Statistics
| Branch: | Revision:

root / hw / spapr.c @ a8170e5e

History | View | Annotate | Download (29.3 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44
#include "hw/msi.h"
45

    
46
#include "kvm.h"
47
#include "kvm_ppc.h"
48
#include "pci.h"
49

    
50
#include "exec-memory.h"
51
#include "hw/usb.h"
52

    
53
#include <libfdt.h>
54

    
55
/* SLOF memory layout:
56
 *
57
 * SLOF raw image loaded at 0, copies its romfs right below the flat
58
 * device-tree, then position SLOF itself 31M below that
59
 *
60
 * So we set FW_OVERHEAD to 40MB which should account for all of that
61
 * and more
62
 *
63
 * We load our kernel at 4M, leaving space for SLOF initial image
64
 */
65
#define FDT_MAX_SIZE            0x10000
66
#define RTAS_MAX_SIZE           0x10000
67
#define FW_MAX_SIZE             0x400000
68
#define FW_FILE_NAME            "slof.bin"
69
#define FW_OVERHEAD             0x2800000
70
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
71

    
72
#define MIN_RMA_SLOF            128UL
73

    
74
#define TIMEBASE_FREQ           512000000ULL
75

    
76
#define MAX_CPUS                256
77
#define XICS_IRQS               1024
78

    
79
#define SPAPR_PCI_BUID          0x800000020000001ULL
80
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
81
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
82
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
83
#define SPAPR_PCI_MSI_WIN_ADDR  (0x10000000000ULL + 0x90000000)
84

    
85
#define PHANDLE_XICP            0x00001111
86

    
87
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
88

    
89
sPAPREnvironment *spapr;
90

    
91
int spapr_allocate_irq(int hint, bool lsi)
92
{
93
    int irq;
94

    
95
    if (hint) {
96
        irq = hint;
97
        /* FIXME: we should probably check for collisions somehow */
98
    } else {
99
        irq = spapr->next_irq++;
100
    }
101

    
102
    /* Configure irq type */
103
    if (!xics_get_qirq(spapr->icp, irq)) {
104
        return 0;
105
    }
106

    
107
    xics_set_irq_type(spapr->icp, irq, lsi);
108

    
109
    return irq;
110
}
111

    
112
/* Allocate block of consequtive IRQs, returns a number of the first */
113
int spapr_allocate_irq_block(int num, bool lsi)
114
{
115
    int first = -1;
116
    int i;
117

    
118
    for (i = 0; i < num; ++i) {
119
        int irq;
120

    
121
        irq = spapr_allocate_irq(0, lsi);
122
        if (!irq) {
123
            return -1;
124
        }
125

    
126
        if (0 == i) {
127
            first = irq;
128
        }
129

    
130
        /* If the above doesn't create a consecutive block then that's
131
         * an internal bug */
132
        assert(irq == (first + i));
133
    }
134

    
135
    return first;
136
}
137

    
138
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
139
{
140
    int ret = 0, offset;
141
    CPUPPCState *env;
142
    char cpu_model[32];
143
    int smt = kvmppc_smt_threads();
144
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
145

    
146
    assert(spapr->cpu_model);
147

    
148
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
149
        uint32_t associativity[] = {cpu_to_be32(0x5),
150
                                    cpu_to_be32(0x0),
151
                                    cpu_to_be32(0x0),
152
                                    cpu_to_be32(0x0),
153
                                    cpu_to_be32(env->numa_node),
154
                                    cpu_to_be32(env->cpu_index)};
155

    
156
        if ((env->cpu_index % smt) != 0) {
157
            continue;
158
        }
159

    
160
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
161
                 env->cpu_index);
162

    
163
        offset = fdt_path_offset(fdt, cpu_model);
164
        if (offset < 0) {
165
            return offset;
166
        }
167

    
168
        if (nb_numa_nodes > 1) {
169
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
170
                              sizeof(associativity));
171
            if (ret < 0) {
172
                return ret;
173
            }
174
        }
175

    
176
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
177
                          pft_size_prop, sizeof(pft_size_prop));
178
        if (ret < 0) {
179
            return ret;
180
        }
181
    }
182
    return ret;
183
}
184

    
185

    
186
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
187
                                     size_t maxsize)
188
{
189
    size_t maxcells = maxsize / sizeof(uint32_t);
190
    int i, j, count;
191
    uint32_t *p = prop;
192

    
193
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
194
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
195

    
196
        if (!sps->page_shift) {
197
            break;
198
        }
199
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
200
            if (sps->enc[count].page_shift == 0) {
201
                break;
202
            }
203
        }
204
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
205
            break;
206
        }
207
        *(p++) = cpu_to_be32(sps->page_shift);
208
        *(p++) = cpu_to_be32(sps->slb_enc);
209
        *(p++) = cpu_to_be32(count);
210
        for (j = 0; j < count; j++) {
211
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
212
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
213
        }
214
    }
215

    
216
    return (p - prop) * sizeof(uint32_t);
217
}
218

    
219
#define _FDT(exp) \
220
    do { \
221
        int ret = (exp);                                           \
222
        if (ret < 0) {                                             \
223
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
224
                    #exp, fdt_strerror(ret));                      \
225
            exit(1);                                               \
226
        }                                                          \
227
    } while (0)
228

    
229

    
230
static void *spapr_create_fdt_skel(const char *cpu_model,
231
                                   hwaddr initrd_base,
232
                                   hwaddr initrd_size,
233
                                   hwaddr kernel_size,
234
                                   const char *boot_device,
235
                                   const char *kernel_cmdline)
236
{
237
    void *fdt;
238
    CPUPPCState *env;
239
    uint32_t start_prop = cpu_to_be32(initrd_base);
240
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
241
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
242
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
243
    char qemu_hypertas_prop[] = "hcall-memop1";
244
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
245
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
246
    char *modelname;
247
    int i, smt = kvmppc_smt_threads();
248
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
249

    
250
    fdt = g_malloc0(FDT_MAX_SIZE);
251
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
252

    
253
    if (kernel_size) {
254
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
255
    }
256
    if (initrd_size) {
257
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
258
    }
259
    _FDT((fdt_finish_reservemap(fdt)));
260

    
261
    /* Root node */
262
    _FDT((fdt_begin_node(fdt, "")));
263
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
264
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
265

    
266
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
267
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
268

    
269
    /* /chosen */
270
    _FDT((fdt_begin_node(fdt, "chosen")));
271

    
272
    /* Set Form1_affinity */
273
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
274

    
275
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
276
    _FDT((fdt_property(fdt, "linux,initrd-start",
277
                       &start_prop, sizeof(start_prop))));
278
    _FDT((fdt_property(fdt, "linux,initrd-end",
279
                       &end_prop, sizeof(end_prop))));
280
    if (kernel_size) {
281
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
282
                              cpu_to_be64(kernel_size) };
283

    
284
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
285
    }
286
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
287
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
288
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
289
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
290

    
291
    _FDT((fdt_end_node(fdt)));
292

    
293
    /* cpus */
294
    _FDT((fdt_begin_node(fdt, "cpus")));
295

    
296
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
297
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
298

    
299
    modelname = g_strdup(cpu_model);
300

    
301
    for (i = 0; i < strlen(modelname); i++) {
302
        modelname[i] = toupper(modelname[i]);
303
    }
304

    
305
    /* This is needed during FDT finalization */
306
    spapr->cpu_model = g_strdup(modelname);
307

    
308
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
309
        int index = env->cpu_index;
310
        uint32_t servers_prop[smp_threads];
311
        uint32_t gservers_prop[smp_threads * 2];
312
        char *nodename;
313
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
314
                           0xffffffff, 0xffffffff};
315
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
316
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
317
        uint32_t page_sizes_prop[64];
318
        size_t page_sizes_prop_size;
319

    
320
        if ((index % smt) != 0) {
321
            continue;
322
        }
323

    
324
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
325
            fprintf(stderr, "Allocation failure\n");
326
            exit(1);
327
        }
328

    
329
        _FDT((fdt_begin_node(fdt, nodename)));
330

    
331
        free(nodename);
332

    
333
        _FDT((fdt_property_cell(fdt, "reg", index)));
334
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
335

    
336
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
337
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
338
                                env->dcache_line_size)));
339
        _FDT((fdt_property_cell(fdt, "icache-block-size",
340
                                env->icache_line_size)));
341
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
342
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
343
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
344
        _FDT((fdt_property_string(fdt, "status", "okay")));
345
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
346

    
347
        /* Build interrupt servers and gservers properties */
348
        for (i = 0; i < smp_threads; i++) {
349
            servers_prop[i] = cpu_to_be32(index + i);
350
            /* Hack, direct the group queues back to cpu 0 */
351
            gservers_prop[i*2] = cpu_to_be32(index + i);
352
            gservers_prop[i*2 + 1] = 0;
353
        }
354
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
355
                           servers_prop, sizeof(servers_prop))));
356
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
357
                           gservers_prop, sizeof(gservers_prop))));
358

    
359
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
360
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
361
                               segs, sizeof(segs))));
362
        }
363

    
364
        /* Advertise VMX/VSX (vector extensions) if available
365
         *   0 / no property == no vector extensions
366
         *   1               == VMX / Altivec available
367
         *   2               == VSX available */
368
        if (env->insns_flags & PPC_ALTIVEC) {
369
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
370

    
371
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
372
        }
373

    
374
        /* Advertise DFP (Decimal Floating Point) if available
375
         *   0 / no property == no DFP
376
         *   1               == DFP available */
377
        if (env->insns_flags2 & PPC2_DFP) {
378
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
379
        }
380

    
381
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
382
                                                      sizeof(page_sizes_prop));
383
        if (page_sizes_prop_size) {
384
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
385
                               page_sizes_prop, page_sizes_prop_size)));
386
        }
387

    
388
        _FDT((fdt_end_node(fdt)));
389
    }
390

    
391
    g_free(modelname);
392

    
393
    _FDT((fdt_end_node(fdt)));
394

    
395
    /* RTAS */
396
    _FDT((fdt_begin_node(fdt, "rtas")));
397

    
398
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
399
                       sizeof(hypertas_prop))));
400
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
401
                       sizeof(qemu_hypertas_prop))));
402

    
403
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
404
        refpoints, sizeof(refpoints))));
405

    
406
    _FDT((fdt_end_node(fdt)));
407

    
408
    /* interrupt controller */
409
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
410

    
411
    _FDT((fdt_property_string(fdt, "device_type",
412
                              "PowerPC-External-Interrupt-Presentation")));
413
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
414
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
415
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
416
                       interrupt_server_ranges_prop,
417
                       sizeof(interrupt_server_ranges_prop))));
418
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
419
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
420
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
421

    
422
    _FDT((fdt_end_node(fdt)));
423

    
424
    /* vdevice */
425
    _FDT((fdt_begin_node(fdt, "vdevice")));
426

    
427
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
428
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
429
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
430
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
431
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
432
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
433

    
434
    _FDT((fdt_end_node(fdt)));
435

    
436
    _FDT((fdt_end_node(fdt))); /* close root node */
437
    _FDT((fdt_finish(fdt)));
438

    
439
    return fdt;
440
}
441

    
442
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
443
{
444
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
445
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
446
                                cpu_to_be32(0x0)};
447
    char mem_name[32];
448
    hwaddr node0_size, mem_start;
449
    uint64_t mem_reg_property[2];
450
    int i, off;
451

    
452
    /* memory node(s) */
453
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
454
    if (spapr->rma_size > node0_size) {
455
        spapr->rma_size = node0_size;
456
    }
457

    
458
    /* RMA */
459
    mem_reg_property[0] = 0;
460
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
461
    off = fdt_add_subnode(fdt, 0, "memory@0");
462
    _FDT(off);
463
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
464
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
465
                      sizeof(mem_reg_property))));
466
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
467
                      sizeof(associativity))));
468

    
469
    /* RAM: Node 0 */
470
    if (node0_size > spapr->rma_size) {
471
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
472
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
473

    
474
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
475
        off = fdt_add_subnode(fdt, 0, mem_name);
476
        _FDT(off);
477
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
478
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
479
                          sizeof(mem_reg_property))));
480
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
481
                          sizeof(associativity))));
482
    }
483

    
484
    /* RAM: Node 1 and beyond */
485
    mem_start = node0_size;
486
    for (i = 1; i < nb_numa_nodes; i++) {
487
        mem_reg_property[0] = cpu_to_be64(mem_start);
488
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
489
        associativity[3] = associativity[4] = cpu_to_be32(i);
490
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
491
        off = fdt_add_subnode(fdt, 0, mem_name);
492
        _FDT(off);
493
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
494
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
495
                          sizeof(mem_reg_property))));
496
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
497
                          sizeof(associativity))));
498
        mem_start += node_mem[i];
499
    }
500

    
501
    return 0;
502
}
503

    
504
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
505
                               hwaddr fdt_addr,
506
                               hwaddr rtas_addr,
507
                               hwaddr rtas_size)
508
{
509
    int ret;
510
    void *fdt;
511
    sPAPRPHBState *phb;
512

    
513
    fdt = g_malloc(FDT_MAX_SIZE);
514

    
515
    /* open out the base tree into a temp buffer for the final tweaks */
516
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
517

    
518
    ret = spapr_populate_memory(spapr, fdt);
519
    if (ret < 0) {
520
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
521
        exit(1);
522
    }
523

    
524
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
525
    if (ret < 0) {
526
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
527
        exit(1);
528
    }
529

    
530
    QLIST_FOREACH(phb, &spapr->phbs, list) {
531
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
532
    }
533

    
534
    if (ret < 0) {
535
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
536
        exit(1);
537
    }
538

    
539
    /* RTAS */
540
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
541
    if (ret < 0) {
542
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
543
    }
544

    
545
    /* Advertise NUMA via ibm,associativity */
546
    ret = spapr_fixup_cpu_dt(fdt, spapr);
547
    if (ret < 0) {
548
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
549
    }
550

    
551
    if (!spapr->has_graphics) {
552
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
553
    }
554

    
555
    _FDT((fdt_pack(fdt)));
556

    
557
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
558
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
559
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
560
        exit(1);
561
    }
562

    
563
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
564

    
565
    g_free(fdt);
566
}
567

    
568
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
569
{
570
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
571
}
572

    
573
static void emulate_spapr_hypercall(CPUPPCState *env)
574
{
575
    if (msr_pr) {
576
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
577
        env->gpr[3] = H_PRIVILEGE;
578
    } else {
579
        env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
580
    }
581
}
582

    
583
static void spapr_reset_htab(sPAPREnvironment *spapr)
584
{
585
    long shift;
586

    
587
    /* allocate hash page table.  For now we always make this 16mb,
588
     * later we should probably make it scale to the size of guest
589
     * RAM */
590

    
591
    shift = kvmppc_reset_htab(spapr->htab_shift);
592

    
593
    if (shift > 0) {
594
        /* Kernel handles htab, we don't need to allocate one */
595
        spapr->htab_shift = shift;
596
    } else {
597
        if (!spapr->htab) {
598
            /* Allocate an htab if we don't yet have one */
599
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
600
        }
601

    
602
        /* And clear it */
603
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
604
    }
605

    
606
    /* Update the RMA size if necessary */
607
    if (spapr->vrma_adjust) {
608
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
609
    }
610
}
611

    
612
static void ppc_spapr_reset(void)
613
{
614
    /* Reset the hash table & recalc the RMA */
615
    spapr_reset_htab(spapr);
616

    
617
    qemu_devices_reset();
618

    
619
    /* Load the fdt */
620
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
621
                       spapr->rtas_size);
622

    
623
    /* Set up the entry state */
624
    first_cpu->gpr[3] = spapr->fdt_addr;
625
    first_cpu->gpr[5] = 0;
626
    first_cpu->halted = 0;
627
    first_cpu->nip = spapr->entry_point;
628

    
629
}
630

    
631
static void spapr_cpu_reset(void *opaque)
632
{
633
    PowerPCCPU *cpu = opaque;
634
    CPUPPCState *env = &cpu->env;
635

    
636
    cpu_reset(CPU(cpu));
637

    
638
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
639
     * reset code and the rest are explicitly started up by the guest
640
     * using an RTAS call */
641
    env->halted = 1;
642

    
643
    env->spr[SPR_HIOR] = 0;
644

    
645
    env->external_htab = spapr->htab;
646
    env->htab_base = -1;
647
    env->htab_mask = HTAB_SIZE(spapr) - 1;
648
    env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
649
        (spapr->htab_shift - 18);
650
}
651

    
652
/* Returns whether we want to use VGA or not */
653
static int spapr_vga_init(PCIBus *pci_bus)
654
{
655
    switch (vga_interface_type) {
656
    case VGA_NONE:
657
    case VGA_STD:
658
        return pci_vga_init(pci_bus) != NULL;
659
    default:
660
        fprintf(stderr, "This vga model is not supported,"
661
                "currently it only supports -vga std\n");
662
        exit(0);
663
        break;
664
    }
665
}
666

    
667
/* pSeries LPAR / sPAPR hardware init */
668
static void ppc_spapr_init(QEMUMachineInitArgs *args)
669
{
670
    ram_addr_t ram_size = args->ram_size;
671
    const char *cpu_model = args->cpu_model;
672
    const char *kernel_filename = args->kernel_filename;
673
    const char *kernel_cmdline = args->kernel_cmdline;
674
    const char *initrd_filename = args->initrd_filename;
675
    const char *boot_device = args->boot_device;
676
    PowerPCCPU *cpu;
677
    CPUPPCState *env;
678
    PCIHostState *phb;
679
    int i;
680
    MemoryRegion *sysmem = get_system_memory();
681
    MemoryRegion *ram = g_new(MemoryRegion, 1);
682
    hwaddr rma_alloc_size;
683
    uint32_t initrd_base = 0;
684
    long kernel_size = 0, initrd_size = 0;
685
    long load_limit, rtas_limit, fw_size;
686
    char *filename;
687

    
688
    msi_supported = true;
689

    
690
    spapr = g_malloc0(sizeof(*spapr));
691
    QLIST_INIT(&spapr->phbs);
692

    
693
    cpu_ppc_hypercall = emulate_spapr_hypercall;
694

    
695
    /* Allocate RMA if necessary */
696
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
697

    
698
    if (rma_alloc_size == -1) {
699
        hw_error("qemu: Unable to create RMA\n");
700
        exit(1);
701
    }
702

    
703
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
704
        spapr->rma_size = rma_alloc_size;
705
    } else {
706
        spapr->rma_size = ram_size;
707

    
708
        /* With KVM, we don't actually know whether KVM supports an
709
         * unbounded RMA (PR KVM) or is limited by the hash table size
710
         * (HV KVM using VRMA), so we always assume the latter
711
         *
712
         * In that case, we also limit the initial allocations for RTAS
713
         * etc... to 256M since we have no way to know what the VRMA size
714
         * is going to be as it depends on the size of the hash table
715
         * isn't determined yet.
716
         */
717
        if (kvm_enabled()) {
718
            spapr->vrma_adjust = 1;
719
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
720
        }
721
    }
722

    
723
    /* We place the device tree and RTAS just below either the top of the RMA,
724
     * or just below 2GB, whichever is lowere, so that it can be
725
     * processed with 32-bit real mode code if necessary */
726
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
727
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
728
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
729
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
730

    
731
    /* We aim for a hash table of size 1/128 the size of RAM.  The
732
     * normal rule of thumb is 1/64 the size of RAM, but that's much
733
     * more than needed for the Linux guests we support. */
734
    spapr->htab_shift = 18; /* Minimum architected size */
735
    while (spapr->htab_shift <= 46) {
736
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
737
            break;
738
        }
739
        spapr->htab_shift++;
740
    }
741

    
742
    /* init CPUs */
743
    if (cpu_model == NULL) {
744
        cpu_model = kvm_enabled() ? "host" : "POWER7";
745
    }
746
    for (i = 0; i < smp_cpus; i++) {
747
        cpu = cpu_ppc_init(cpu_model);
748
        if (cpu == NULL) {
749
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
750
            exit(1);
751
        }
752
        env = &cpu->env;
753

    
754
        /* Set time-base frequency to 512 MHz */
755
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
756

    
757
        /* PAPR always has exception vectors in RAM not ROM */
758
        env->hreset_excp_prefix = 0;
759

    
760
        /* Tell KVM that we're in PAPR mode */
761
        if (kvm_enabled()) {
762
            kvmppc_set_papr(env);
763
        }
764

    
765
        qemu_register_reset(spapr_cpu_reset, cpu);
766
    }
767

    
768
    /* allocate RAM */
769
    spapr->ram_limit = ram_size;
770
    if (spapr->ram_limit > rma_alloc_size) {
771
        ram_addr_t nonrma_base = rma_alloc_size;
772
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
773

    
774
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
775
        vmstate_register_ram_global(ram);
776
        memory_region_add_subregion(sysmem, nonrma_base, ram);
777
    }
778

    
779
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
780
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
781
                                           rtas_limit - spapr->rtas_addr);
782
    if (spapr->rtas_size < 0) {
783
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
784
        exit(1);
785
    }
786
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
787
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
788
                 spapr->rtas_size, RTAS_MAX_SIZE);
789
        exit(1);
790
    }
791
    g_free(filename);
792

    
793

    
794
    /* Set up Interrupt Controller */
795
    spapr->icp = xics_system_init(XICS_IRQS);
796
    spapr->next_irq = 16;
797

    
798
    /* Set up IOMMU */
799
    spapr_iommu_init();
800

    
801
    /* Set up VIO bus */
802
    spapr->vio_bus = spapr_vio_bus_init();
803

    
804
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
805
        if (serial_hds[i]) {
806
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
807
        }
808
    }
809

    
810
    /* Set up PCI */
811
    spapr_pci_rtas_init();
812

    
813
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
814
                     SPAPR_PCI_MEM_WIN_ADDR,
815
                     SPAPR_PCI_MEM_WIN_SIZE,
816
                     SPAPR_PCI_IO_WIN_ADDR,
817
                     SPAPR_PCI_MSI_WIN_ADDR);
818
    phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
819

    
820
    for (i = 0; i < nb_nics; i++) {
821
        NICInfo *nd = &nd_table[i];
822

    
823
        if (!nd->model) {
824
            nd->model = g_strdup("ibmveth");
825
        }
826

    
827
        if (strcmp(nd->model, "ibmveth") == 0) {
828
            spapr_vlan_create(spapr->vio_bus, nd);
829
        } else {
830
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
831
        }
832
    }
833

    
834
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
835
        spapr_vscsi_create(spapr->vio_bus);
836
    }
837

    
838
    /* Graphics */
839
    if (spapr_vga_init(phb->bus)) {
840
        spapr->has_graphics = true;
841
    }
842

    
843
    if (usb_enabled) {
844
        pci_create_simple(phb->bus, -1, "pci-ohci");
845
        if (spapr->has_graphics) {
846
            usbdevice_create("keyboard");
847
            usbdevice_create("mouse");
848
        }
849
    }
850

    
851
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
852
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
853
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
854
        exit(1);
855
    }
856

    
857
    if (kernel_filename) {
858
        uint64_t lowaddr = 0;
859

    
860
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
861
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
862
        if (kernel_size < 0) {
863
            kernel_size = load_image_targphys(kernel_filename,
864
                                              KERNEL_LOAD_ADDR,
865
                                              load_limit - KERNEL_LOAD_ADDR);
866
        }
867
        if (kernel_size < 0) {
868
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
869
                    kernel_filename);
870
            exit(1);
871
        }
872

    
873
        /* load initrd */
874
        if (initrd_filename) {
875
            /* Try to locate the initrd in the gap between the kernel
876
             * and the firmware. Add a bit of space just in case
877
             */
878
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
879
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
880
                                              load_limit - initrd_base);
881
            if (initrd_size < 0) {
882
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
883
                        initrd_filename);
884
                exit(1);
885
            }
886
        } else {
887
            initrd_base = 0;
888
            initrd_size = 0;
889
        }
890
    }
891

    
892
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
893
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
894
    if (fw_size < 0) {
895
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
896
        exit(1);
897
    }
898
    g_free(filename);
899

    
900
    spapr->entry_point = 0x100;
901

    
902
    /* Prepare the device tree */
903
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
904
                                            initrd_base, initrd_size,
905
                                            kernel_size,
906
                                            boot_device, kernel_cmdline);
907
    assert(spapr->fdt_skel != NULL);
908
}
909

    
910
static QEMUMachine spapr_machine = {
911
    .name = "pseries",
912
    .desc = "pSeries Logical Partition (PAPR compliant)",
913
    .init = ppc_spapr_init,
914
    .reset = ppc_spapr_reset,
915
    .max_cpus = MAX_CPUS,
916
    .no_parallel = 1,
917
    .use_scsi = 1,
918
};
919

    
920
static void spapr_machine_init(void)
921
{
922
    qemu_register_machine(&spapr_machine);
923
}
924

    
925
machine_init(spapr_machine_init);