Statistics
| Branch: | Revision:

root / cputlb.c @ a8170e5e

History | View | Annotate | Download (10.9 kB)

1
/*
2
 *  Common CPU TLB handling
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "config.h"
21
#include "cpu.h"
22
#include "exec-all.h"
23
#include "memory.h"
24
#include "exec-memory.h"
25

    
26
#include "cputlb.h"
27

    
28
#include "memory-internal.h"
29

    
30
//#define DEBUG_TLB
31
//#define DEBUG_TLB_CHECK
32

    
33
/* statistics */
34
int tlb_flush_count;
35

    
36
static const CPUTLBEntry s_cputlb_empty_entry = {
37
    .addr_read  = -1,
38
    .addr_write = -1,
39
    .addr_code  = -1,
40
    .addend     = -1,
41
};
42

    
43
/* NOTE:
44
 * If flush_global is true (the usual case), flush all tlb entries.
45
 * If flush_global is false, flush (at least) all tlb entries not
46
 * marked global.
47
 *
48
 * Since QEMU doesn't currently implement a global/not-global flag
49
 * for tlb entries, at the moment tlb_flush() will also flush all
50
 * tlb entries in the flush_global == false case. This is OK because
51
 * CPU architectures generally permit an implementation to drop
52
 * entries from the TLB at any time, so flushing more entries than
53
 * required is only an efficiency issue, not a correctness issue.
54
 */
55
void tlb_flush(CPUArchState *env, int flush_global)
56
{
57
    int i;
58

    
59
#if defined(DEBUG_TLB)
60
    printf("tlb_flush:\n");
61
#endif
62
    /* must reset current TB so that interrupts cannot modify the
63
       links while we are modifying them */
64
    env->current_tb = NULL;
65

    
66
    for (i = 0; i < CPU_TLB_SIZE; i++) {
67
        int mmu_idx;
68

    
69
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
70
            env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
71
        }
72
    }
73

    
74
    memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
75

    
76
    env->tlb_flush_addr = -1;
77
    env->tlb_flush_mask = 0;
78
    tlb_flush_count++;
79
}
80

    
81
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
82
{
83
    if (addr == (tlb_entry->addr_read &
84
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
85
        addr == (tlb_entry->addr_write &
86
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
87
        addr == (tlb_entry->addr_code &
88
                 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
89
        *tlb_entry = s_cputlb_empty_entry;
90
    }
91
}
92

    
93
void tlb_flush_page(CPUArchState *env, target_ulong addr)
94
{
95
    int i;
96
    int mmu_idx;
97

    
98
#if defined(DEBUG_TLB)
99
    printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
100
#endif
101
    /* Check if we need to flush due to large pages.  */
102
    if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
103
#if defined(DEBUG_TLB)
104
        printf("tlb_flush_page: forced full flush ("
105
               TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
106
               env->tlb_flush_addr, env->tlb_flush_mask);
107
#endif
108
        tlb_flush(env, 1);
109
        return;
110
    }
111
    /* must reset current TB so that interrupts cannot modify the
112
       links while we are modifying them */
113
    env->current_tb = NULL;
114

    
115
    addr &= TARGET_PAGE_MASK;
116
    i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
117
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
118
        tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
119
    }
120

    
121
    tb_flush_jmp_cache(env, addr);
122
}
123

    
124
/* update the TLBs so that writes to code in the virtual page 'addr'
125
   can be detected */
126
void tlb_protect_code(ram_addr_t ram_addr)
127
{
128
    cpu_physical_memory_reset_dirty(ram_addr,
129
                                    ram_addr + TARGET_PAGE_SIZE,
130
                                    CODE_DIRTY_FLAG);
131
}
132

    
133
/* update the TLB so that writes in physical page 'phys_addr' are no longer
134
   tested for self modifying code */
135
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
136
                             target_ulong vaddr)
137
{
138
    cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
139
}
140

    
141
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
142
{
143
    return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
144
}
145

    
146
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
147
                           uintptr_t length)
148
{
149
    uintptr_t addr;
150

    
151
    if (tlb_is_dirty_ram(tlb_entry)) {
152
        addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
153
        if ((addr - start) < length) {
154
            tlb_entry->addr_write |= TLB_NOTDIRTY;
155
        }
156
    }
157
}
158

    
159
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
160
{
161
    ram_addr_t ram_addr;
162
    void *p;
163

    
164
    if (tlb_is_dirty_ram(tlb_entry)) {
165
        p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
166
            + tlb_entry->addend);
167
        ram_addr = qemu_ram_addr_from_host_nofail(p);
168
        if (!cpu_physical_memory_is_dirty(ram_addr)) {
169
            tlb_entry->addr_write |= TLB_NOTDIRTY;
170
        }
171
    }
172
}
173

    
174
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
175
{
176
    CPUArchState *env;
177

    
178
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
179
        int mmu_idx;
180

    
181
        for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
182
            unsigned int i;
183

    
184
            for (i = 0; i < CPU_TLB_SIZE; i++) {
185
                tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
186
                                      start1, length);
187
            }
188
        }
189
    }
190
}
191

    
192
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
193
{
194
    if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
195
        tlb_entry->addr_write = vaddr;
196
    }
197
}
198

    
199
/* update the TLB corresponding to virtual page vaddr
200
   so that it is no longer dirty */
201
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
202
{
203
    int i;
204
    int mmu_idx;
205

    
206
    vaddr &= TARGET_PAGE_MASK;
207
    i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
208
    for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
209
        tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
210
    }
211
}
212

    
213
/* Our TLB does not support large pages, so remember the area covered by
214
   large pages and trigger a full TLB flush if these are invalidated.  */
215
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
216
                               target_ulong size)
217
{
218
    target_ulong mask = ~(size - 1);
219

    
220
    if (env->tlb_flush_addr == (target_ulong)-1) {
221
        env->tlb_flush_addr = vaddr & mask;
222
        env->tlb_flush_mask = mask;
223
        return;
224
    }
225
    /* Extend the existing region to include the new page.
226
       This is a compromise between unnecessary flushes and the cost
227
       of maintaining a full variable size TLB.  */
228
    mask &= env->tlb_flush_mask;
229
    while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
230
        mask <<= 1;
231
    }
232
    env->tlb_flush_addr &= mask;
233
    env->tlb_flush_mask = mask;
234
}
235

    
236
/* Add a new TLB entry. At most one entry for a given virtual address
237
   is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
238
   supplied size is only used by tlb_flush_page.  */
239
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
240
                  hwaddr paddr, int prot,
241
                  int mmu_idx, target_ulong size)
242
{
243
    MemoryRegionSection *section;
244
    unsigned int index;
245
    target_ulong address;
246
    target_ulong code_address;
247
    uintptr_t addend;
248
    CPUTLBEntry *te;
249
    hwaddr iotlb;
250

    
251
    assert(size >= TARGET_PAGE_SIZE);
252
    if (size != TARGET_PAGE_SIZE) {
253
        tlb_add_large_page(env, vaddr, size);
254
    }
255
    section = phys_page_find(address_space_memory.dispatch, paddr >> TARGET_PAGE_BITS);
256
#if defined(DEBUG_TLB)
257
    printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
258
           " prot=%x idx=%d pd=0x%08lx\n",
259
           vaddr, paddr, prot, mmu_idx, pd);
260
#endif
261

    
262
    address = vaddr;
263
    if (!(memory_region_is_ram(section->mr) ||
264
          memory_region_is_romd(section->mr))) {
265
        /* IO memory case (romd handled later) */
266
        address |= TLB_MMIO;
267
    }
268
    if (memory_region_is_ram(section->mr) ||
269
        memory_region_is_romd(section->mr)) {
270
        addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
271
        + memory_region_section_addr(section, paddr);
272
    } else {
273
        addend = 0;
274
    }
275

    
276
    code_address = address;
277
    iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, prot,
278
                                            &address);
279

    
280
    index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
281
    env->iotlb[mmu_idx][index] = iotlb - vaddr;
282
    te = &env->tlb_table[mmu_idx][index];
283
    te->addend = addend - vaddr;
284
    if (prot & PAGE_READ) {
285
        te->addr_read = address;
286
    } else {
287
        te->addr_read = -1;
288
    }
289

    
290
    if (prot & PAGE_EXEC) {
291
        te->addr_code = code_address;
292
    } else {
293
        te->addr_code = -1;
294
    }
295
    if (prot & PAGE_WRITE) {
296
        if ((memory_region_is_ram(section->mr) && section->readonly)
297
            || memory_region_is_romd(section->mr)) {
298
            /* Write access calls the I/O callback.  */
299
            te->addr_write = address | TLB_MMIO;
300
        } else if (memory_region_is_ram(section->mr)
301
                   && !cpu_physical_memory_is_dirty(
302
                           section->mr->ram_addr
303
                           + memory_region_section_addr(section, paddr))) {
304
            te->addr_write = address | TLB_NOTDIRTY;
305
        } else {
306
            te->addr_write = address;
307
        }
308
    } else {
309
        te->addr_write = -1;
310
    }
311
}
312

    
313
/* NOTE: this function can trigger an exception */
314
/* NOTE2: the returned address is not exactly the physical address: it
315
 * is actually a ram_addr_t (in system mode; the user mode emulation
316
 * version of this function returns a guest virtual address).
317
 */
318
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
319
{
320
    int mmu_idx, page_index, pd;
321
    void *p;
322
    MemoryRegion *mr;
323

    
324
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
325
    mmu_idx = cpu_mmu_index(env1);
326
    if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
327
                 (addr & TARGET_PAGE_MASK))) {
328
        cpu_ldub_code(env1, addr);
329
    }
330
    pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
331
    mr = iotlb_to_region(pd);
332
    if (memory_region_is_unassigned(mr)) {
333
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
334
        cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
335
#else
336
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
337
                  TARGET_FMT_lx "\n", addr);
338
#endif
339
    }
340
    p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
341
    return qemu_ram_addr_from_host_nofail(p);
342
}
343

    
344
#define MMUSUFFIX _cmmu
345
#undef GETPC
346
#define GETPC() ((uintptr_t)0)
347
#define SOFTMMU_CODE_ACCESS
348

    
349
#define SHIFT 0
350
#include "softmmu_template.h"
351

    
352
#define SHIFT 1
353
#include "softmmu_template.h"
354

    
355
#define SHIFT 2
356
#include "softmmu_template.h"
357

    
358
#define SHIFT 3
359
#include "softmmu_template.h"
360

    
361
#undef env