_mac
114
@section Mac OS X
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node QEMU PC System emulator
120
@chapter QEMU PC System emulator
121

    
122
@menu
123
* pcsys_introduction:: Introduction
124
* pcsys_quickstart::   Quick Start
125
* sec_invocation::     Invocation
126
* pcsys_keys::         Keys
127
* pcsys_monitor::      QEMU Monitor
128
* disk_images::        Disk Images
129
* pcsys_network::      Network emulation
130
* direct_linux_boot::  Direct Linux Boot
131
* pcsys_usb::          USB emulation
132
* vnc_security::       VNC security
133
* gdb_usage::          GDB usage
134
* pcsys_os_specific::  Target OS specific information
135
@end menu
136

    
137
@node pcsys_introduction
138
@section Introduction
139

    
140
@c man begin DESCRIPTION
141

    
142
The QEMU PC System emulator simulates the
143
following peripherals:
144

    
145
@itemize @minus
146
@item
147
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
148
@item
149
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
150
extensions (hardware level, including all non standard modes).
151
@item
152
PS/2 mouse and keyboard
153
@item
154
2 PCI IDE interfaces with hard disk and CD-ROM support
155
@item
156
Floppy disk
157
@item
158
PCI/ISA PCI network adapters
159
@item
160
Serial ports
161
@item
162
Creative SoundBlaster 16 sound card
163
@item
164
ENSONIQ AudioPCI ES1370 sound card
165
@item
166
Adlib(OPL2) - Yamaha YM3812 compatible chip
167
@item
168
PCI UHCI USB controller and a virtual USB hub.
169
@end itemize
170

    
171
SMP is supported with up to 255 CPUs.
172

    
173
Note that adlib is only available when QEMU was configured with
174
-enable-adlib
175

    
176
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
177
VGA BIOS.
178

    
179
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
180

    
181
@c man end
182

    
183
@node pcsys_quickstart
184
@section Quick Start
185

    
186
Download and uncompress the linux image (@file{linux.img}) and type:
187

    
188
@example
189
qemu linux.img
190
@end example
191

    
192
Linux should boot and give you a prompt.
193

    
194
@node sec_invocation
195
@section Invocation
196

    
197
@example
198
@c man begin SYNOPSIS
199
usage: qemu [options] [disk_image]
200
@c man end
201
@end example
202

    
203
@c man begin OPTIONS
204
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
205

    
206
General options:
207
@table @option
208
@item -M machine
209
Select the emulated machine (@code{-M ?} for list)
210

    
211
@item -fda file
212
@item -fdb file
213
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
214
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
215

    
216
@item -hda file
217
@item -hdb file
218
@item -hdc file
219
@item -hdd file
220
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
221

    
222
@item -cdrom file
223
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
224
@option{-cdrom} at the same time). You can use the host CD-ROM by
225
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
226

    
227
@item -boot [a|c|d|n]
228
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
229
is the default.
230

    
231
@item -snapshot
232
Write to temporary files instead of disk image files. In this case,
233
the raw disk image you use is not written back. You can however force
234
the write back by pressing @key{C-a s} (@pxref{disk_images}).
235

    
236
@item -no-fd-bootchk
237
Disable boot signature checking for floppy disks in Bochs BIOS. It may
238
be needed to boot from old floppy disks.
239

    
240
@item -m megs
241
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
242

    
243
@item -smp n
244
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
245
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
246
to 4.
247

    
248
@item -audio-help
249

    
250
Will show the audio subsystem help: list of drivers, tunable
251
parameters.
252

    
253
@item -soundhw card1,card2,... or -soundhw all
254

    
255
Enable audio and selected sound hardware. Use ? to print all
256
available sound hardware.
257

    
258
@example
259
qemu -soundhw sb16,adlib hda
260
qemu -soundhw es1370 hda
261
qemu -soundhw all hda
262
qemu -soundhw ?
263
@end example
264

    
265
@item -localtime
266
Set the real time clock to local time (the default is to UTC
267
time). This option is needed to have correct date in MS-DOS or
268
Windows.
269

    
270
@item -pidfile file
271
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
272
from a script.
273

    
274
@item -daemonize
275
Daemonize the QEMU process after initialization.  QEMU will not detach from
276
standard IO until it is ready to receive connections on any of its devices.
277
This option is a useful way for external programs to launch QEMU without having
278
to cope with initialization race conditions.
279

    
280
@item -win2k-hack
281
Use it when installing Windows 2000 to avoid a disk full bug. After
282
Windows 2000 is installed, you no longer need this option (this option
283
slows down the IDE transfers).
284

    
285
@item -option-rom file
286
Load the contents of file as an option ROM.  This option is useful to load
287
things like EtherBoot.
288

    
289
@item -name string
290
Sets the name of the guest.  This name will be display in the SDL window
291
caption.  The name will also be used for the VNC server.
292

    
293
@end table
294

    
295
Display options:
296
@table @option
297

    
298
@item -nographic
299

    
300
Normally, QEMU uses SDL to display the VGA output. With this option,
301
you can totally disable graphical output so that QEMU is a simple
302
command line application. The emulated serial port is redirected on
303
the console. Therefore, you can still use QEMU to debug a Linux kernel
304
with a serial console.
305

    
306
@item -no-frame
307

    
308
Do not use decorations for SDL windows and start them using the whole
309
available screen space. This makes the using QEMU in a dedicated desktop
310
workspace more convenient.
311

    
312
@item -full-screen
313
Start in full screen.
314

    
315
@item -vnc display[,option[,option[,...]]]
316

    
317
Normally, QEMU uses SDL to display the VGA output.  With this option,
318
you can have QEMU listen on VNC display @var{display} and redirect the VGA
319
display over the VNC session.  It is very useful to enable the usb
320
tablet device when using this option (option @option{-usbdevice
321
tablet}). When using the VNC display, you must use the @option{-k}
322
parameter to set the keyboard layout if you are not using en-us. Valid
323
syntax for the @var{display} is
324

    
325
@table @code
326

    
327
@item @var{interface:d}
328

    
329
TCP connections will only be allowed from @var{interface} on display @var{d}.
330
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
331
be omitted in which case the server will bind to all interfaces.
332

    
333
@item @var{unix:path}
334

    
335
Connections will be allowed over UNIX domain sockets where @var{path} is the
336
location of a unix socket to listen for connections on.
337

    
338
@item @var{none}
339

    
340
VNC is initialized by not started. The monitor @code{change} command can be used
341
to later start the VNC server.
342

    
343
@end table
344

    
345
Following the @var{display} value there may be one or more @var{option} flags
346
separated by commas. Valid options are
347

    
348
@table @code
349

    
350
@item @var{password}
351

    
352
Require that password based authentication is used for client connections.
353
The password must be set separately using the @code{change} command in the
354
@ref{pcsys_monitor}
355

    
356
@item @var{tls}
357

    
358
Require that client use TLS when communicating with the VNC server. This
359
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
360
attack. It is recommended that this option be combined with either the
361
@var{x509} or @var{x509verify} options.
362

    
363
@item @var{x509=/path/to/certificate/dir}
364

    
365
Valid if @var{tls} is specified. Require that x509 credentials are used
366
for negotiating the TLS session. The server will send its x509 certificate
367
to the client. It is recommended that a password be set on the VNC server
368
to provide authentication of the client when this is used. The path following
369
this option specifies where the x509 certificates are to be loaded from.
370
See the @ref{vnc_security} section for details on generating certificates.
371

    
372
@item @var{x509verify=/path/to/certificate/dir}
373

    
374
Valid if @var{tls} is specified. Require that x509 credentials are used
375
for negotiating the TLS session. The server will send its x509 certificate
376
to the client, and request that the client send its own x509 certificate.
377
The server will validate the client's certificate against the CA certificate,
378
and reject clients when validation fails. If the certificate authority is
379
trusted, this is a sufficient authentication mechanism. You may still wish
380
to set a password on the VNC server as a second authentication layer. The
381
path following this option specifies where the x509 certificates are to
382
be loaded from. See the @ref{vnc_security} section for details on generating
383
certificates.
384

    
385
@end table
386

    
387
@item -k language
388

    
389
Use keyboard layout @var{language} (for example @code{fr} for
390
French). This option is only needed where it is not easy to get raw PC
391
keycodes (e.g. on Macs, with some X11 servers or with a VNC
392
display). You don't normally need to use it on PC/Linux or PC/Windows
393
hosts.
394

    
395
The available layouts are:
396
@example
397
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
398
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
399
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
400
@end example
401

    
402
The default is @code{en-us}.
403

    
404
@end table
405

    
406
USB options:
407
@table @option
408

    
409
@item -usb
410
Enable the USB driver (will be the default soon)
411

    
412
@item -usbdevice devname
413
Add the USB device @var{devname}. @xref{usb_devices}.
414
@end table
415

    
416
Network options:
417

    
418
@table @option
419

    
420
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
421
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
422
= 0 is the default). The NIC is an ne2k_pci by default on the PC
423
target. Optionally, the MAC address can be changed. If no
424
@option{-net} option is specified, a single NIC is created.
425
Qemu can emulate several different models of network card.
426
Valid values for @var{type} are
427
@code{i82551}, @code{i82557b}, @code{i82559er},
428
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
429
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
430
Not all devices are supported on all targets.  Use -net nic,model=?
431
for a list of available devices for your target.
432

    
433
@item -net user[,vlan=n][,hostname=name]
434
Use the user mode network stack which requires no administrator
435
privilege to run.  @option{hostname=name} can be used to specify the client
436
hostname reported by the builtin DHCP server.
437

    
438
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
439
Connect the host TAP network interface @var{name} to VLAN @var{n} and
440
use the network script @var{file} to configure it. The default
441
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
442
disable script execution. If @var{name} is not
443
provided, the OS automatically provides one.  @option{fd=h} can be
444
used to specify the handle of an already opened host TAP interface. Example:
445

    
446
@example
447
qemu linux.img -net nic -net tap
448
@end example
449

    
450
More complicated example (two NICs, each one connected to a TAP device)
451
@example
452
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
453
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
454
@end example
455

    
456

    
457
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
458

    
459
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
460
machine using a TCP socket connection. If @option{listen} is
461
specified, QEMU waits for incoming connections on @var{port}
462
(@var{host} is optional). @option{connect} is used to connect to
463
another QEMU instance using the @option{listen} option. @option{fd=h}
464
specifies an already opened TCP socket.
465

    
466
Example:
467
@example
468
# launch a first QEMU instance
469
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
470
               -net socket,listen=:1234
471
# connect the VLAN 0 of this instance to the VLAN 0
472
# of the first instance
473
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
474
               -net socket,connect=127.0.0.1:1234
475
@end example
476

    
477
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
478

    
479
Create a VLAN @var{n} shared with another QEMU virtual
480
machines using a UDP multicast socket, effectively making a bus for
481
every QEMU with same multicast address @var{maddr} and @var{port}.
482
NOTES:
483
@enumerate
484
@item
485
Several QEMU can be running on different hosts and share same bus (assuming
486
correct multicast setup for these hosts).
487
@item
488
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
489
@url{http://user-mode-linux.sf.net}.
490
@item
491
Use @option{fd=h} to specify an already opened UDP multicast socket.
492
@end enumerate
493

    
494
Example:
495
@example
496
# launch one QEMU instance
497
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
498
               -net socket,mcast=230.0.0.1:1234
499
# launch another QEMU instance on same "bus"
500
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
501
               -net socket,mcast=230.0.0.1:1234
502
# launch yet another QEMU instance on same "bus"
503
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
504
               -net socket,mcast=230.0.0.1:1234
505
@end example
506

    
507
Example (User Mode Linux compat.):
508
@example
509
# launch QEMU instance (note mcast address selected
510
# is UML's default)
511
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
512
               -net socket,mcast=239.192.168.1:1102
513
# launch UML
514
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
515
@end example
516

    
517
@item -net none
518
Indicate that no network devices should be configured. It is used to
519
override the default configuration (@option{-net nic -net user}) which
520
is activated if no @option{-net} options are provided.
521

    
522
@item -tftp dir
523
When using the user mode network stack, activate a built-in TFTP
524
server. The files in @var{dir} will be exposed as the root of a TFTP server.
525
The TFTP client on the guest must be configured in binary mode (use the command
526
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
527
usual 10.0.2.2.
528

    
529
@item -bootp file
530
When using the user mode network stack, broadcast @var{file} as the BOOTP
531
filename.  In conjunction with @option{-tftp}, this can be used to network boot
532
a guest from a local directory.
533

    
534
Example (using pxelinux):
535
@example
536
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
537
@end example
538

    
539
@item -smb dir
540
When using the user mode network stack, activate a built-in SMB
541
server so that Windows OSes can access to the host files in @file{dir}
542
transparently.
543

    
544
In the guest Windows OS, the line:
545
@example
546
10.0.2.4 smbserver
547
@end example
548
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
549
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
550

    
551
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
552

    
553
Note that a SAMBA server must be installed on the host OS in
554
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
555
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
556

    
557
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
558

    
559
When using the user mode network stack, redirect incoming TCP or UDP
560
connections to the host port @var{host-port} to the guest
561
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
562
is not specified, its value is 10.0.2.15 (default address given by the
563
built-in DHCP server).
564

    
565
For example, to redirect host X11 connection from screen 1 to guest
566
screen 0, use the following:
567

    
568
@example
569
# on the host
570
qemu -redir tcp:6001::6000 [...]
571
# this host xterm should open in the guest X11 server
572
xterm -display :1
573
@end example
574

    
575
To redirect telnet connections from host port 5555 to telnet port on
576
the guest, use the following:
577

    
578
@example
579
# on the host
580
qemu -redir tcp:5555::23 [...]
581
telnet localhost 5555
582
@end example
583

    
584
Then when you use on the host @code{telnet localhost 5555}, you
585
connect to the guest telnet server.
586

    
587
@end table
588

    
589
Linux boot specific: When using these options, you can use a given
590
Linux kernel without installing it in the disk image. It can be useful
591
for easier testing of various kernels.
592

    
593
@table @option
594

    
595
@item -kernel bzImage
596
Use @var{bzImage} as kernel image.
597

    
598
@item -append cmdline
599
Use @var{cmdline} as kernel command line
600

    
601
@item -initrd file
602
Use @var{file} as initial ram disk.
603

    
604
@end table
605

    
606
Debug/Expert options:
607
@table @option
608

    
609
@item -serial dev
610
Redirect the virtual serial port to host character device
611
@var{dev}. The default device is @code{vc} in graphical mode and
612
@code{stdio} in non graphical mode.
613

    
614
This option can be used several times to simulate up to 4 serials
615
ports.
616

    
617
Use @code{-serial none} to disable all serial ports.
618

    
619
Available character devices are:
620
@table @code
621
@item vc[:WxH]
622
Virtual console. Optionally, a width and height can be given in pixel with
623
@example
624
vc:800x600
625
@end example
626
It is also possible to specify width or height in characters:
627
@example
628
vc:80Cx24C
629
@end example
630
@item pty
631
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
632
@item none
633
No device is allocated.
634
@item null
635
void device
636
@item /dev/XXX
637
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
638
parameters are set according to the emulated ones.
639
@item /dev/parportN
640
[Linux only, parallel port only] Use host parallel port
641
@var{N}. Currently SPP and EPP parallel port features can be used.
642
@item file:filename
643
Write output to filename. No character can be read.
644
@item stdio
645
[Unix only] standard input/output
646
@item pipe:filename
647
name pipe @var{filename}
648
@item COMn
649
[Windows only] Use host serial port @var{n}
650
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
651
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
652

    
653
If you just want a simple readonly console you can use @code{netcat} or
654
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
655
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
656
will appear in the netconsole session.
657

    
658
If you plan to send characters back via netconsole or you want to stop
659
and start qemu a lot of times, you should have qemu use the same
660
source port each time by using something like @code{-serial
661
udp::4555@@:4556} to qemu. Another approach is to use a patched
662
version of netcat which can listen to a TCP port and send and receive
663
characters via udp.  If you have a patched version of netcat which
664
activates telnet remote echo and single char transfer, then you can
665
use the following options to step up a netcat redirector to allow
666
telnet on port 5555 to access the qemu port.
667
@table @code
668
@item Qemu Options:
669
-serial udp::4555@@:4556
670
@item netcat options:
671
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
672
@item telnet options:
673
localhost 5555
674
@end table
675

    
676

    
677
@item tcp:[host]:port[,server][,nowait][,nodelay]
678
The TCP Net Console has two modes of operation.  It can send the serial
679
I/O to a location or wait for a connection from a location.  By default
680
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
681
the @var{server} option QEMU will wait for a client socket application
682
to connect to the port before continuing, unless the @code{nowait}
683
option was specified.  The @code{nodelay} option disables the Nagle buffering
684
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
685
one TCP connection at a time is accepted. You can use @code{telnet} to
686
connect to the corresponding character device.
687
@table @code
688
@item Example to send tcp console to 192.168.0.2 port 4444
689
-serial tcp:192.168.0.2:4444
690
@item Example to listen and wait on port 4444 for connection
691
-serial tcp::4444,server
692
@item Example to not wait and listen on ip 192.168.0.100 port 4444
693
-serial tcp:192.168.0.100:4444,server,nowait
694
@end table
695

    
696
@item telnet:host:port[,server][,nowait][,nodelay]
697
The telnet protocol is used instead of raw tcp sockets.  The options
698
work the same as if you had specified @code{-serial tcp}.  The
699
difference is that the port acts like a telnet server or client using
700
telnet option negotiation.  This will also allow you to send the
701
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
702
sequence.  Typically in unix telnet you do it with Control-] and then
703
type "send break" followed by pressing the enter key.
704

    
705
@item unix:path[,server][,nowait]
706
A unix domain socket is used instead of a tcp socket.  The option works the
707
same as if you had specified @code{-serial tcp} except the unix domain socket
708
@var{path} is used for connections.
709

    
710
@item mon:dev_string
711
This is a special option to allow the monitor to be multiplexed onto
712
another serial port.  The monitor is accessed with key sequence of
713
@key{Control-a} and then pressing @key{c}. See monitor access
714
@ref{pcsys_keys} in the -nographic section for more keys.
715
@var{dev_string} should be any one of the serial devices specified
716
above.  An example to multiplex the monitor onto a telnet server
717
listening on port 4444 would be:
718
@table @code
719
@item -serial mon:telnet::4444,server,nowait
720
@end table
721

    
722
@end table
723

    
724
@item -parallel dev
725
Redirect the virtual parallel port to host device @var{dev} (same
726
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
727
be used to use hardware devices connected on the corresponding host
728
parallel port.
729

    
730
This option can be used several times to simulate up to 3 parallel
731
ports.
732

    
733
Use @code{-parallel none} to disable all parallel ports.
734

    
735
@item -monitor dev
736
Redirect the monitor to host device @var{dev} (same devices as the
737
serial port).
738
The default device is @code{vc} in graphical mode and @code{stdio} in
739
non graphical mode.
740

    
741
@item -echr numeric_ascii_value
742
Change the escape character used for switching to the monitor when using
743
monitor and serial sharing.  The default is @code{0x01} when using the
744
@code{-nographic} option.  @code{0x01} is equal to pressing
745
@code{Control-a}.  You can select a different character from the ascii
746
control keys where 1 through 26 map to Control-a through Control-z.  For
747
instance you could use the either of the following to change the escape
748
character to Control-t.
749
@table @code
750
@item -echr 0x14
751
@item -echr 20
752
@end table
753

    
754
@item -s
755
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
756
@item -p port
757
Change gdb connection port.  @var{port} can be either a decimal number
758
to specify a TCP port, or a host device (same devices as the serial port).
759
@item -S
760
Do not start CPU at startup (you must type 'c' in the monitor).
761
@item -d
762
Output log in /tmp/qemu.log
763
@item -hdachs c,h,s,[,t]
764
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
765
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
766
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
767
all those parameters. This option is useful for old MS-DOS disk
768
images.
769

    
770
@item -L path
771
Set the directory for the BIOS, VGA BIOS and keymaps.
772

    
773
@item -std-vga
774
Simulate a standard VGA card with Bochs VBE extensions (default is
775
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
776
VBE extensions (e.g. Windows XP) and if you want to use high
777
resolution modes (>= 1280x1024x16) then you should use this option.
778

    
779
@item -no-acpi
780
Disable ACPI (Advanced Configuration and Power Interface) support. Use
781
it if your guest OS complains about ACPI problems (PC target machine
782
only).
783

    
784
@item -no-reboot
785
Exit instead of rebooting.
786

    
787
@item -loadvm file
788
Start right away with a saved state (@code{loadvm} in monitor)
789

    
790
@item -semihosting
791
Enable semihosting syscall emulation (ARM and M68K target machines only).
792

    
793
On ARM this implements the "Angel" interface.
794
On M68K this implements the "ColdFire GDB" interface used by libgloss.
795

    
796
Note that this allows guest direct access to the host filesystem,
797
so should only be used with trusted guest OS.
798
@end table
799

    
800
@c man end
801

    
802
@node pcsys_keys
803
@section Keys
804

    
805
@c man begin OPTIONS
806

    
807
During the graphical emulation, you can use the following keys:
808
@table @key
809
@item Ctrl-Alt-f
810
Toggle full screen
811

    
812
@item Ctrl-Alt-n
813
Switch to virtual console 'n'. Standard console mappings are:
814
@table @emph
815
@item 1
816
Target system display
817
@item 2
818
Monitor
819
@item 3
820
Serial port
821
@end table
822

    
823
@item Ctrl-Alt
824
Toggle mouse and keyboard grab.
825
@end table
826

    
827
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
828
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
829

    
830
During emulation, if you are using the @option{-nographic} option, use
831
@key{Ctrl-a h} to get terminal commands:
832

    
833
@table @key
834
@item Ctrl-a h
835
Print this help
836
@item Ctrl-a x
837
Exit emulator
838
@item Ctrl-a s
839
Save disk data back to file (if -snapshot)
840
@item Ctrl-a t
841
toggle console timestamps
842
@item Ctrl-a b
843
Send break (magic sysrq in Linux)
844
@item Ctrl-a c
845
Switch between console and monitor
846
@item Ctrl-a Ctrl-a
847
Send Ctrl-a
848
@end table
849
@c man end
850

    
851
@ignore
852

    
853
@c man begin SEEALSO
854
The HTML documentation of QEMU for more precise information and Linux
855
user mode emulator invocation.
856
@c man end
857

    
858
@c man begin AUTHOR
859
Fabrice Bellard
860
@c man end
861

    
862
@end ignore
863

    
864
@node pcsys_monitor
865
@section QEMU Monitor
866

    
867
The QEMU monitor is used to give complex commands to the QEMU
868
emulator. You can use it to:
869

    
870
@itemize @minus
871

    
872
@item
873
Remove or insert removable media images
874
(such as CD-ROM or floppies)
875

    
876
@item
877
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
878
from a disk file.
879

    
880
@item Inspect the VM state without an external debugger.
881

    
882
@end itemize
883

    
884
@subsection Commands
885

    
886
The following commands are available:
887

    
888
@table @option
889

    
890
@item help or ? [cmd]
891
Show the help for all commands or just for command @var{cmd}.
892

    
893
@item commit
894
Commit changes to the disk images (if -snapshot is used)
895

    
896
@item info subcommand
897
show various information about the system state
898

    
899
@table @option
900
@item info network
901
show the various VLANs and the associated devices
902
@item info block
903
show the block devices
904
@item info registers
905
show the cpu registers
906
@item info history
907
show the command line history
908
@item info pci
909
show emulated PCI device
910
@item info usb
911
show USB devices plugged on the virtual USB hub
912
@item info usbhost
913
show all USB host devices
914
@item info capture
915
show information about active capturing
916
@item info snapshots
917
show list of VM snapshots
918
@item info mice
919
show which guest mouse is receiving events
920
@end table
921

    
922
@item q or quit
923
Quit the emulator.
924

    
925
@item eject [-f] device
926
Eject a removable medium (use -f to force it).
927

    
928
@item change device setting
929

    
930
Change the configuration of a device
931

    
932
@table @option
933
@item change @var{diskdevice} @var{filename}
934
Change the medium for a removable disk device to point to @var{filename}. eg
935

    
936
@example
937
(qemu) change cdrom /path/to/some.iso
938
@end example
939

    
940
@item change vnc @var{display,options}
941
Change the configuration of the VNC server. The valid syntax for @var{display}
942
and @var{options} are described at @ref{sec_invocation}. eg
943

    
944
@example
945
(qemu) change vnc localhost:1
946
@end example
947

    
948
@item change vnc password
949

    
950
Change the password associated with the VNC server. The monitor will prompt for
951
the new password to be entered. VNC passwords are only significant upto 8 letters.
952
eg.
953

    
954
@example
955
(qemu) change vnc password
956
Password: ********
957
@end example
958

    
959
@end table
960

    
961
@item screendump filename
962
Save screen into PPM image @var{filename}.
963

    
964
@item mouse_move dx dy [dz]
965
Move the active mouse to the specified coordinates @var{dx} @var{dy}
966
with optional scroll axis @var{dz}.
967

    
968
@item mouse_button val
969
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
970

    
971
@item mouse_set index
972
Set which mouse device receives events at given @var{index}, index
973
can be obtained with
974
@example
975
info mice
976
@end example
977

    
978
@item wavcapture filename [frequency [bits [channels]]]
979
Capture audio into @var{filename}. Using sample rate @var{frequency}
980
bits per sample @var{bits} and number of channels @var{channels}.
981

    
982
Defaults:
983
@itemize @minus
984
@item Sample rate = 44100 Hz - CD quality
985
@item Bits = 16
986
@item Number of channels = 2 - Stereo
987
@end itemize
988

    
989
@item stopcapture index
990
Stop capture with a given @var{index}, index can be obtained with
991
@example
992
info capture
993
@end example
994

    
995
@item log item1[,...]
996
Activate logging of the specified items to @file{/tmp/qemu.log}.
997

    
998
@item savevm [tag|id]
999
Create a snapshot of the whole virtual machine. If @var{tag} is
1000
provided, it is used as human readable identifier. If there is already
1001
a snapshot with the same tag or ID, it is replaced. More info at
1002
@ref{vm_snapshots}.
1003

    
1004
@item loadvm tag|id
1005
Set the whole virtual machine to the snapshot identified by the tag
1006
@var{tag} or the unique snapshot ID @var{id}.
1007

    
1008
@item delvm tag|id
1009
Delete the snapshot identified by @var{tag} or @var{id}.
1010

    
1011
@item stop
1012
Stop emulation.
1013

    
1014
@item c or cont
1015
Resume emulation.
1016

    
1017
@item gdbserver [port]
1018
Start gdbserver session (default port=1234)
1019

    
1020
@item x/fmt addr
1021
Virtual memory dump starting at @var{addr}.
1022

    
1023
@item xp /fmt addr
1024
Physical memory dump starting at @var{addr}.
1025

    
1026
@var{fmt} is a format which tells the command how to format the
1027
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1028

    
1029
@table @var
1030
@item count
1031
is the number of items to be dumped.
1032

    
1033
@item format
1034
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1035
c (char) or i (asm instruction).
1036

    
1037
@item size
1038
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1039
@code{h} or @code{w} can be specified with the @code{i} format to
1040
respectively select 16 or 32 bit code instruction size.
1041

    
1042
@end table
1043

    
1044
Examples:
1045
@itemize
1046
@item
1047
Dump 10 instructions at the current instruction pointer:
1048
@example
1049
(qemu) x/10i $eip
1050
0x90107063:  ret
1051
0x90107064:  sti
1052
0x90107065:  lea    0x0(%esi,1),%esi
1053
0x90107069:  lea    0x0(%edi,1),%edi
1054
0x90107070:  ret
1055
0x90107071:  jmp    0x90107080
1056
0x90107073:  nop
1057
0x90107074:  nop
1058
0x90107075:  nop
1059
0x90107076:  nop
1060
@end example
1061

    
1062
@item
1063
Dump 80 16 bit values at the start of the video memory.
1064
@smallexample
1065
(qemu) xp/80hx 0xb8000
1066
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1067
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1068
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1069
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1070
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1071
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1072
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1073
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1074
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1075
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1076
@end smallexample
1077
@end itemize
1078

    
1079
@item p or print/fmt expr
1080

    
1081
Print expression value. Only the @var{format} part of @var{fmt} is
1082
used.
1083

    
1084
@item sendkey keys
1085

    
1086
Send @var{keys} to the emulator. Use @code{-} to press several keys
1087
simultaneously. Example:
1088
@example
1089
sendkey ctrl-alt-f1
1090
@end example
1091

    
1092
This command is useful to send keys that your graphical user interface
1093
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1094

    
1095
@item system_reset
1096

    
1097
Reset the system.
1098

    
1099
@item usb_add devname
1100

    
1101
Add the USB device @var{devname}.  For details of available devices see
1102
@ref{usb_devices}
1103

    
1104
@item usb_del devname
1105

    
1106
Remove the USB device @var{devname} from the QEMU virtual USB
1107
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1108
command @code{info usb} to see the devices you can remove.
1109

    
1110
@end table
1111

    
1112
@subsection Integer expressions
1113

    
1114
The monitor understands integers expressions for every integer
1115
argument. You can use register names to get the value of specifics
1116
CPU registers by prefixing them with @emph{$}.
1117

    
1118
@node disk_images
1119
@section Disk Images
1120

    
1121
Since version 0.6.1, QEMU supports many disk image formats, including
1122
growable disk images (their size increase as non empty sectors are
1123
written), compressed and encrypted disk images. Version 0.8.3 added
1124
the new qcow2 disk image format which is essential to support VM
1125
snapshots.
1126

    
1127
@menu
1128
* disk_images_quickstart::    Quick start for disk image creation
1129
* disk_images_snapshot_mode:: Snapshot mode
1130
* vm_snapshots::              VM snapshots
1131
* qemu_img_invocation::       qemu-img Invocation
1132
* host_drives::               Using host drives
1133
* disk_images_fat_images::    Virtual FAT disk images
1134
@end menu
1135

    
1136
@node disk_images_quickstart
1137
@subsection Quick start for disk image creation
1138

    
1139
You can create a disk image with the command:
1140
@example
1141
qemu-img create myimage.img mysize
1142
@end example
1143
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1144
size in kilobytes. You can add an @code{M} suffix to give the size in
1145
megabytes and a @code{G} suffix for gigabytes.
1146

    
1147
See @ref{qemu_img_invocation} for more information.
1148

    
1149
@node disk_images_snapshot_mode
1150
@subsection Snapshot mode
1151

    
1152
If you use the option @option{-snapshot}, all disk images are
1153
considered as read only. When sectors in written, they are written in
1154
a temporary file created in @file{/tmp}. You can however force the
1155
write back to the raw disk images by using the @code{commit} monitor
1156
command (or @key{C-a s} in the serial console).
1157

    
1158
@node vm_snapshots
1159
@subsection VM snapshots
1160

    
1161
VM snapshots are snapshots of the complete virtual machine including
1162
CPU state, RAM, device state and the content of all the writable
1163
disks. In order to use VM snapshots, you must have at least one non
1164
removable and writable block device using the @code{qcow2} disk image
1165
format. Normally this device is the first virtual hard drive.
1166

    
1167
Use the monitor command @code{savevm} to create a new VM snapshot or
1168
replace an existing one. A human readable name can be assigned to each
1169
snapshot in addition to its numerical ID.
1170

    
1171
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1172
a VM snapshot. @code{info snapshots} lists the available snapshots
1173
with their associated information:
1174

    
1175
@example
1176
(qemu) info snapshots
1177
Snapshot devices: hda
1178
Snapshot list (from hda):
1179
ID        TAG                 VM SIZE                DATE       VM CLOCK
1180
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1181
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1182
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1183
@end example
1184

    
1185
A VM snapshot is made of a VM state info (its size is shown in
1186
@code{info snapshots}) and a snapshot of every writable disk image.
1187
The VM state info is stored in the first @code{qcow2} non removable
1188
and writable block device. The disk image snapshots are stored in
1189
every disk image. The size of a snapshot in a disk image is difficult
1190
to evaluate and is not shown by @code{info snapshots} because the
1191
associated disk sectors are shared among all the snapshots to save
1192
disk space (otherwise each snapshot would need a full copy of all the
1193
disk images).
1194

    
1195
When using the (unrelated) @code{-snapshot} option
1196
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1197
but they are deleted as soon as you exit QEMU.
1198

    
1199
VM snapshots currently have the following known limitations:
1200
@itemize
1201
@item
1202
They cannot cope with removable devices if they are removed or
1203
inserted after a snapshot is done.
1204
@item
1205
A few device drivers still have incomplete snapshot support so their
1206
state is not saved or restored properly (in particular USB).
1207
@end itemize
1208

    
1209
@node qemu_img_invocation
1210
@subsection @code{qemu-img} Invocation
1211

    
1212
@include qemu-img.texi
1213

    
1214
@node host_drives
1215
@subsection Using host drives
1216

    
1217
In addition to disk image files, QEMU can directly access host
1218
devices. We describe here the usage for QEMU version >= 0.8.3.
1219

    
1220
@subsubsection Linux
1221

    
1222
On Linux, you can directly use the host device filename instead of a
1223
disk image filename provided you have enough privileges to access
1224
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1225
@file{/dev/fd0} for the floppy.
1226

    
1227
@table @code
1228
@item CD
1229
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1230
specific code to detect CDROM insertion or removal. CDROM ejection by
1231
the guest OS is supported. Currently only data CDs are supported.
1232
@item Floppy
1233
You can specify a floppy device even if no floppy is loaded. Floppy
1234
removal is currently not detected accurately (if you change floppy
1235
without doing floppy access while the floppy is not loaded, the guest
1236
OS will think that the same floppy is loaded).
1237
@item Hard disks
1238
Hard disks can be used. Normally you must specify the whole disk
1239
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1240
see it as a partitioned disk. WARNING: unless you know what you do, it
1241
is better to only make READ-ONLY accesses to the hard disk otherwise
1242
you may corrupt your host data (use the @option{-snapshot} command
1243
line option or modify the device permissions accordingly).
1244
@end table
1245

    
1246
@subsubsection Windows
1247

    
1248
@table @code
1249
@item CD
1250
The preferred syntax is the drive letter (e.g. @file{d:}). The
1251
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1252
supported as an alias to the first CDROM drive.
1253

    
1254
Currently there is no specific code to handle removable media, so it
1255
is better to use the @code{change} or @code{eject} monitor commands to
1256
change or eject media.
1257
@item Hard disks
1258
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1259
where @var{N} is the drive number (0 is the first hard disk).
1260

    
1261
WARNING: unless you know what you do, it is better to only make
1262
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1263
host data (use the @option{-snapshot} command line so that the
1264
modifications are written in a temporary file).
1265
@end table
1266

    
1267

    
1268
@subsubsection Mac OS X
1269

    
1270
@file{/dev/cdrom} is an alias to the first CDROM.
1271

    
1272
Currently there is no specific code to handle removable media, so it
1273
is better to use the @code{change} or @code{eject} monitor commands to
1274
change or eject media.
1275

    
1276
@node disk_images_fat_images
1277
@subsection Virtual FAT disk images
1278

    
1279
QEMU can automatically create a virtual FAT disk image from a
1280
directory tree. In order to use it, just type:
1281

    
1282
@example
1283
qemu linux.img -hdb fat:/my_directory
1284
@end example
1285

    
1286
Then you access access to all the files in the @file{/my_directory}
1287
directory without having to copy them in a disk image or to export
1288
them via SAMBA or NFS. The default access is @emph{read-only}.
1289

    
1290
Floppies can be emulated with the @code{:floppy:} option:
1291

    
1292
@example
1293
qemu linux.img -fda fat:floppy:/my_directory
1294
@end example
1295

    
1296
A read/write support is available for testing (beta stage) with the
1297
@code{:rw:} option:
1298

    
1299
@example
1300
qemu linux.img -fda fat:floppy:rw:/my_directory
1301
@end example
1302

    
1303
What you should @emph{never} do:
1304
@itemize
1305
@item use non-ASCII filenames ;
1306
@item use "-snapshot" together with ":rw:" ;
1307
@item expect it to work when loadvm'ing ;
1308
@item write to the FAT directory on the host system while accessing it with the guest system.
1309
@end itemize
1310

    
1311
@node pcsys_network
1312
@section Network emulation
1313

    
1314
QEMU can simulate several network cards (PCI or ISA cards on the PC
1315
target) and can connect them to an arbitrary number of Virtual Local
1316
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1317
VLAN. VLAN can be connected between separate instances of QEMU to
1318
simulate large networks. For simpler usage, a non privileged user mode
1319
network stack can replace the TAP device to have a basic network
1320
connection.
1321

    
1322
@subsection VLANs
1323

    
1324
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1325
connection between several network devices. These devices can be for
1326
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1327
(TAP devices).
1328

    
1329
@subsection Using TAP network interfaces
1330

    
1331
This is the standard way to connect QEMU to a real network. QEMU adds
1332
a virtual network device on your host (called @code{tapN}), and you
1333
can then configure it as if it was a real ethernet card.
1334

    
1335
@subsubsection Linux host
1336

    
1337
As an example, you can download the @file{linux-test-xxx.tar.gz}
1338
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1339
configure properly @code{sudo} so that the command @code{ifconfig}
1340
contained in @file{qemu-ifup} can be executed as root. You must verify
1341
that your host kernel supports the TAP network interfaces: the
1342
device @file{/dev/net/tun} must be present.
1343

    
1344
See @ref{sec_invocation} to have examples of command lines using the
1345
TAP network interfaces.
1346

    
1347
@subsubsection Windows host
1348

    
1349
There is a virtual ethernet driver for Windows 2000/XP systems, called
1350
TAP-Win32. But it is not included in standard QEMU for Windows,
1351
so you will need to get it separately. It is part of OpenVPN package,
1352
so download OpenVPN from : @url{http://openvpn.net/}.
1353

    
1354
@subsection Using the user mode network stack
1355

    
1356
By using the option @option{-net user} (default configuration if no
1357
@option{-net} option is specified), QEMU uses a completely user mode
1358
network stack (you don't need root privilege to use the virtual
1359
network). The virtual network configuration is the following:
1360

    
1361
@example
1362

    
1363
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1364
                           |          (10.0.2.2)
1365
                           |
1366
                           ---->  DNS server (10.0.2.3)
1367
                           |
1368
                           ---->  SMB server (10.0.2.4)
1369
@end example
1370

    
1371
The QEMU VM behaves as if it was behind a firewall which blocks all
1372
incoming connections. You can use a DHCP client to automatically
1373
configure the network in the QEMU VM. The DHCP server assign addresses
1374
to the hosts starting from 10.0.2.15.
1375

    
1376
In order to check that the user mode network is working, you can ping
1377
the address 10.0.2.2 and verify that you got an address in the range
1378
10.0.2.x from the QEMU virtual DHCP server.
1379

    
1380
Note that @code{ping} is not supported reliably to the internet as it
1381
would require root privileges. It means you can only ping the local
1382
router (10.0.2.2).
1383

    
1384
When using the built-in TFTP server, the router is also the TFTP
1385
server.
1386

    
1387
When using the @option{-redir} option, TCP or UDP connections can be
1388
redirected from the host to the guest. It allows for example to
1389
redirect X11, telnet or SSH connections.
1390

    
1391
@subsection Connecting VLANs between QEMU instances
1392

    
1393
Using the @option{-net socket} option, it is possible to make VLANs
1394
that span several QEMU instances. See @ref{sec_invocation} to have a
1395
basic example.
1396

    
1397
@node direct_linux_boot
1398
@section Direct Linux Boot
1399

    
1400
This section explains how to launch a Linux kernel inside QEMU without
1401
having to make a full bootable image. It is very useful for fast Linux
1402
kernel testing.
1403

    
1404
The syntax is:
1405
@example
1406
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1407
@end example
1408

    
1409
Use @option{-kernel} to provide the Linux kernel image and
1410
@option{-append} to give the kernel command line arguments. The
1411
@option{-initrd} option can be used to provide an INITRD image.
1412

    
1413
When using the direct Linux boot, a disk image for the first hard disk
1414
@file{hda} is required because its boot sector is used to launch the
1415
Linux kernel.
1416

    
1417
If you do not need graphical output, you can disable it and redirect
1418
the virtual serial port and the QEMU monitor to the console with the
1419
@option{-nographic} option. The typical command line is:
1420
@example
1421
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1422
     -append "root=/dev/hda console=ttyS0" -nographic
1423
@end example
1424

    
1425
Use @key{Ctrl-a c} to switch between the serial console and the
1426
monitor (@pxref{pcsys_keys}).
1427

    
1428
@node pcsys_usb
1429
@section USB emulation
1430

    
1431
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1432
virtual USB devices or real host USB devices (experimental, works only
1433
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1434
as necessary to connect multiple USB devices.
1435

    
1436
@menu
1437
* usb_devices::
1438
* host_usb_devices::
1439
@end menu
1440
@node usb_devices
1441
@subsection Connecting USB devices
1442

    
1443
USB devices can be connected with the @option{-usbdevice} commandline option
1444
or the @code{usb_add} monitor command.  Available devices are:
1445

    
1446
@table @var
1447
@item @code{mouse}
1448
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1449
@item @code{tablet}
1450
Pointer device that uses absolute coordinates (like a touchscreen).
1451
This means qemu is able to report the mouse position without having
1452
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1453
@item @code{disk:file}
1454
Mass storage device based on @var{file} (@pxref{disk_images})
1455
@item @code{host:bus.addr}
1456
Pass through the host device identified by @var{bus.addr}
1457
(Linux only)
1458
@item @code{host:vendor_id:product_id}
1459
Pass through the host device identified by @var{vendor_id:product_id}
1460
(Linux only)
1461
@item @code{wacom-tablet}
1462
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1463
above but it can be used with the tslib library because in addition to touch
1464
coordinates it reports touch pressure.
1465
@item @code{keyboard}
1466
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1467
@end table
1468

    
1469
@node host_usb_devices
1470
@subsection Using host USB devices on a Linux host
1471

    
1472
WARNING: this is an experimental feature. QEMU will slow down when
1473
using it. USB devices requiring real time streaming (i.e. USB Video
1474
Cameras) are not supported yet.
1475

    
1476
@enumerate
1477
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1478
is actually using the USB device. A simple way to do that is simply to
1479
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1480
to @file{mydriver.o.disabled}.
1481

    
1482
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1483
@example
1484
ls /proc/bus/usb
1485
001  devices  drivers
1486
@end example
1487

    
1488
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1489
@example
1490
chown -R myuid /proc/bus/usb
1491
@end example
1492

    
1493
@item Launch QEMU and do in the monitor:
1494
@example
1495
info usbhost
1496
  Device 1.2, speed 480 Mb/s
1497
    Class 00: USB device 1234:5678, USB DISK
1498
@end example
1499
You should see the list of the devices you can use (Never try to use
1500
hubs, it won't work).
1501

    
1502
@item Add the device in QEMU by using:
1503
@example
1504
usb_add host:1234:5678
1505
@end example
1506

    
1507
Normally the guest OS should report that a new USB device is
1508
plugged. You can use the option @option{-usbdevice} to do the same.
1509

    
1510
@item Now you can try to use the host USB device in QEMU.
1511

    
1512
@end enumerate
1513

    
1514
When relaunching QEMU, you may have to unplug and plug again the USB
1515
device to make it work again (this is a bug).
1516

    
1517
@node vnc_security
1518
@section VNC security
1519

    
1520
The VNC server capability provides access to the graphical console
1521
of the guest VM across the network. This has a number of security
1522
considerations depending on the deployment scenarios.
1523

    
1524
@menu
1525
* vnc_sec_none::
1526
* vnc_sec_password::
1527
* vnc_sec_certificate::
1528
* vnc_sec_certificate_verify::
1529
* vnc_sec_certificate_pw::
1530
* vnc_generate_cert::
1531
@end menu
1532
@node vnc_sec_none
1533
@subsection Without passwords
1534

    
1535
The simplest VNC server setup does not include any form of authentication.
1536
For this setup it is recommended to restrict it to listen on a UNIX domain
1537
socket only. For example
1538

    
1539
@example
1540
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1541
@end example
1542

    
1543
This ensures that only users on local box with read/write access to that
1544
path can access the VNC server. To securely access the VNC server from a
1545
remote machine, a combination of netcat+ssh can be used to provide a secure
1546
tunnel.
1547

    
1548
@node vnc_sec_password
1549
@subsection With passwords
1550

    
1551
The VNC protocol has limited support for password based authentication. Since
1552
the protocol limits passwords to 8 characters it should not be considered
1553
to provide high security. The password can be fairly easily brute-forced by
1554
a client making repeat connections. For this reason, a VNC server using password
1555
authentication should be restricted to only listen on the loopback interface
1556
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1557
option, and then once QEMU is running the password is set with the monitor. Until
1558
the monitor is used to set the password all clients will be rejected.
1559

    
1560
@example
1561
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1562
(qemu) change vnc password
1563
Password: ********
1564
(qemu)
1565
@end example
1566

    
1567
@node vnc_sec_certificate
1568
@subsection With x509 certificates
1569

    
1570
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1571
TLS for encryption of the session, and x509 certificates for authentication.
1572
The use of x509 certificates is strongly recommended, because TLS on its
1573
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1574
support provides a secure session, but no authentication. This allows any
1575
client to connect, and provides an encrypted session.
1576

    
1577
@example
1578
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1579
@end example
1580

    
1581
In the above example @code{/etc/pki/qemu} should contain at least three files,
1582
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1583
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1584
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1585
only be readable by the user owning it.
1586

    
1587
@node vnc_sec_certificate_verify
1588
@subsection With x509 certificates and client verification
1589

    
1590
Certificates can also provide a means to authenticate the client connecting.
1591
The server will request that the client provide a certificate, which it will
1592
then validate against the CA certificate. This is a good choice if deploying
1593
in an environment with a private internal certificate authority.
1594

    
1595
@example
1596
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1597
@end example
1598

    
1599

    
1600
@node vnc_sec_certificate_pw
1601
@subsection With x509 certificates, client verification and passwords
1602

    
1603
Finally, the previous method can be combined with VNC password authentication
1604
to provide two layers of authentication for clients.
1605

    
1606
@example
1607
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1608
(qemu) change vnc password
1609
Password: ********
1610
(qemu)
1611
@end example
1612

    
1613
@node vnc_generate_cert
1614
@subsection Generating certificates for VNC
1615

    
1616
The GNU TLS packages provides a command called @code{certtool} which can
1617
be used to generate certificates and keys in PEM format. At a minimum it
1618
is neccessary to setup a certificate authority, and issue certificates to
1619
each server. If using certificates for authentication, then each client
1620
will also need to be issued a certificate. The recommendation is for the
1621
server to keep its certificates in either @code{/etc/pki/qemu} or for
1622
unprivileged users in @code{$HOME/.pki/qemu}.
1623

    
1624
@menu
1625
* vnc_generate_ca::
1626
* vnc_generate_server::
1627
* vnc_generate_client::
1628
@end menu
1629
@node vnc_generate_ca
1630
@subsubsection Setup the Certificate Authority
1631

    
1632
This step only needs to be performed once per organization / organizational
1633
unit. First the CA needs a private key. This key must be kept VERY secret
1634
and secure. If this key is compromised the entire trust chain of the certificates
1635
issued with it is lost.
1636

    
1637
@example
1638
# certtool --generate-privkey > ca-key.pem
1639
@end example
1640

    
1641
A CA needs to have a public certificate. For simplicity it can be a self-signed
1642
certificate, or one issue by a commercial certificate issuing authority. To
1643
generate a self-signed certificate requires one core piece of information, the
1644
name of the organization.
1645

    
1646
@example
1647
# cat > ca.info <<EOF
1648
cn = Name of your organization
1649
ca
1650
cert_signing_key
1651
EOF
1652
# certtool --generate-self-signed \
1653
           --load-privkey ca-key.pem
1654
           --template ca.info \
1655
           --outfile ca-cert.pem
1656
@end example
1657

    
1658
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1659
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1660

    
1661
@node vnc_generate_server
1662
@subsubsection Issuing server certificates
1663

    
1664
Each server (or host) needs to be issued with a key and certificate. When connecting
1665
the certificate is sent to the client which validates it against the CA certificate.
1666
The core piece of information for a server certificate is the hostname. This should
1667
be the fully qualified hostname that the client will connect with, since the client
1668
will typically also verify the hostname in the certificate. On the host holding the
1669
secure CA private key:
1670

    
1671
@example
1672
# cat > server.info <<EOF
1673
organization = Name  of your organization
1674
cn = server.foo.example.com
1675
tls_www_server
1676
encryption_key
1677
signing_key
1678
EOF
1679
# certtool --generate-privkey > server-key.pem
1680
# certtool --generate-certificate \
1681
           --load-ca-certificate ca-cert.pem \
1682
           --load-ca-privkey ca-key.pem \
1683
           --load-privkey server server-key.pem \
1684
           --template server.info \
1685
           --outfile server-cert.pem
1686
@end example
1687

    
1688
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1689
to the server for which they were generated. The @code{server-key.pem} is security
1690
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1691

    
1692
@node vnc_generate_client
1693
@subsubsection Issuing client certificates
1694

    
1695
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1696
certificates as its authentication mechanism, each client also needs to be issued
1697
a certificate. The client certificate contains enough metadata to uniquely identify
1698
the client, typically organization, state, city, building, etc. On the host holding
1699
the secure CA private key:
1700

    
1701
@example
1702
# cat > client.info <<EOF
1703
country = GB
1704
state = London
1705
locality = London
1706
organiazation = Name of your organization
1707
cn = client.foo.example.com
1708
tls_www_client
1709
encryption_key
1710
signing_key
1711
EOF
1712
# certtool --generate-privkey > client-key.pem
1713
# certtool --generate-certificate \
1714
           --load-ca-certificate ca-cert.pem \
1715
           --load-ca-privkey ca-key.pem \
1716
           --load-privkey client-key.pem \
1717
           --template client.info \
1718
           --outfile client-cert.pem
1719
@end example
1720

    
1721
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1722
copied to the client for which they were generated.
1723

    
1724
@node gdb_usage
1725
@section GDB usage
1726

    
1727
QEMU has a primitive support to work with gdb, so that you can do
1728
'Ctrl-C' while the virtual machine is running and inspect its state.
1729

    
1730
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1731
gdb connection:
1732
@example
1733
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1734
       -append "root=/dev/hda"
1735
Connected to host network interface: tun0
1736
Waiting gdb connection on port 1234
1737
@end example
1738

    
1739
Then launch gdb on the 'vmlinux' executable:
1740
@example
1741
> gdb vmlinux
1742
@end example
1743

    
1744
In gdb, connect to QEMU:
1745
@example
1746
(gdb) target remote localhost:1234
1747
@end example
1748

    
1749
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1750
@example
1751
(gdb) c
1752
@end example
1753

    
1754
Here are some useful tips in order to use gdb on system code:
1755

    
1756
@enumerate
1757
@item
1758
Use @code{info reg} to display all the CPU registers.
1759
@item
1760
Use @code{x/10i $eip} to display the code at the PC position.
1761
@item
1762
Use @code{set architecture i8086} to dump 16 bit code. Then use
1763
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1764
@end enumerate
1765

    
1766
@node pcsys_os_specific
1767
@section Target OS specific information
1768

    
1769
@subsection Linux
1770

    
1771
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1772
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1773
color depth in the guest and the host OS.
1774

    
1775
When using a 2.6 guest Linux kernel, you should add the option
1776
@code{clock=pit} on the kernel command line because the 2.6 Linux
1777
kernels make very strict real time clock checks by default that QEMU
1778
cannot simulate exactly.
1779

    
1780
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1781
not activated because QEMU is slower with this patch. The QEMU
1782
Accelerator Module is also much slower in this case. Earlier Fedora
1783
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1784
patch by default. Newer kernels don't have it.
1785

    
1786
@subsection Windows
1787

    
1788
If you have a slow host, using Windows 95 is better as it gives the
1789
best speed. Windows 2000 is also a good choice.
1790

    
1791
@subsubsection SVGA graphic modes support
1792

    
1793
QEMU emulates a Cirrus Logic GD5446 Video
1794
card. All Windows versions starting from Windows 95 should recognize
1795
and use this graphic card. For optimal performances, use 16 bit color
1796
depth in the guest and the host OS.
1797

    
1798
If you are using Windows XP as guest OS and if you want to use high
1799
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1800
1280x1024x16), then you should use the VESA VBE virtual graphic card
1801
(option @option{-std-vga}).
1802

    
1803
@subsubsection CPU usage reduction
1804

    
1805
Windows 9x does not correctly use the CPU HLT
1806
instruction. The result is that it takes host CPU cycles even when
1807
idle. You can install the utility from
1808
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1809
problem. Note that no such tool is needed for NT, 2000 or XP.
1810

    
1811
@subsubsection Windows 2000 disk full problem
1812

    
1813
Windows 2000 has a bug which gives a disk full problem during its
1814
installation. When installing it, use the @option{-win2k-hack} QEMU
1815
option to enable a specific workaround. After Windows 2000 is
1816
installed, you no longer need this option (this option slows down the
1817
IDE transfers).
1818

    
1819
@subsubsection Windows 2000 shutdown
1820

    
1821
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1822
can. It comes from the fact that Windows 2000 does not automatically
1823
use the APM driver provided by the BIOS.
1824

    
1825
In order to correct that, do the following (thanks to Struan
1826
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1827
Add/Troubleshoot a device => Add a new device & Next => No, select the
1828
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1829
(again) a few times. Now the driver is installed and Windows 2000 now
1830
correctly instructs QEMU to shutdown at the appropriate moment.
1831

    
1832
@subsubsection Share a directory between Unix and Windows
1833

    
1834
See @ref{sec_invocation} about the help of the option @option{-smb}.
1835

    
1836
@subsubsection Windows XP security problem
1837

    
1838
Some releases of Windows XP install correctly but give a security
1839
error when booting:
1840
@example
1841
A problem is preventing Windows from accurately checking the
1842
license for this computer. Error code: 0x800703e6.
1843
@end example
1844

    
1845
The workaround is to install a service pack for XP after a boot in safe
1846
mode. Then reboot, and the problem should go away. Since there is no
1847
network while in safe mode, its recommended to download the full
1848
installation of SP1 or SP2 and transfer that via an ISO or using the
1849
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1850

    
1851
@subsection MS-DOS and FreeDOS
1852

    
1853
@subsubsection CPU usage reduction
1854

    
1855
DOS does not correctly use the CPU HLT instruction. The result is that
1856
it takes host CPU cycles even when idle. You can install the utility
1857
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1858
problem.
1859

    
1860
@node QEMU System emulator for non PC targets
1861
@chapter QEMU System emulator for non PC targets
1862

    
1863
QEMU is a generic emulator and it emulates many non PC
1864
machines. Most of the options are similar to the PC emulator. The
1865
differences are mentioned in the following sections.
1866

    
1867
@menu
1868
* QEMU PowerPC System emulator::
1869
* Sparc32 System emulator::
1870
* Sparc64 System emulator::
1871
* MIPS System emulator::
1872
* ARM System emulator::
1873
* ColdFire System emulator::
1874
@end menu
1875

    
1876
@node QEMU PowerPC System emulator
1877
@section QEMU PowerPC System emulator
1878

    
1879
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1880
or PowerMac PowerPC system.
1881

    
1882
QEMU emulates the following PowerMac peripherals:
1883

    
1884
@itemize @minus
1885
@item
1886
UniNorth PCI Bridge
1887
@item
1888
PCI VGA compatible card with VESA Bochs Extensions
1889
@item
1890
2 PMAC IDE interfaces with hard disk and CD-ROM support
1891
@item
1892
NE2000 PCI adapters
1893
@item
1894
Non Volatile RAM
1895
@item
1896
VIA-CUDA with ADB keyboard and mouse.
1897
@end itemize
1898

    
1899
QEMU emulates the following PREP peripherals:
1900

    
1901
@itemize @minus
1902
@item
1903
PCI Bridge
1904
@item
1905
PCI VGA compatible card with VESA Bochs Extensions
1906
@item
1907
2 IDE interfaces with hard disk and CD-ROM support
1908
@item
1909
Floppy disk
1910
@item
1911
NE2000 network adapters
1912
@item
1913
Serial port
1914
@item
1915
PREP Non Volatile RAM
1916
@item
1917
PC compatible keyboard and mouse.
1918
@end itemize
1919

    
1920
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1921
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1922

    
1923
@c man begin OPTIONS
1924

    
1925
The following options are specific to the PowerPC emulation:
1926

    
1927
@table @option
1928

    
1929
@item -g WxH[xDEPTH]
1930

    
1931
Set the initial VGA graphic mode. The default is 800x600x15.
1932

    
1933
@end table
1934

    
1935
@c man end
1936

    
1937

    
1938
More information is available at
1939
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1940

    
1941
@node Sparc32 System emulator
1942
@section Sparc32 System emulator
1943

    
1944
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1945
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1946
SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1947
to 4.
1948

    
1949
QEMU emulates the following sun4m peripherals:
1950

    
1951
@itemize @minus
1952
@item
1953
IOMMU
1954
@item
1955
TCX Frame buffer
1956
@item
1957
Lance (Am7990) Ethernet
1958
@item
1959
Non Volatile RAM M48T08
1960
@item
1961
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1962
and power/reset logic
1963
@item
1964
ESP SCSI controller with hard disk and CD-ROM support
1965
@item
1966
Floppy drive
1967
@item
1968
CS4231 sound device (only on SS-5, not working yet)
1969
@end itemize
1970

    
1971
The number of peripherals is fixed in the architecture.  Maximum memory size
1972
depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
1973

    
1974
Since version 0.8.2, QEMU uses OpenBIOS
1975
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1976
firmware implementation. The goal is to implement a 100% IEEE
1977
1275-1994 (referred to as Open Firmware) compliant firmware.
1978

    
1979
A sample Linux 2.6 series kernel and ram disk image are available on
1980
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1981
Solaris kernels don't work.
1982

    
1983
@c man begin OPTIONS
1984

    
1985
The following options are specific to the Sparc32 emulation:
1986

    
1987
@table @option
1988

    
1989
@item -g WxHx[xDEPTH]
1990

    
1991
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1992
the only other possible mode is 1024x768x24.
1993

    
1994
@item -prom-env string
1995

    
1996
Set OpenBIOS variables in NVRAM, for example:
1997

    
1998
@example
1999
qemu-system-sparc -prom-env 'auto-boot?=false' \
2000
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2001
@end example
2002

    
2003
@item -M [SS-5|SS-10]
2004

    
2005
Set the emulated machine type. Default is SS-5.
2006

    
2007
@end table
2008

    
2009
@c man end
2010

    
2011
@node Sparc64 System emulator
2012
@section Sparc64 System emulator
2013

    
2014
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2015
The emulator is not usable for anything yet.
2016

    
2017
QEMU emulates the following sun4u peripherals:
2018

    
2019
@itemize @minus
2020
@item
2021
UltraSparc IIi APB PCI Bridge
2022
@item
2023
PCI VGA compatible card with VESA Bochs Extensions
2024
@item
2025
Non Volatile RAM M48T59
2026
@item
2027
PC-compatible serial ports
2028
@end itemize
2029

    
2030
@node MIPS System emulator
2031
@section MIPS System emulator
2032

    
2033
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2034
Three different machine types are emulated:
2035

    
2036
@itemize @minus
2037
@item
2038
A generic ISA PC-like machine "mips"
2039
@item
2040
The MIPS Malta prototype board "malta"
2041
@item
2042
An ACER Pica "pica61"
2043
@item
2044
MIPS emulator pseudo board "mipssim"
2045
@end itemize
2046

    
2047
The generic emulation is supported by Debian 'Etch' and is able to
2048
install Debian into a virtual disk image. The following devices are
2049
emulated:
2050

    
2051
@itemize @minus
2052
@item
2053
A range of MIPS CPUs, default is the 24Kf
2054
@item
2055
PC style serial port
2056
@item
2057
PC style IDE disk
2058
@item
2059
NE2000 network card
2060
@end itemize
2061

    
2062
The Malta emulation supports the following devices:
2063

    
2064
@itemize @minus
2065
@item
2066
Core board with MIPS 24Kf CPU and Galileo system controller
2067
@item
2068
PIIX4 PCI/USB/SMbus controller
2069
@item
2070
The Multi-I/O chip's serial device
2071
@item
2072
PCnet32 PCI network card
2073
@item
2074
Malta FPGA serial device
2075
@item
2076
Cirrus VGA graphics card
2077
@end itemize
2078

    
2079
The ACER Pica emulation supports:
2080

    
2081
@itemize @minus
2082
@item
2083
MIPS R4000 CPU
2084
@item
2085
PC-style IRQ and DMA controllers
2086
@item
2087
PC Keyboard
2088
@item
2089
IDE controller
2090
@end itemize
2091

    
2092
The mipssim pseudo board emulation provides an environment similiar
2093
to what the proprietary MIPS emulator uses for running Linux.
2094
It supports:
2095

    
2096
@itemize @minus
2097
@item
2098
A range of MIPS CPUs, default is the 24Kf
2099
@item
2100
PC style serial port
2101
@item
2102
MIPSnet network emulation
2103
@end itemize
2104

    
2105
@node ARM System emulator
2106
@section ARM System emulator
2107

    
2108
Use the executable @file{qemu-system-arm} to simulate a ARM
2109
machine. The ARM Integrator/CP board is emulated with the following
2110
devices:
2111

    
2112
@itemize @minus
2113
@item
2114
ARM926E, ARM1026E or ARM946E CPU
2115
@item
2116
Two PL011 UARTs
2117
@item
2118
SMC 91c111 Ethernet adapter
2119
@item
2120
PL110 LCD controller
2121
@item
2122
PL050 KMI with PS/2 keyboard and mouse.
2123
@item
2124
PL181 MultiMedia Card Interface with SD card.
2125
@end itemize
2126

    
2127
The ARM Versatile baseboard is emulated with the following devices:
2128

    
2129
@itemize @minus
2130
@item
2131
ARM926E CPU
2132
@item
2133
PL190 Vectored Interrupt Controller
2134
@item
2135
Four PL011 UARTs
2136
@item
2137
SMC 91c111 Ethernet adapter
2138
@item
2139
PL110 LCD controller
2140
@item
2141
PL050 KMI with PS/2 keyboard and mouse.
2142
@item
2143
PCI host bridge.  Note the emulated PCI bridge only provides access to
2144
PCI memory space.  It does not provide access to PCI IO space.
2145
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2146
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2147
mapped control registers.
2148
@item
2149
PCI OHCI USB controller.
2150
@item
2151
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2152
@item
2153
PL181 MultiMedia Card Interface with SD card.
2154
@end itemize
2155

    
2156
The ARM RealView Emulation baseboard is emulated with the following devices:
2157

    
2158
@itemize @minus
2159
@item
2160
ARM926E CPU
2161
@item
2162
ARM AMBA Generic/Distributed Interrupt Controller
2163
@item
2164
Four PL011 UARTs
2165
@item
2166
SMC 91c111 Ethernet adapter
2167
@item
2168
PL110 LCD controller
2169
@item
2170
PL050 KMI with PS/2 keyboard and mouse
2171
@item
2172
PCI host bridge
2173
@item
2174
PCI OHCI USB controller
2175
@item
2176
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2177
@item
2178
PL181 MultiMedia Card Interface with SD card.
2179
@end itemize
2180

    
2181
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2182
and "Terrier") emulation includes the following peripherals:
2183

    
2184
@itemize @minus
2185
@item
2186
Intel PXA270 System-on-chip (ARM V5TE core)
2187
@item
2188
NAND Flash memory
2189
@item
2190
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2191
@item
2192
On-chip OHCI USB controller
2193
@item
2194
On-chip LCD controller
2195
@item
2196
On-chip Real Time Clock
2197
@item
2198
TI ADS7846 touchscreen controller on SSP bus
2199
@item
2200
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2201
@item
2202
GPIO-connected keyboard controller and LEDs
2203
@item
2204
Secure Digital card connected to PXA MMC/SD host
2205
@item
2206
Three on-chip UARTs
2207
@item
2208
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2209
@end itemize
2210

    
2211
A Linux 2.6 test image is available on the QEMU web site. More
2212
information is available in the QEMU mailing-list archive.
2213

    
2214
@node ColdFire System emulator
2215
@section ColdFire System emulator
2216

    
2217
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2218
The emulator is able to boot a uClinux kernel.
2219

    
2220
The M5208EVB emulation includes the following devices:
2221

    
2222
@itemize @minus
2223
@item
2224
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2225
@item
2226
Three Two on-chip UARTs.
2227
@item
2228
Fast Ethernet Controller (FEC)
2229
@end itemize
2230

    
2231
The AN5206 emulation includes the following devices:
2232

    
2233
@itemize @minus
2234
@item
2235
MCF5206 ColdFire V2 Microprocessor.
2236
@item
2237
Two on-chip UARTs.
2238
@end itemize
2239

    
2240
@node QEMU User space emulator
2241
@chapter QEMU User space emulator
2242

    
2243
@menu
2244
* Supported Operating Systems ::
2245
* Linux User space emulator::
2246
* Mac OS X/Darwin User space emulator ::
2247
@end menu
2248

    
2249
@node Supported Operating Systems
2250
@section Supported Operating Systems
2251

    
2252
The following OS are supported in user space emulation:
2253

    
2254
@itemize @minus
2255
@item
2256
Linux (referred as qemu-linux-user)
2257
@item
2258
Mac OS X/Darwin (referred as qemu-darwin-user)
2259
@end itemize
2260

    
2261
@node Linux User space emulator
2262
@section Linux User space emulator
2263

    
2264
@menu
2265
* Quick Start::
2266
* Wine launch::
2267
* Command line options::
2268
* Other binaries::
2269
@end menu
2270

    
2271
@node Quick Start
2272
@subsection Quick Start
2273

    
2274
In order to launch a Linux process, QEMU needs the process executable
2275
itself and all the target (x86) dynamic libraries used by it.
2276

    
2277
@itemize
2278

    
2279
@item On x86, you can just try to launch any process by using the native
2280
libraries:
2281

    
2282
@example
2283
qemu-i386 -L / /bin/ls
2284
@end example
2285

    
2286
@code{-L /} tells that the x86 dynamic linker must be searched with a
2287
@file{/} prefix.
2288

    
2289
@item Since QEMU is also a linux process, you can launch qemu with
2290
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2291

    
2292
@example
2293
qemu-i386 -L / qemu-i386 -L / /bin/ls
2294
@end example
2295

    
2296
@item On non x86 CPUs, you need first to download at least an x86 glibc
2297
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2298
@code{LD_LIBRARY_PATH} is not set:
2299

    
2300
@example
2301
unset LD_LIBRARY_PATH
2302
@end example
2303

    
2304
Then you can launch the precompiled @file{ls} x86 executable:
2305

    
2306
@example
2307
qemu-i386 tests/i386/ls
2308
@end example
2309
You can look at @file{qemu-binfmt-conf.sh} so that
2310
QEMU is automatically launched by the Linux kernel when you try to
2311
launch x86 executables. It requires the @code{binfmt_misc} module in the
2312
Linux kernel.
2313

    
2314
@item The x86 version of QEMU is also included. You can try weird things such as:
2315
@example
2316
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2317
          /usr/local/qemu-i386/bin/ls-i386
2318
@end example
2319

    
2320
@end itemize
2321

    
2322
@node Wine launch
2323
@subsection Wine launch
2324

    
2325
@itemize
2326

    
2327
@item Ensure that you have a working QEMU with the x86 glibc
2328
distribution (see previous section). In order to verify it, you must be
2329
able to do:
2330

    
2331
@example
2332
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2333
@end example
2334

    
2335
@item Download the binary x86 Wine install
2336
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2337

    
2338
@item Configure Wine on your account. Look at the provided script
2339
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2340
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2341

    
2342
@item Then you can try the example @file{putty.exe}:
2343

    
2344
@example
2345
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2346
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2347
@end example
2348

    
2349
@end itemize
2350

    
2351
@node Command line options
2352
@subsection Command line options
2353

    
2354
@example
2355
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2356
@end example
2357

    
2358
@table @option
2359
@item -h
2360
Print the help
2361
@item -L path
2362
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2363
@item -s size
2364
Set the x86 stack size in bytes (default=524288)
2365
@end table
2366

    
2367
Debug options:
2368

    
2369
@table @option
2370
@item -d
2371
Activate log (logfile=/tmp/qemu.log)
2372
@item -p pagesize
2373
Act as if the host page size was 'pagesize' bytes
2374
@end table
2375

    
2376
@node Other binaries
2377
@subsection Other binaries
2378

    
2379
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2380
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2381
configurations), and arm-uclinux bFLT format binaries.
2382

    
2383
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2384
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2385
coldfire uClinux bFLT format binaries.
2386

    
2387
The binary format is detected automatically.
2388

    
2389
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2390
(Sparc64 CPU, 32 bit ABI).
2391

    
2392
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2393
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2394

    
2395
@node Mac OS X/Darwin User space emulator
2396
@section Mac OS X/Darwin User space emulator
2397

    
2398
@menu
2399
* Mac OS X/Darwin Status::
2400
* Mac OS X/Darwin Quick Start::
2401
* Mac OS X/Darwin Command line options::
2402
@end menu
2403

    
2404
@node Mac OS X/Darwin Status
2405
@subsection Mac OS X/Darwin Status
2406

    
2407
@itemize @minus
2408
@item
2409
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2410
@item
2411
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2412
@item
2413
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2414
@item
2415
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2416
@end itemize
2417

    
2418
[1] If you're host commpage can be executed by qemu.
2419

    
2420
@node Mac OS X/Darwin Quick Start
2421
@subsection Quick Start
2422

    
2423
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2424
itself and all the target dynamic libraries used by it. If you don't have the FAT
2425
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2426
CD or compile them by hand.
2427

    
2428
@itemize
2429

    
2430
@item On x86, you can just try to launch any process by using the native
2431
libraries:
2432

    
2433
@example
2434
qemu-i386 /bin/ls
2435
@end example
2436

    
2437
or to run the ppc version of the executable:
2438

    
2439
@example
2440
qemu-ppc /bin/ls
2441
@end example
2442

    
2443
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2444
are installed:
2445

    
2446
@example
2447
qemu-i386 -L /opt/x86_root/ /bin/ls
2448
@end example
2449

    
2450
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2451
@file{/opt/x86_root/usr/bin/dyld}.
2452

    
2453
@end itemize
2454

    
2455
@node Mac OS X/Darwin Command line options
2456
@subsection Command line options
2457

    
2458
@example
2459
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2460
@end example
2461

    
2462
@table @option
2463
@item -h
2464
Print the help
2465
@item -L path
2466
Set the library root path (default=/)
2467
@item -s size
2468
Set the stack size in bytes (default=524288)
2469
@end table
2470

    
2471
Debug options:
2472

    
2473
@table @option
2474
@item -d
2475
Activate log (logfile=/tmp/qemu.log)
2476
@item -p pagesize
2477
Act as if the host page size was 'pagesize' bytes
2478
@end table
2479

    
2480
@node compilation
2481
@chapter Compilation from the sources
2482

    
2483
@menu
2484
* Linux/Unix::
2485
* Windows::
2486
* Cross compilation for Windows with Linux::
2487
* Mac OS X::
2488
@end menu
2489

    
2490
@node Linux/Unix
2491
@section Linux/Unix
2492

    
2493
@subsection Compilation
2494

    
2495
First you must decompress the sources:
2496
@example
2497
cd /tmp
2498
tar zxvf qemu-x.y.z.tar.gz
2499
cd qemu-x.y.z
2500
@end example
2501

    
2502
Then you configure QEMU and build it (usually no options are needed):
2503
@example
2504
./configure
2505
make
2506
@end example
2507

    
2508
Then type as root user:
2509
@example
2510
make install
2511
@end example
2512
to install QEMU in @file{/usr/local}.
2513

    
2514
@subsection GCC version
2515

    
2516
In order to compile QEMU successfully, it is very important that you
2517
have the right tools. The most important one is gcc. On most hosts and
2518
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2519
Linux distribution includes a gcc 4.x compiler, you can usually
2520
install an older version (it is invoked by @code{gcc32} or
2521
@code{gcc34}). The QEMU configure script automatically probes for
2522
these older versions so that usually you don't have to do anything.
2523

    
2524
@node Windows
2525
@section Windows
2526

    
2527
@itemize
2528
@item Install the current versions of MSYS and MinGW from
2529
@url{http://www.mingw.org/}. You can find detailed installation
2530
instructions in the download section and the FAQ.
2531

    
2532
@item Download
2533
the MinGW development library of SDL 1.2.x
2534
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2535
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2536
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2537
directory. Edit the @file{sdl-config} script so that it gives the
2538
correct SDL directory when invoked.
2539

    
2540
@item Extract the current version of QEMU.
2541

    
2542
@item Start the MSYS shell (file @file{msys.bat}).
2543

    
2544
@item Change to the QEMU directory. Launch @file{./configure} and
2545
@file{make}.  If you have problems using SDL, verify that
2546
@file{sdl-config} can be launched from the MSYS command line.
2547

    
2548
@item You can install QEMU in @file{Program Files/Qemu} by typing
2549
@file{make install}. Don't forget to copy @file{SDL.dll} in
2550
@file{Program Files/Qemu}.
2551

    
2552
@end itemize
2553

    
2554
@node Cross compilation for Windows with Linux
2555
@section Cross compilation for Windows with Linux
2556

    
2557
@itemize
2558
@item
2559
Install the MinGW cross compilation tools available at
2560
@url{http://www.mingw.org/}.
2561

    
2562
@item
2563
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2564
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2565
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2566
the QEMU configuration script.
2567

    
2568
@item
2569
Configure QEMU for Windows cross compilation:
2570
@example
2571
./configure --enable-mingw32
2572
@end example
2573
If necessary, you can change the cross-prefix according to the prefix
2574
chosen for the MinGW tools with --cross-prefix. You can also use
2575
--prefix to set the Win32 install path.
2576

    
2577
@item You can install QEMU in the installation directory by typing
2578
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2579
installation directory.
2580

    
2581
@end itemize
2582

    
2583
Note: Currently, Wine does not seem able to launch
2584
QEMU for Win32.
2585

    
2586
@node Mac OS X
2587
@section Mac OS X
2588

    
2589
The Mac OS X patches are not fully merged in QEMU, so you should look
2590
at the QEMU mailing list archive to have all the necessary
2591
information.
2592

    
2593
@node Index
2594
@chapter Index
2595
@printindex cp
2596

    
2597
@bye