Statistics
| Branch: | Revision:

root / hw / arm_mptimer.c @ a8170e5e

History | View | Annotate | Download (9.8 kB)

1
/*
2
 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3
 *
4
 * Copyright (c) 2006-2007 CodeSourcery.
5
 * Copyright (c) 2011 Linaro Limited
6
 * Written by Paul Brook, Peter Maydell
7
 *
8
 * This program is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU General Public License
10
 * as published by the Free Software Foundation; either version
11
 * 2 of the License, or (at your option) any later version.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License along
19
 * with this program; if not, see <http://www.gnu.org/licenses/>.
20
 */
21

    
22
#include "sysbus.h"
23
#include "qemu-timer.h"
24

    
25
/* This device implements the per-cpu private timer and watchdog block
26
 * which is used in both the ARM11MPCore and Cortex-A9MP.
27
 */
28

    
29
#define MAX_CPUS 4
30

    
31
/* State of a single timer or watchdog block */
32
typedef struct {
33
    uint32_t count;
34
    uint32_t load;
35
    uint32_t control;
36
    uint32_t status;
37
    int64_t tick;
38
    QEMUTimer *timer;
39
    qemu_irq irq;
40
    MemoryRegion iomem;
41
} timerblock;
42

    
43
typedef struct {
44
    SysBusDevice busdev;
45
    uint32_t num_cpu;
46
    timerblock timerblock[MAX_CPUS * 2];
47
    MemoryRegion iomem[2];
48
} arm_mptimer_state;
49

    
50
static inline int get_current_cpu(arm_mptimer_state *s)
51
{
52
    if (cpu_single_env->cpu_index >= s->num_cpu) {
53
        hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
54
                 s->num_cpu, cpu_single_env->cpu_index);
55
    }
56
    return cpu_single_env->cpu_index;
57
}
58

    
59
static inline void timerblock_update_irq(timerblock *tb)
60
{
61
    qemu_set_irq(tb->irq, tb->status);
62
}
63

    
64
/* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
65
static inline uint32_t timerblock_scale(timerblock *tb)
66
{
67
    return (((tb->control >> 8) & 0xff) + 1) * 10;
68
}
69

    
70
static void timerblock_reload(timerblock *tb, int restart)
71
{
72
    if (tb->count == 0) {
73
        return;
74
    }
75
    if (restart) {
76
        tb->tick = qemu_get_clock_ns(vm_clock);
77
    }
78
    tb->tick += (int64_t)tb->count * timerblock_scale(tb);
79
    qemu_mod_timer(tb->timer, tb->tick);
80
}
81

    
82
static void timerblock_tick(void *opaque)
83
{
84
    timerblock *tb = (timerblock *)opaque;
85
    tb->status = 1;
86
    if (tb->control & 2) {
87
        tb->count = tb->load;
88
        timerblock_reload(tb, 0);
89
    } else {
90
        tb->count = 0;
91
    }
92
    timerblock_update_irq(tb);
93
}
94

    
95
static uint64_t timerblock_read(void *opaque, hwaddr addr,
96
                                unsigned size)
97
{
98
    timerblock *tb = (timerblock *)opaque;
99
    int64_t val;
100
    switch (addr) {
101
    case 0: /* Load */
102
        return tb->load;
103
    case 4: /* Counter.  */
104
        if (((tb->control & 1) == 0) || (tb->count == 0)) {
105
            return 0;
106
        }
107
        /* Slow and ugly, but hopefully won't happen too often.  */
108
        val = tb->tick - qemu_get_clock_ns(vm_clock);
109
        val /= timerblock_scale(tb);
110
        if (val < 0) {
111
            val = 0;
112
        }
113
        return val;
114
    case 8: /* Control.  */
115
        return tb->control;
116
    case 12: /* Interrupt status.  */
117
        return tb->status;
118
    default:
119
        return 0;
120
    }
121
}
122

    
123
static void timerblock_write(void *opaque, hwaddr addr,
124
                             uint64_t value, unsigned size)
125
{
126
    timerblock *tb = (timerblock *)opaque;
127
    int64_t old;
128
    switch (addr) {
129
    case 0: /* Load */
130
        tb->load = value;
131
        /* Fall through.  */
132
    case 4: /* Counter.  */
133
        if ((tb->control & 1) && tb->count) {
134
            /* Cancel the previous timer.  */
135
            qemu_del_timer(tb->timer);
136
        }
137
        tb->count = value;
138
        if (tb->control & 1) {
139
            timerblock_reload(tb, 1);
140
        }
141
        break;
142
    case 8: /* Control.  */
143
        old = tb->control;
144
        tb->control = value;
145
        if (((old & 1) == 0) && (value & 1)) {
146
            if (tb->count == 0 && (tb->control & 2)) {
147
                tb->count = tb->load;
148
            }
149
            timerblock_reload(tb, 1);
150
        }
151
        break;
152
    case 12: /* Interrupt status.  */
153
        tb->status &= ~value;
154
        timerblock_update_irq(tb);
155
        break;
156
    }
157
}
158

    
159
/* Wrapper functions to implement the "read timer/watchdog for
160
 * the current CPU" memory regions.
161
 */
162
static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
163
                                   unsigned size)
164
{
165
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
166
    int id = get_current_cpu(s);
167
    return timerblock_read(&s->timerblock[id * 2], addr, size);
168
}
169

    
170
static void arm_thistimer_write(void *opaque, hwaddr addr,
171
                                uint64_t value, unsigned size)
172
{
173
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
174
    int id = get_current_cpu(s);
175
    timerblock_write(&s->timerblock[id * 2], addr, value, size);
176
}
177

    
178
static uint64_t arm_thiswdog_read(void *opaque, hwaddr addr,
179
                                  unsigned size)
180
{
181
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
182
    int id = get_current_cpu(s);
183
    return timerblock_read(&s->timerblock[id * 2 + 1], addr, size);
184
}
185

    
186
static void arm_thiswdog_write(void *opaque, hwaddr addr,
187
                               uint64_t value, unsigned size)
188
{
189
    arm_mptimer_state *s = (arm_mptimer_state *)opaque;
190
    int id = get_current_cpu(s);
191
    timerblock_write(&s->timerblock[id * 2 + 1], addr, value, size);
192
}
193

    
194
static const MemoryRegionOps arm_thistimer_ops = {
195
    .read = arm_thistimer_read,
196
    .write = arm_thistimer_write,
197
    .valid = {
198
        .min_access_size = 4,
199
        .max_access_size = 4,
200
    },
201
    .endianness = DEVICE_NATIVE_ENDIAN,
202
};
203

    
204
static const MemoryRegionOps arm_thiswdog_ops = {
205
    .read = arm_thiswdog_read,
206
    .write = arm_thiswdog_write,
207
    .valid = {
208
        .min_access_size = 4,
209
        .max_access_size = 4,
210
    },
211
    .endianness = DEVICE_NATIVE_ENDIAN,
212
};
213

    
214
static const MemoryRegionOps timerblock_ops = {
215
    .read = timerblock_read,
216
    .write = timerblock_write,
217
    .valid = {
218
        .min_access_size = 4,
219
        .max_access_size = 4,
220
    },
221
    .endianness = DEVICE_NATIVE_ENDIAN,
222
};
223

    
224
static void timerblock_reset(timerblock *tb)
225
{
226
    tb->count = 0;
227
    tb->load = 0;
228
    tb->control = 0;
229
    tb->status = 0;
230
    tb->tick = 0;
231
    if (tb->timer) {
232
        qemu_del_timer(tb->timer);
233
    }
234
}
235

    
236
static void arm_mptimer_reset(DeviceState *dev)
237
{
238
    arm_mptimer_state *s =
239
        FROM_SYSBUS(arm_mptimer_state, sysbus_from_qdev(dev));
240
    int i;
241
    /* We reset every timer in the array, not just the ones we're using,
242
     * because vmsave will look at every array element.
243
     */
244
    for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
245
        timerblock_reset(&s->timerblock[i]);
246
    }
247
}
248

    
249
static int arm_mptimer_init(SysBusDevice *dev)
250
{
251
    arm_mptimer_state *s = FROM_SYSBUS(arm_mptimer_state, dev);
252
    int i;
253
    if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
254
        hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
255
    }
256
    /* We implement one timer and one watchdog block per CPU, and
257
     * expose multiple MMIO regions:
258
     *  * region 0 is "timer for this core"
259
     *  * region 1 is "watchdog for this core"
260
     *  * region 2 is "timer for core 0"
261
     *  * region 3 is "watchdog for core 0"
262
     *  * region 4 is "timer for core 1"
263
     *  * region 5 is "watchdog for core 1"
264
     * and so on.
265
     * The outgoing interrupt lines are
266
     *  * timer for core 0
267
     *  * watchdog for core 0
268
     *  * timer for core 1
269
     *  * watchdog for core 1
270
     * and so on.
271
     */
272
    memory_region_init_io(&s->iomem[0], &arm_thistimer_ops, s,
273
                          "arm_mptimer_timer", 0x20);
274
    sysbus_init_mmio(dev, &s->iomem[0]);
275
    memory_region_init_io(&s->iomem[1], &arm_thiswdog_ops, s,
276
                          "arm_mptimer_wdog", 0x20);
277
    sysbus_init_mmio(dev, &s->iomem[1]);
278
    for (i = 0; i < (s->num_cpu * 2); i++) {
279
        timerblock *tb = &s->timerblock[i];
280
        tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
281
        sysbus_init_irq(dev, &tb->irq);
282
        memory_region_init_io(&tb->iomem, &timerblock_ops, tb,
283
                              "arm_mptimer_timerblock", 0x20);
284
        sysbus_init_mmio(dev, &tb->iomem);
285
    }
286

    
287
    return 0;
288
}
289

    
290
static const VMStateDescription vmstate_timerblock = {
291
    .name = "arm_mptimer_timerblock",
292
    .version_id = 1,
293
    .minimum_version_id = 1,
294
    .fields = (VMStateField[]) {
295
        VMSTATE_UINT32(count, timerblock),
296
        VMSTATE_UINT32(load, timerblock),
297
        VMSTATE_UINT32(control, timerblock),
298
        VMSTATE_UINT32(status, timerblock),
299
        VMSTATE_INT64(tick, timerblock),
300
        VMSTATE_END_OF_LIST()
301
    }
302
};
303

    
304
static const VMStateDescription vmstate_arm_mptimer = {
305
    .name = "arm_mptimer",
306
    .version_id = 1,
307
    .minimum_version_id = 1,
308
    .fields = (VMStateField[]) {
309
        VMSTATE_STRUCT_ARRAY(timerblock, arm_mptimer_state, (MAX_CPUS * 2),
310
                             1, vmstate_timerblock, timerblock),
311
        VMSTATE_END_OF_LIST()
312
    }
313
};
314

    
315
static Property arm_mptimer_properties[] = {
316
    DEFINE_PROP_UINT32("num-cpu", arm_mptimer_state, num_cpu, 0),
317
    DEFINE_PROP_END_OF_LIST()
318
};
319

    
320
static void arm_mptimer_class_init(ObjectClass *klass, void *data)
321
{
322
    DeviceClass *dc = DEVICE_CLASS(klass);
323
    SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
324

    
325
    sbc->init = arm_mptimer_init;
326
    dc->vmsd = &vmstate_arm_mptimer;
327
    dc->reset = arm_mptimer_reset;
328
    dc->no_user = 1;
329
    dc->props = arm_mptimer_properties;
330
}
331

    
332
static TypeInfo arm_mptimer_info = {
333
    .name          = "arm_mptimer",
334
    .parent        = TYPE_SYS_BUS_DEVICE,
335
    .instance_size = sizeof(arm_mptimer_state),
336
    .class_init    = arm_mptimer_class_init,
337
};
338

    
339
static void arm_mptimer_register_types(void)
340
{
341
    type_register_static(&arm_mptimer_info);
342
}
343

    
344
type_init(arm_mptimer_register_types)