Statistics
| Branch: | Revision:

root / qemu-doc.texi @ a87295e8

History | View | Annotate | Download (63.8 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
85
@end itemize
86

    
87
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
88

    
89
@node Installation
90
@chapter Installation
91

    
92
If you want to compile QEMU yourself, see @ref{compilation}.
93

    
94
@menu
95
* install_linux::   Linux
96
* install_windows:: Windows
97
* install_mac::     Macintosh
98
@end menu
99

    
100
@node install_linux
101
@section Linux
102

    
103
If a precompiled package is available for your distribution - you just
104
have to install it. Otherwise, see @ref{compilation}.
105

    
106
@node install_windows
107
@section Windows
108

    
109
Download the experimental binary installer at
110
@url{http://www.free.oszoo.org/@/download.html}.
111

    
112
@node install_mac
113
@section Mac OS X
114

    
115
Download the experimental binary installer at
116
@url{http://www.free.oszoo.org/@/download.html}.
117

    
118
@node QEMU PC System emulator
119
@chapter QEMU PC System emulator
120

    
121
@menu
122
* pcsys_introduction:: Introduction
123
* pcsys_quickstart::   Quick Start
124
* sec_invocation::     Invocation
125
* pcsys_keys::         Keys
126
* pcsys_monitor::      QEMU Monitor
127
* disk_images::        Disk Images
128
* pcsys_network::      Network emulation
129
* direct_linux_boot::  Direct Linux Boot
130
* pcsys_usb::          USB emulation
131
* gdb_usage::          GDB usage
132
* pcsys_os_specific::  Target OS specific information
133
@end menu
134

    
135
@node pcsys_introduction
136
@section Introduction
137

    
138
@c man begin DESCRIPTION
139

    
140
The QEMU PC System emulator simulates the
141
following peripherals:
142

    
143
@itemize @minus
144
@item 
145
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
146
@item
147
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
148
extensions (hardware level, including all non standard modes).
149
@item
150
PS/2 mouse and keyboard
151
@item 
152
2 PCI IDE interfaces with hard disk and CD-ROM support
153
@item
154
Floppy disk
155
@item 
156
NE2000 PCI network adapters
157
@item
158
Serial ports
159
@item
160
Creative SoundBlaster 16 sound card
161
@item
162
ENSONIQ AudioPCI ES1370 sound card
163
@item
164
Adlib(OPL2) - Yamaha YM3812 compatible chip
165
@item
166
PCI UHCI USB controller and a virtual USB hub.
167
@end itemize
168

    
169
SMP is supported with up to 255 CPUs.
170

    
171
Note that adlib is only available when QEMU was configured with
172
-enable-adlib
173

    
174
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
175
VGA BIOS.
176

    
177
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
178

    
179
@c man end
180

    
181
@node pcsys_quickstart
182
@section Quick Start
183

    
184
Download and uncompress the linux image (@file{linux.img}) and type:
185

    
186
@example
187
qemu linux.img
188
@end example
189

    
190
Linux should boot and give you a prompt.
191

    
192
@node sec_invocation
193
@section Invocation
194

    
195
@example
196
@c man begin SYNOPSIS
197
usage: qemu [options] [disk_image]
198
@c man end
199
@end example
200

    
201
@c man begin OPTIONS
202
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
203

    
204
General options:
205
@table @option
206
@item -M machine
207
Select the emulated machine (@code{-M ?} for list)
208

    
209
@item -fda file
210
@item -fdb file
211
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
212
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
213

    
214
@item -hda file
215
@item -hdb file
216
@item -hdc file
217
@item -hdd file
218
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
219

    
220
@item -cdrom file
221
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
222
@option{-cdrom} at the same time). You can use the host CD-ROM by
223
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
224

    
225
@item -boot [a|c|d|n]
226
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
227
is the default.
228

    
229
@item -snapshot
230
Write to temporary files instead of disk image files. In this case,
231
the raw disk image you use is not written back. You can however force
232
the write back by pressing @key{C-a s} (@pxref{disk_images}).
233

    
234
@item -no-fd-bootchk
235
Disable boot signature checking for floppy disks in Bochs BIOS. It may
236
be needed to boot from old floppy disks.
237

    
238
@item -m megs
239
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
240

    
241
@item -smp n
242
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
243
CPUs are supported.
244

    
245
@item -nographic
246

    
247
Normally, QEMU uses SDL to display the VGA output. With this option,
248
you can totally disable graphical output so that QEMU is a simple
249
command line application. The emulated serial port is redirected on
250
the console. Therefore, you can still use QEMU to debug a Linux kernel
251
with a serial console.
252

    
253
@item -no-frame
254

    
255
Do not use decorations for SDL windows and start them using the whole
256
available screen space. This makes the using QEMU in a dedicated desktop
257
workspace more convenient.
258

    
259
@item -vnc display
260

    
261
Normally, QEMU uses SDL to display the VGA output.  With this option,
262
you can have QEMU listen on VNC display @var{display} and redirect the VGA
263
display over the VNC session.  It is very useful to enable the usb
264
tablet device when using this option (option @option{-usbdevice
265
tablet}). When using the VNC display, you must use the @option{-k}
266
option to set the keyboard layout if you are not using en-us.
267

    
268
@var{display} may be in the form @var{interface:d}, in which case connections
269
will only be allowed from @var{interface} on display @var{d}. Optionally,
270
@var{interface} can be omitted.  @var{display} can also be in the form
271
@var{unix:path} where @var{path} is the location of a unix socket to listen for
272
connections on.
273

    
274

    
275
@item -k language
276

    
277
Use keyboard layout @var{language} (for example @code{fr} for
278
French). This option is only needed where it is not easy to get raw PC
279
keycodes (e.g. on Macs, with some X11 servers or with a VNC
280
display). You don't normally need to use it on PC/Linux or PC/Windows
281
hosts.
282

    
283
The available layouts are:
284
@example
285
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
286
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
287
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
288
@end example
289

    
290
The default is @code{en-us}.
291

    
292
@item -audio-help
293

    
294
Will show the audio subsystem help: list of drivers, tunable
295
parameters.
296

    
297
@item -soundhw card1,card2,... or -soundhw all
298

    
299
Enable audio and selected sound hardware. Use ? to print all
300
available sound hardware.
301

    
302
@example
303
qemu -soundhw sb16,adlib hda
304
qemu -soundhw es1370 hda
305
qemu -soundhw all hda
306
qemu -soundhw ?
307
@end example
308

    
309
@item -localtime
310
Set the real time clock to local time (the default is to UTC
311
time). This option is needed to have correct date in MS-DOS or
312
Windows.
313

    
314
@item -full-screen
315
Start in full screen.
316

    
317
@item -pidfile file
318
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
319
from a script.
320

    
321
@item -daemonize
322
Daemonize the QEMU process after initialization.  QEMU will not detach from
323
standard IO until it is ready to receive connections on any of its devices.
324
This option is a useful way for external programs to launch QEMU without having
325
to cope with initialization race conditions.
326

    
327
@item -win2k-hack
328
Use it when installing Windows 2000 to avoid a disk full bug. After
329
Windows 2000 is installed, you no longer need this option (this option
330
slows down the IDE transfers).
331

    
332
@item -option-rom file
333
Load the contents of file as an option ROM.  This option is useful to load
334
things like EtherBoot.
335

    
336
@item -name string
337
Sets the name of the guest.  This name will be display in the SDL window
338
caption.  The name will also be used for the VNC server.
339

    
340
@end table
341

    
342
USB options:
343
@table @option
344

    
345
@item -usb
346
Enable the USB driver (will be the default soon)
347

    
348
@item -usbdevice devname
349
Add the USB device @var{devname}. @xref{usb_devices}.
350
@end table
351

    
352
Network options:
353

    
354
@table @option
355

    
356
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
357
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
358
= 0 is the default). The NIC is currently an NE2000 on the PC
359
target. Optionally, the MAC address can be changed. If no
360
@option{-net} option is specified, a single NIC is created.
361
Qemu can emulate several different models of network card.
362
Valid values for @var{type} are
363
@code{i82551}, @code{i82557b}, @code{i82559er},
364
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
365
@code{smc91c111} and @code{lance}.
366
Not all devices are supported on all targets.
367

    
368
@item -net user[,vlan=n][,hostname=name]
369
Use the user mode network stack which requires no administrator
370
priviledge to run.  @option{hostname=name} can be used to specify the client
371
hostname reported by the builtin DHCP server.
372

    
373
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
374
Connect the host TAP network interface @var{name} to VLAN @var{n} and
375
use the network script @var{file} to configure it. The default
376
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
377
disable script execution. If @var{name} is not
378
provided, the OS automatically provides one.  @option{fd=h} can be
379
used to specify the handle of an already opened host TAP interface. Example:
380

    
381
@example
382
qemu linux.img -net nic -net tap
383
@end example
384

    
385
More complicated example (two NICs, each one connected to a TAP device)
386
@example
387
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
388
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
389
@end example
390

    
391

    
392
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
393

    
394
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
395
machine using a TCP socket connection. If @option{listen} is
396
specified, QEMU waits for incoming connections on @var{port}
397
(@var{host} is optional). @option{connect} is used to connect to
398
another QEMU instance using the @option{listen} option. @option{fd=h}
399
specifies an already opened TCP socket.
400

    
401
Example:
402
@example
403
# launch a first QEMU instance
404
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
405
               -net socket,listen=:1234
406
# connect the VLAN 0 of this instance to the VLAN 0
407
# of the first instance
408
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
409
               -net socket,connect=127.0.0.1:1234
410
@end example
411

    
412
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
413

    
414
Create a VLAN @var{n} shared with another QEMU virtual
415
machines using a UDP multicast socket, effectively making a bus for 
416
every QEMU with same multicast address @var{maddr} and @var{port}.
417
NOTES:
418
@enumerate
419
@item 
420
Several QEMU can be running on different hosts and share same bus (assuming 
421
correct multicast setup for these hosts).
422
@item
423
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
424
@url{http://user-mode-linux.sf.net}.
425
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
426
@end enumerate
427

    
428
Example:
429
@example
430
# launch one QEMU instance
431
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
432
               -net socket,mcast=230.0.0.1:1234
433
# launch another QEMU instance on same "bus"
434
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
435
               -net socket,mcast=230.0.0.1:1234
436
# launch yet another QEMU instance on same "bus"
437
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
438
               -net socket,mcast=230.0.0.1:1234
439
@end example
440

    
441
Example (User Mode Linux compat.):
442
@example
443
# launch QEMU instance (note mcast address selected
444
# is UML's default)
445
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
446
               -net socket,mcast=239.192.168.1:1102
447
# launch UML
448
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
449
@end example
450

    
451
@item -net none
452
Indicate that no network devices should be configured. It is used to
453
override the default configuration (@option{-net nic -net user}) which
454
is activated if no @option{-net} options are provided.
455

    
456
@item -tftp dir
457
When using the user mode network stack, activate a built-in TFTP
458
server. The files in @var{dir} will be exposed as the root of a TFTP server.
459
The TFTP client on the guest must be configured in binary mode (use the command
460
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
461
usual 10.0.2.2.
462

    
463
@item -bootp file
464
When using the user mode network stack, broadcast @var{file} as the BOOTP
465
filename.  In conjunction with @option{-tftp}, this can be used to network boot
466
a guest from a local directory.
467

    
468
Example (using pxelinux):
469
@example
470
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
471
@end example
472

    
473
@item -smb dir
474
When using the user mode network stack, activate a built-in SMB
475
server so that Windows OSes can access to the host files in @file{dir}
476
transparently.
477

    
478
In the guest Windows OS, the line:
479
@example
480
10.0.2.4 smbserver
481
@end example
482
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
483
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
484

    
485
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
486

    
487
Note that a SAMBA server must be installed on the host OS in
488
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
489
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
490

    
491
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
492

    
493
When using the user mode network stack, redirect incoming TCP or UDP
494
connections to the host port @var{host-port} to the guest
495
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
496
is not specified, its value is 10.0.2.15 (default address given by the
497
built-in DHCP server).
498

    
499
For example, to redirect host X11 connection from screen 1 to guest
500
screen 0, use the following:
501

    
502
@example
503
# on the host
504
qemu -redir tcp:6001::6000 [...]
505
# this host xterm should open in the guest X11 server
506
xterm -display :1
507
@end example
508

    
509
To redirect telnet connections from host port 5555 to telnet port on
510
the guest, use the following:
511

    
512
@example
513
# on the host
514
qemu -redir tcp:5555::23 [...]
515
telnet localhost 5555
516
@end example
517

    
518
Then when you use on the host @code{telnet localhost 5555}, you
519
connect to the guest telnet server.
520

    
521
@end table
522

    
523
Linux boot specific: When using these options, you can use a given
524
Linux kernel without installing it in the disk image. It can be useful
525
for easier testing of various kernels.
526

    
527
@table @option
528

    
529
@item -kernel bzImage 
530
Use @var{bzImage} as kernel image.
531

    
532
@item -append cmdline 
533
Use @var{cmdline} as kernel command line
534

    
535
@item -initrd file
536
Use @var{file} as initial ram disk.
537

    
538
@end table
539

    
540
Debug/Expert options:
541
@table @option
542

    
543
@item -serial dev
544
Redirect the virtual serial port to host character device
545
@var{dev}. The default device is @code{vc} in graphical mode and
546
@code{stdio} in non graphical mode.
547

    
548
This option can be used several times to simulate up to 4 serials
549
ports.
550

    
551
Use @code{-serial none} to disable all serial ports.
552

    
553
Available character devices are:
554
@table @code
555
@item vc
556
Virtual console
557
@item pty
558
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
559
@item none
560
No device is allocated.
561
@item null
562
void device
563
@item /dev/XXX
564
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
565
parameters are set according to the emulated ones.
566
@item /dev/parportN
567
[Linux only, parallel port only] Use host parallel port
568
@var{N}. Currently SPP and EPP parallel port features can be used.
569
@item file:filename
570
Write output to filename. No character can be read.
571
@item stdio
572
[Unix only] standard input/output
573
@item pipe:filename
574
name pipe @var{filename}
575
@item COMn
576
[Windows only] Use host serial port @var{n}
577
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
578
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
579

    
580
If you just want a simple readonly console you can use @code{netcat} or
581
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
582
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
583
will appear in the netconsole session.
584

    
585
If you plan to send characters back via netconsole or you want to stop
586
and start qemu a lot of times, you should have qemu use the same
587
source port each time by using something like @code{-serial
588
udp::4555@@:4556} to qemu. Another approach is to use a patched
589
version of netcat which can listen to a TCP port and send and receive
590
characters via udp.  If you have a patched version of netcat which
591
activates telnet remote echo and single char transfer, then you can
592
use the following options to step up a netcat redirector to allow
593
telnet on port 5555 to access the qemu port.
594
@table @code
595
@item Qemu Options:
596
-serial udp::4555@@:4556
597
@item netcat options:
598
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
599
@item telnet options:
600
localhost 5555
601
@end table
602

    
603

    
604
@item tcp:[host]:port[,server][,nowait][,nodelay]
605
The TCP Net Console has two modes of operation.  It can send the serial
606
I/O to a location or wait for a connection from a location.  By default
607
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
608
the @var{server} option QEMU will wait for a client socket application
609
to connect to the port before continuing, unless the @code{nowait}
610
option was specified.  The @code{nodelay} option disables the Nagle buffering
611
algoritm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
612
one TCP connection at a time is accepted. You can use @code{telnet} to
613
connect to the corresponding character device.
614
@table @code
615
@item Example to send tcp console to 192.168.0.2 port 4444
616
-serial tcp:192.168.0.2:4444
617
@item Example to listen and wait on port 4444 for connection
618
-serial tcp::4444,server
619
@item Example to not wait and listen on ip 192.168.0.100 port 4444
620
-serial tcp:192.168.0.100:4444,server,nowait
621
@end table
622

    
623
@item telnet:host:port[,server][,nowait][,nodelay]
624
The telnet protocol is used instead of raw tcp sockets.  The options
625
work the same as if you had specified @code{-serial tcp}.  The
626
difference is that the port acts like a telnet server or client using
627
telnet option negotiation.  This will also allow you to send the
628
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
629
sequence.  Typically in unix telnet you do it with Control-] and then
630
type "send break" followed by pressing the enter key.
631

    
632
@item unix:path[,server][,nowait]
633
A unix domain socket is used instead of a tcp socket.  The option works the
634
same as if you had specified @code{-serial tcp} except the unix domain socket
635
@var{path} is used for connections.
636

    
637
@item mon:dev_string
638
This is a special option to allow the monitor to be multiplexed onto
639
another serial port.  The monitor is accessed with key sequence of
640
@key{Control-a} and then pressing @key{c}. See monitor access
641
@ref{pcsys_keys} in the -nographic section for more keys.
642
@var{dev_string} should be any one of the serial devices specified
643
above.  An example to multiplex the monitor onto a telnet server
644
listening on port 4444 would be:
645
@table @code
646
@item -serial mon:telnet::4444,server,nowait
647
@end table
648

    
649
@end table
650

    
651
@item -parallel dev
652
Redirect the virtual parallel port to host device @var{dev} (same
653
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
654
be used to use hardware devices connected on the corresponding host
655
parallel port.
656

    
657
This option can be used several times to simulate up to 3 parallel
658
ports.
659

    
660
Use @code{-parallel none} to disable all parallel ports.
661

    
662
@item -monitor dev
663
Redirect the monitor to host device @var{dev} (same devices as the
664
serial port).
665
The default device is @code{vc} in graphical mode and @code{stdio} in
666
non graphical mode.
667

    
668
@item -echr numeric_ascii_value
669
Change the escape character used for switching to the monitor when using
670
monitor and serial sharing.  The default is @code{0x01} when using the
671
@code{-nographic} option.  @code{0x01} is equal to pressing
672
@code{Control-a}.  You can select a different character from the ascii
673
control keys where 1 through 26 map to Control-a through Control-z.  For
674
instance you could use the either of the following to change the escape
675
character to Control-t.
676
@table @code
677
@item -echr 0x14
678
@item -echr 20
679
@end table
680

    
681
@item -s
682
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
683
@item -p port
684
Change gdb connection port.  @var{port} can be either a decimal number
685
to specify a TCP port, or a host device (same devices as the serial port).
686
@item -S
687
Do not start CPU at startup (you must type 'c' in the monitor).
688
@item -d             
689
Output log in /tmp/qemu.log
690
@item -hdachs c,h,s,[,t]
691
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
692
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
693
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
694
all thoses parameters. This option is useful for old MS-DOS disk
695
images.
696

    
697
@item -L path
698
Set the directory for the BIOS, VGA BIOS and keymaps.
699

    
700
@item -std-vga
701
Simulate a standard VGA card with Bochs VBE extensions (default is
702
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
703
VBE extensions (e.g. Windows XP) and if you want to use high
704
resolution modes (>= 1280x1024x16) then you should use this option.
705

    
706
@item -no-acpi
707
Disable ACPI (Advanced Configuration and Power Interface) support. Use
708
it if your guest OS complains about ACPI problems (PC target machine
709
only).
710

    
711
@item -no-reboot
712
Exit instead of rebooting.
713

    
714
@item -loadvm file
715
Start right away with a saved state (@code{loadvm} in monitor)
716

    
717
@item -semihosting
718
Enable semihosting syscall emulation (ARM and M68K target machines only).
719

    
720
On ARM this implements the "Angel" interface.
721
On M68K this implements the "ColdFire GDB" interface used by libgloss.
722

    
723
Note that this allows guest direct access to the host filesystem,
724
so should only be used with trusted guest OS.
725
@end table
726

    
727
@c man end
728

    
729
@node pcsys_keys
730
@section Keys
731

    
732
@c man begin OPTIONS
733

    
734
During the graphical emulation, you can use the following keys:
735
@table @key
736
@item Ctrl-Alt-f
737
Toggle full screen
738

    
739
@item Ctrl-Alt-n
740
Switch to virtual console 'n'. Standard console mappings are:
741
@table @emph
742
@item 1
743
Target system display
744
@item 2
745
Monitor
746
@item 3
747
Serial port
748
@end table
749

    
750
@item Ctrl-Alt
751
Toggle mouse and keyboard grab.
752
@end table
753

    
754
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
755
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
756

    
757
During emulation, if you are using the @option{-nographic} option, use
758
@key{Ctrl-a h} to get terminal commands:
759

    
760
@table @key
761
@item Ctrl-a h
762
Print this help
763
@item Ctrl-a x    
764
Exit emulator
765
@item Ctrl-a s    
766
Save disk data back to file (if -snapshot)
767
@item Ctrl-a t
768
toggle console timestamps
769
@item Ctrl-a b
770
Send break (magic sysrq in Linux)
771
@item Ctrl-a c
772
Switch between console and monitor
773
@item Ctrl-a Ctrl-a
774
Send Ctrl-a
775
@end table
776
@c man end
777

    
778
@ignore
779

    
780
@c man begin SEEALSO
781
The HTML documentation of QEMU for more precise information and Linux
782
user mode emulator invocation.
783
@c man end
784

    
785
@c man begin AUTHOR
786
Fabrice Bellard
787
@c man end
788

    
789
@end ignore
790

    
791
@node pcsys_monitor
792
@section QEMU Monitor
793

    
794
The QEMU monitor is used to give complex commands to the QEMU
795
emulator. You can use it to:
796

    
797
@itemize @minus
798

    
799
@item
800
Remove or insert removable media images
801
(such as CD-ROM or floppies)
802

    
803
@item 
804
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
805
from a disk file.
806

    
807
@item Inspect the VM state without an external debugger.
808

    
809
@end itemize
810

    
811
@subsection Commands
812

    
813
The following commands are available:
814

    
815
@table @option
816

    
817
@item help or ? [cmd]
818
Show the help for all commands or just for command @var{cmd}.
819

    
820
@item commit  
821
Commit changes to the disk images (if -snapshot is used)
822

    
823
@item info subcommand 
824
show various information about the system state
825

    
826
@table @option
827
@item info network
828
show the various VLANs and the associated devices
829
@item info block
830
show the block devices
831
@item info registers
832
show the cpu registers
833
@item info history
834
show the command line history
835
@item info pci
836
show emulated PCI device
837
@item info usb
838
show USB devices plugged on the virtual USB hub
839
@item info usbhost
840
show all USB host devices
841
@item info capture
842
show information about active capturing
843
@item info snapshots
844
show list of VM snapshots
845
@item info mice
846
show which guest mouse is receiving events
847
@end table
848

    
849
@item q or quit
850
Quit the emulator.
851

    
852
@item eject [-f] device
853
Eject a removable medium (use -f to force it).
854

    
855
@item change device filename
856
Change a removable medium.
857

    
858
@item screendump filename
859
Save screen into PPM image @var{filename}.
860

    
861
@item mouse_move dx dy [dz]
862
Move the active mouse to the specified coordinates @var{dx} @var{dy}
863
with optional scroll axis @var{dz}.
864

    
865
@item mouse_button val
866
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
867

    
868
@item mouse_set index
869
Set which mouse device receives events at given @var{index}, index
870
can be obtained with
871
@example
872
info mice
873
@end example
874

    
875
@item wavcapture filename [frequency [bits [channels]]]
876
Capture audio into @var{filename}. Using sample rate @var{frequency}
877
bits per sample @var{bits} and number of channels @var{channels}.
878

    
879
Defaults:
880
@itemize @minus
881
@item Sample rate = 44100 Hz - CD quality
882
@item Bits = 16
883
@item Number of channels = 2 - Stereo
884
@end itemize
885

    
886
@item stopcapture index
887
Stop capture with a given @var{index}, index can be obtained with
888
@example
889
info capture
890
@end example
891

    
892
@item log item1[,...]
893
Activate logging of the specified items to @file{/tmp/qemu.log}.
894

    
895
@item savevm [tag|id]
896
Create a snapshot of the whole virtual machine. If @var{tag} is
897
provided, it is used as human readable identifier. If there is already
898
a snapshot with the same tag or ID, it is replaced. More info at
899
@ref{vm_snapshots}.
900

    
901
@item loadvm tag|id
902
Set the whole virtual machine to the snapshot identified by the tag
903
@var{tag} or the unique snapshot ID @var{id}.
904

    
905
@item delvm tag|id
906
Delete the snapshot identified by @var{tag} or @var{id}.
907

    
908
@item stop
909
Stop emulation.
910

    
911
@item c or cont
912
Resume emulation.
913

    
914
@item gdbserver [port]
915
Start gdbserver session (default port=1234)
916

    
917
@item x/fmt addr
918
Virtual memory dump starting at @var{addr}.
919

    
920
@item xp /fmt addr
921
Physical memory dump starting at @var{addr}.
922

    
923
@var{fmt} is a format which tells the command how to format the
924
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
925

    
926
@table @var
927
@item count 
928
is the number of items to be dumped.
929

    
930
@item format
931
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
932
c (char) or i (asm instruction).
933

    
934
@item size
935
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
936
@code{h} or @code{w} can be specified with the @code{i} format to
937
respectively select 16 or 32 bit code instruction size.
938

    
939
@end table
940

    
941
Examples: 
942
@itemize
943
@item
944
Dump 10 instructions at the current instruction pointer:
945
@example 
946
(qemu) x/10i $eip
947
0x90107063:  ret
948
0x90107064:  sti
949
0x90107065:  lea    0x0(%esi,1),%esi
950
0x90107069:  lea    0x0(%edi,1),%edi
951
0x90107070:  ret
952
0x90107071:  jmp    0x90107080
953
0x90107073:  nop
954
0x90107074:  nop
955
0x90107075:  nop
956
0x90107076:  nop
957
@end example
958

    
959
@item
960
Dump 80 16 bit values at the start of the video memory.
961
@smallexample 
962
(qemu) xp/80hx 0xb8000
963
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
964
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
965
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
966
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
967
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
968
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
969
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
970
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
971
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
972
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
973
@end smallexample
974
@end itemize
975

    
976
@item p or print/fmt expr
977

    
978
Print expression value. Only the @var{format} part of @var{fmt} is
979
used.
980

    
981
@item sendkey keys
982

    
983
Send @var{keys} to the emulator. Use @code{-} to press several keys
984
simultaneously. Example:
985
@example
986
sendkey ctrl-alt-f1
987
@end example
988

    
989
This command is useful to send keys that your graphical user interface
990
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
991

    
992
@item system_reset
993

    
994
Reset the system.
995

    
996
@item usb_add devname
997

    
998
Add the USB device @var{devname}.  For details of available devices see
999
@ref{usb_devices}
1000

    
1001
@item usb_del devname
1002

    
1003
Remove the USB device @var{devname} from the QEMU virtual USB
1004
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1005
command @code{info usb} to see the devices you can remove.
1006

    
1007
@end table
1008

    
1009
@subsection Integer expressions
1010

    
1011
The monitor understands integers expressions for every integer
1012
argument. You can use register names to get the value of specifics
1013
CPU registers by prefixing them with @emph{$}.
1014

    
1015
@node disk_images
1016
@section Disk Images
1017

    
1018
Since version 0.6.1, QEMU supports many disk image formats, including
1019
growable disk images (their size increase as non empty sectors are
1020
written), compressed and encrypted disk images. Version 0.8.3 added
1021
the new qcow2 disk image format which is essential to support VM
1022
snapshots.
1023

    
1024
@menu
1025
* disk_images_quickstart::    Quick start for disk image creation
1026
* disk_images_snapshot_mode:: Snapshot mode
1027
* vm_snapshots::              VM snapshots
1028
* qemu_img_invocation::       qemu-img Invocation
1029
* host_drives::               Using host drives
1030
* disk_images_fat_images::    Virtual FAT disk images
1031
@end menu
1032

    
1033
@node disk_images_quickstart
1034
@subsection Quick start for disk image creation
1035

    
1036
You can create a disk image with the command:
1037
@example
1038
qemu-img create myimage.img mysize
1039
@end example
1040
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1041
size in kilobytes. You can add an @code{M} suffix to give the size in
1042
megabytes and a @code{G} suffix for gigabytes.
1043

    
1044
See @ref{qemu_img_invocation} for more information.
1045

    
1046
@node disk_images_snapshot_mode
1047
@subsection Snapshot mode
1048

    
1049
If you use the option @option{-snapshot}, all disk images are
1050
considered as read only. When sectors in written, they are written in
1051
a temporary file created in @file{/tmp}. You can however force the
1052
write back to the raw disk images by using the @code{commit} monitor
1053
command (or @key{C-a s} in the serial console).
1054

    
1055
@node vm_snapshots
1056
@subsection VM snapshots
1057

    
1058
VM snapshots are snapshots of the complete virtual machine including
1059
CPU state, RAM, device state and the content of all the writable
1060
disks. In order to use VM snapshots, you must have at least one non
1061
removable and writable block device using the @code{qcow2} disk image
1062
format. Normally this device is the first virtual hard drive.
1063

    
1064
Use the monitor command @code{savevm} to create a new VM snapshot or
1065
replace an existing one. A human readable name can be assigned to each
1066
snapshot in addition to its numerical ID.
1067

    
1068
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1069
a VM snapshot. @code{info snapshots} lists the available snapshots
1070
with their associated information:
1071

    
1072
@example
1073
(qemu) info snapshots
1074
Snapshot devices: hda
1075
Snapshot list (from hda):
1076
ID        TAG                 VM SIZE                DATE       VM CLOCK
1077
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1078
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1079
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1080
@end example
1081

    
1082
A VM snapshot is made of a VM state info (its size is shown in
1083
@code{info snapshots}) and a snapshot of every writable disk image.
1084
The VM state info is stored in the first @code{qcow2} non removable
1085
and writable block device. The disk image snapshots are stored in
1086
every disk image. The size of a snapshot in a disk image is difficult
1087
to evaluate and is not shown by @code{info snapshots} because the
1088
associated disk sectors are shared among all the snapshots to save
1089
disk space (otherwise each snapshot would need a full copy of all the
1090
disk images).
1091

    
1092
When using the (unrelated) @code{-snapshot} option
1093
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1094
but they are deleted as soon as you exit QEMU.
1095

    
1096
VM snapshots currently have the following known limitations:
1097
@itemize
1098
@item 
1099
They cannot cope with removable devices if they are removed or
1100
inserted after a snapshot is done.
1101
@item 
1102
A few device drivers still have incomplete snapshot support so their
1103
state is not saved or restored properly (in particular USB).
1104
@end itemize
1105

    
1106
@node qemu_img_invocation
1107
@subsection @code{qemu-img} Invocation
1108

    
1109
@include qemu-img.texi
1110

    
1111
@node host_drives
1112
@subsection Using host drives
1113

    
1114
In addition to disk image files, QEMU can directly access host
1115
devices. We describe here the usage for QEMU version >= 0.8.3.
1116

    
1117
@subsubsection Linux
1118

    
1119
On Linux, you can directly use the host device filename instead of a
1120
disk image filename provided you have enough proviledge to access
1121
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1122
@file{/dev/fd0} for the floppy.
1123

    
1124
@table @code
1125
@item CD
1126
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1127
specific code to detect CDROM insertion or removal. CDROM ejection by
1128
the guest OS is supported. Currently only data CDs are supported.
1129
@item Floppy
1130
You can specify a floppy device even if no floppy is loaded. Floppy
1131
removal is currently not detected accurately (if you change floppy
1132
without doing floppy access while the floppy is not loaded, the guest
1133
OS will think that the same floppy is loaded).
1134
@item Hard disks
1135
Hard disks can be used. Normally you must specify the whole disk
1136
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1137
see it as a partitioned disk. WARNING: unless you know what you do, it
1138
is better to only make READ-ONLY accesses to the hard disk otherwise
1139
you may corrupt your host data (use the @option{-snapshot} command
1140
line option or modify the device permissions accordingly).
1141
@end table
1142

    
1143
@subsubsection Windows
1144

    
1145
@table @code
1146
@item CD
1147
The prefered syntax is the drive letter (e.g. @file{d:}). The
1148
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1149
supported as an alias to the first CDROM drive.
1150

    
1151
Currently there is no specific code to handle removable media, so it
1152
is better to use the @code{change} or @code{eject} monitor commands to
1153
change or eject media.
1154
@item Hard disks
1155
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1156
where @var{N} is the drive number (0 is the first hard disk).
1157

    
1158
WARNING: unless you know what you do, it is better to only make
1159
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1160
host data (use the @option{-snapshot} command line so that the
1161
modifications are written in a temporary file).
1162
@end table
1163

    
1164

    
1165
@subsubsection Mac OS X
1166

    
1167
@file{/dev/cdrom} is an alias to the first CDROM. 
1168

    
1169
Currently there is no specific code to handle removable media, so it
1170
is better to use the @code{change} or @code{eject} monitor commands to
1171
change or eject media.
1172

    
1173
@node disk_images_fat_images
1174
@subsection Virtual FAT disk images
1175

    
1176
QEMU can automatically create a virtual FAT disk image from a
1177
directory tree. In order to use it, just type:
1178

    
1179
@example 
1180
qemu linux.img -hdb fat:/my_directory
1181
@end example
1182

    
1183
Then you access access to all the files in the @file{/my_directory}
1184
directory without having to copy them in a disk image or to export
1185
them via SAMBA or NFS. The default access is @emph{read-only}.
1186

    
1187
Floppies can be emulated with the @code{:floppy:} option:
1188

    
1189
@example 
1190
qemu linux.img -fda fat:floppy:/my_directory
1191
@end example
1192

    
1193
A read/write support is available for testing (beta stage) with the
1194
@code{:rw:} option:
1195

    
1196
@example 
1197
qemu linux.img -fda fat:floppy:rw:/my_directory
1198
@end example
1199

    
1200
What you should @emph{never} do:
1201
@itemize
1202
@item use non-ASCII filenames ;
1203
@item use "-snapshot" together with ":rw:" ;
1204
@item expect it to work when loadvm'ing ;
1205
@item write to the FAT directory on the host system while accessing it with the guest system.
1206
@end itemize
1207

    
1208
@node pcsys_network
1209
@section Network emulation
1210

    
1211
QEMU can simulate several networks cards (NE2000 boards on the PC
1212
target) and can connect them to an arbitrary number of Virtual Local
1213
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1214
VLAN. VLAN can be connected between separate instances of QEMU to
1215
simulate large networks. For simpler usage, a non priviledged user mode
1216
network stack can replace the TAP device to have a basic network
1217
connection.
1218

    
1219
@subsection VLANs
1220

    
1221
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1222
connection between several network devices. These devices can be for
1223
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1224
(TAP devices).
1225

    
1226
@subsection Using TAP network interfaces
1227

    
1228
This is the standard way to connect QEMU to a real network. QEMU adds
1229
a virtual network device on your host (called @code{tapN}), and you
1230
can then configure it as if it was a real ethernet card.
1231

    
1232
@subsubsection Linux host
1233

    
1234
As an example, you can download the @file{linux-test-xxx.tar.gz}
1235
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1236
configure properly @code{sudo} so that the command @code{ifconfig}
1237
contained in @file{qemu-ifup} can be executed as root. You must verify
1238
that your host kernel supports the TAP network interfaces: the
1239
device @file{/dev/net/tun} must be present.
1240

    
1241
See @ref{sec_invocation} to have examples of command lines using the
1242
TAP network interfaces.
1243

    
1244
@subsubsection Windows host
1245

    
1246
There is a virtual ethernet driver for Windows 2000/XP systems, called
1247
TAP-Win32. But it is not included in standard QEMU for Windows,
1248
so you will need to get it separately. It is part of OpenVPN package,
1249
so download OpenVPN from : @url{http://openvpn.net/}.
1250

    
1251
@subsection Using the user mode network stack
1252

    
1253
By using the option @option{-net user} (default configuration if no
1254
@option{-net} option is specified), QEMU uses a completely user mode
1255
network stack (you don't need root priviledge to use the virtual
1256
network). The virtual network configuration is the following:
1257

    
1258
@example
1259

    
1260
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1261
                           |          (10.0.2.2)
1262
                           |
1263
                           ---->  DNS server (10.0.2.3)
1264
                           |     
1265
                           ---->  SMB server (10.0.2.4)
1266
@end example
1267

    
1268
The QEMU VM behaves as if it was behind a firewall which blocks all
1269
incoming connections. You can use a DHCP client to automatically
1270
configure the network in the QEMU VM. The DHCP server assign addresses
1271
to the hosts starting from 10.0.2.15.
1272

    
1273
In order to check that the user mode network is working, you can ping
1274
the address 10.0.2.2 and verify that you got an address in the range
1275
10.0.2.x from the QEMU virtual DHCP server.
1276

    
1277
Note that @code{ping} is not supported reliably to the internet as it
1278
would require root priviledges. It means you can only ping the local
1279
router (10.0.2.2).
1280

    
1281
When using the built-in TFTP server, the router is also the TFTP
1282
server.
1283

    
1284
When using the @option{-redir} option, TCP or UDP connections can be
1285
redirected from the host to the guest. It allows for example to
1286
redirect X11, telnet or SSH connections.
1287

    
1288
@subsection Connecting VLANs between QEMU instances
1289

    
1290
Using the @option{-net socket} option, it is possible to make VLANs
1291
that span several QEMU instances. See @ref{sec_invocation} to have a
1292
basic example.
1293

    
1294
@node direct_linux_boot
1295
@section Direct Linux Boot
1296

    
1297
This section explains how to launch a Linux kernel inside QEMU without
1298
having to make a full bootable image. It is very useful for fast Linux
1299
kernel testing.
1300

    
1301
The syntax is:
1302
@example
1303
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1304
@end example
1305

    
1306
Use @option{-kernel} to provide the Linux kernel image and
1307
@option{-append} to give the kernel command line arguments. The
1308
@option{-initrd} option can be used to provide an INITRD image.
1309

    
1310
When using the direct Linux boot, a disk image for the first hard disk
1311
@file{hda} is required because its boot sector is used to launch the
1312
Linux kernel.
1313

    
1314
If you do not need graphical output, you can disable it and redirect
1315
the virtual serial port and the QEMU monitor to the console with the
1316
@option{-nographic} option. The typical command line is:
1317
@example
1318
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1319
     -append "root=/dev/hda console=ttyS0" -nographic
1320
@end example
1321

    
1322
Use @key{Ctrl-a c} to switch between the serial console and the
1323
monitor (@pxref{pcsys_keys}).
1324

    
1325
@node pcsys_usb
1326
@section USB emulation
1327

    
1328
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1329
virtual USB devices or real host USB devices (experimental, works only
1330
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1331
as necessary to connect multiple USB devices.
1332

    
1333
@menu
1334
* usb_devices::
1335
* host_usb_devices::
1336
@end menu
1337
@node usb_devices
1338
@subsection Connecting USB devices
1339

    
1340
USB devices can be connected with the @option{-usbdevice} commandline option
1341
or the @code{usb_add} monitor command.  Available devices are:
1342

    
1343
@table @var
1344
@item @code{mouse}
1345
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1346
@item @code{tablet}
1347
Pointer device that uses absolute coordinates (like a touchscreen).
1348
This means qemu is able to report the mouse position without having
1349
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1350
@item @code{disk:file}
1351
Mass storage device based on @var{file} (@pxref{disk_images})
1352
@item @code{host:bus.addr}
1353
Pass through the host device identified by @var{bus.addr}
1354
(Linux only)
1355
@item @code{host:vendor_id:product_id}
1356
Pass through the host device identified by @var{vendor_id:product_id}
1357
(Linux only)
1358
@end table
1359

    
1360
@node host_usb_devices
1361
@subsection Using host USB devices on a Linux host
1362

    
1363
WARNING: this is an experimental feature. QEMU will slow down when
1364
using it. USB devices requiring real time streaming (i.e. USB Video
1365
Cameras) are not supported yet.
1366

    
1367
@enumerate
1368
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1369
is actually using the USB device. A simple way to do that is simply to
1370
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1371
to @file{mydriver.o.disabled}.
1372

    
1373
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1374
@example
1375
ls /proc/bus/usb
1376
001  devices  drivers
1377
@end example
1378

    
1379
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1380
@example
1381
chown -R myuid /proc/bus/usb
1382
@end example
1383

    
1384
@item Launch QEMU and do in the monitor:
1385
@example 
1386
info usbhost
1387
  Device 1.2, speed 480 Mb/s
1388
    Class 00: USB device 1234:5678, USB DISK
1389
@end example
1390
You should see the list of the devices you can use (Never try to use
1391
hubs, it won't work).
1392

    
1393
@item Add the device in QEMU by using:
1394
@example 
1395
usb_add host:1234:5678
1396
@end example
1397

    
1398
Normally the guest OS should report that a new USB device is
1399
plugged. You can use the option @option{-usbdevice} to do the same.
1400

    
1401
@item Now you can try to use the host USB device in QEMU.
1402

    
1403
@end enumerate
1404

    
1405
When relaunching QEMU, you may have to unplug and plug again the USB
1406
device to make it work again (this is a bug).
1407

    
1408
@node gdb_usage
1409
@section GDB usage
1410

    
1411
QEMU has a primitive support to work with gdb, so that you can do
1412
'Ctrl-C' while the virtual machine is running and inspect its state.
1413

    
1414
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1415
gdb connection:
1416
@example
1417
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1418
       -append "root=/dev/hda"
1419
Connected to host network interface: tun0
1420
Waiting gdb connection on port 1234
1421
@end example
1422

    
1423
Then launch gdb on the 'vmlinux' executable:
1424
@example
1425
> gdb vmlinux
1426
@end example
1427

    
1428
In gdb, connect to QEMU:
1429
@example
1430
(gdb) target remote localhost:1234
1431
@end example
1432

    
1433
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1434
@example
1435
(gdb) c
1436
@end example
1437

    
1438
Here are some useful tips in order to use gdb on system code:
1439

    
1440
@enumerate
1441
@item
1442
Use @code{info reg} to display all the CPU registers.
1443
@item
1444
Use @code{x/10i $eip} to display the code at the PC position.
1445
@item
1446
Use @code{set architecture i8086} to dump 16 bit code. Then use
1447
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1448
@end enumerate
1449

    
1450
@node pcsys_os_specific
1451
@section Target OS specific information
1452

    
1453
@subsection Linux
1454

    
1455
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1456
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1457
color depth in the guest and the host OS.
1458

    
1459
When using a 2.6 guest Linux kernel, you should add the option
1460
@code{clock=pit} on the kernel command line because the 2.6 Linux
1461
kernels make very strict real time clock checks by default that QEMU
1462
cannot simulate exactly.
1463

    
1464
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1465
not activated because QEMU is slower with this patch. The QEMU
1466
Accelerator Module is also much slower in this case. Earlier Fedora
1467
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1468
patch by default. Newer kernels don't have it.
1469

    
1470
@subsection Windows
1471

    
1472
If you have a slow host, using Windows 95 is better as it gives the
1473
best speed. Windows 2000 is also a good choice.
1474

    
1475
@subsubsection SVGA graphic modes support
1476

    
1477
QEMU emulates a Cirrus Logic GD5446 Video
1478
card. All Windows versions starting from Windows 95 should recognize
1479
and use this graphic card. For optimal performances, use 16 bit color
1480
depth in the guest and the host OS.
1481

    
1482
If you are using Windows XP as guest OS and if you want to use high
1483
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1484
1280x1024x16), then you should use the VESA VBE virtual graphic card
1485
(option @option{-std-vga}).
1486

    
1487
@subsubsection CPU usage reduction
1488

    
1489
Windows 9x does not correctly use the CPU HLT
1490
instruction. The result is that it takes host CPU cycles even when
1491
idle. You can install the utility from
1492
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1493
problem. Note that no such tool is needed for NT, 2000 or XP.
1494

    
1495
@subsubsection Windows 2000 disk full problem
1496

    
1497
Windows 2000 has a bug which gives a disk full problem during its
1498
installation. When installing it, use the @option{-win2k-hack} QEMU
1499
option to enable a specific workaround. After Windows 2000 is
1500
installed, you no longer need this option (this option slows down the
1501
IDE transfers).
1502

    
1503
@subsubsection Windows 2000 shutdown
1504

    
1505
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1506
can. It comes from the fact that Windows 2000 does not automatically
1507
use the APM driver provided by the BIOS.
1508

    
1509
In order to correct that, do the following (thanks to Struan
1510
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1511
Add/Troubleshoot a device => Add a new device & Next => No, select the
1512
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1513
(again) a few times. Now the driver is installed and Windows 2000 now
1514
correctly instructs QEMU to shutdown at the appropriate moment. 
1515

    
1516
@subsubsection Share a directory between Unix and Windows
1517

    
1518
See @ref{sec_invocation} about the help of the option @option{-smb}.
1519

    
1520
@subsubsection Windows XP security problem
1521

    
1522
Some releases of Windows XP install correctly but give a security
1523
error when booting:
1524
@example
1525
A problem is preventing Windows from accurately checking the
1526
license for this computer. Error code: 0x800703e6.
1527
@end example
1528

    
1529
The workaround is to install a service pack for XP after a boot in safe
1530
mode. Then reboot, and the problem should go away. Since there is no
1531
network while in safe mode, its recommended to download the full
1532
installation of SP1 or SP2 and transfer that via an ISO or using the
1533
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1534

    
1535
@subsection MS-DOS and FreeDOS
1536

    
1537
@subsubsection CPU usage reduction
1538

    
1539
DOS does not correctly use the CPU HLT instruction. The result is that
1540
it takes host CPU cycles even when idle. You can install the utility
1541
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1542
problem.
1543

    
1544
@node QEMU System emulator for non PC targets
1545
@chapter QEMU System emulator for non PC targets
1546

    
1547
QEMU is a generic emulator and it emulates many non PC
1548
machines. Most of the options are similar to the PC emulator. The
1549
differences are mentionned in the following sections.
1550

    
1551
@menu
1552
* QEMU PowerPC System emulator::
1553
* Sparc32 System emulator invocation::
1554
* Sparc64 System emulator invocation::
1555
* MIPS System emulator invocation::
1556
* ARM System emulator invocation::
1557
* ColdFire System emulator invocation::
1558
@end menu
1559

    
1560
@node QEMU PowerPC System emulator
1561
@section QEMU PowerPC System emulator
1562

    
1563
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1564
or PowerMac PowerPC system.
1565

    
1566
QEMU emulates the following PowerMac peripherals:
1567

    
1568
@itemize @minus
1569
@item 
1570
UniNorth PCI Bridge 
1571
@item
1572
PCI VGA compatible card with VESA Bochs Extensions
1573
@item 
1574
2 PMAC IDE interfaces with hard disk and CD-ROM support
1575
@item 
1576
NE2000 PCI adapters
1577
@item
1578
Non Volatile RAM
1579
@item
1580
VIA-CUDA with ADB keyboard and mouse.
1581
@end itemize
1582

    
1583
QEMU emulates the following PREP peripherals:
1584

    
1585
@itemize @minus
1586
@item 
1587
PCI Bridge
1588
@item
1589
PCI VGA compatible card with VESA Bochs Extensions
1590
@item 
1591
2 IDE interfaces with hard disk and CD-ROM support
1592
@item
1593
Floppy disk
1594
@item 
1595
NE2000 network adapters
1596
@item
1597
Serial port
1598
@item
1599
PREP Non Volatile RAM
1600
@item
1601
PC compatible keyboard and mouse.
1602
@end itemize
1603

    
1604
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1605
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1606

    
1607
@c man begin OPTIONS
1608

    
1609
The following options are specific to the PowerPC emulation:
1610

    
1611
@table @option
1612

    
1613
@item -g WxH[xDEPTH]  
1614

    
1615
Set the initial VGA graphic mode. The default is 800x600x15.
1616

    
1617
@end table
1618

    
1619
@c man end 
1620

    
1621

    
1622
More information is available at
1623
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1624

    
1625
@node Sparc32 System emulator invocation
1626
@section Sparc32 System emulator invocation
1627

    
1628
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1629
(sun4m architecture). The emulation is somewhat complete.
1630

    
1631
QEMU emulates the following sun4m peripherals:
1632

    
1633
@itemize @minus
1634
@item
1635
IOMMU
1636
@item
1637
TCX Frame buffer
1638
@item 
1639
Lance (Am7990) Ethernet
1640
@item
1641
Non Volatile RAM M48T08
1642
@item
1643
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1644
and power/reset logic
1645
@item
1646
ESP SCSI controller with hard disk and CD-ROM support
1647
@item
1648
Floppy drive
1649
@end itemize
1650

    
1651
The number of peripherals is fixed in the architecture.
1652

    
1653
Since version 0.8.2, QEMU uses OpenBIOS
1654
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1655
firmware implementation. The goal is to implement a 100% IEEE
1656
1275-1994 (referred to as Open Firmware) compliant firmware.
1657

    
1658
A sample Linux 2.6 series kernel and ram disk image are available on
1659
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1660
Solaris kernels don't work.
1661

    
1662
@c man begin OPTIONS
1663

    
1664
The following options are specific to the Sparc emulation:
1665

    
1666
@table @option
1667

    
1668
@item -g WxH
1669

    
1670
Set the initial TCX graphic mode. The default is 1024x768.
1671

    
1672
@item -prom-env string
1673

    
1674
Set OpenBIOS variables in NVRAM, for example:
1675

    
1676
@example
1677
qemu-system-sparc -prom-env 'auto-boot?=false' \
1678
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1679
@end example
1680

    
1681
@end table
1682

    
1683
@c man end 
1684

    
1685
@node Sparc64 System emulator invocation
1686
@section Sparc64 System emulator invocation
1687

    
1688
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1689
The emulator is not usable for anything yet.
1690

    
1691
QEMU emulates the following sun4u peripherals:
1692

    
1693
@itemize @minus
1694
@item
1695
UltraSparc IIi APB PCI Bridge 
1696
@item
1697
PCI VGA compatible card with VESA Bochs Extensions
1698
@item
1699
Non Volatile RAM M48T59
1700
@item
1701
PC-compatible serial ports
1702
@end itemize
1703

    
1704
@node MIPS System emulator invocation
1705
@section MIPS System emulator invocation
1706

    
1707
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1708
The emulator is able to boot a Linux kernel and to run a Linux Debian
1709
installation from NFS. The following devices are emulated:
1710

    
1711
@itemize @minus
1712
@item 
1713
MIPS R4K CPU
1714
@item
1715
PC style serial port
1716
@item
1717
NE2000 network card
1718
@end itemize
1719

    
1720
More information is available in the QEMU mailing-list archive.
1721

    
1722
@node ARM System emulator invocation
1723
@section ARM System emulator invocation
1724

    
1725
Use the executable @file{qemu-system-arm} to simulate a ARM
1726
machine. The ARM Integrator/CP board is emulated with the following
1727
devices:
1728

    
1729
@itemize @minus
1730
@item
1731
ARM926E, ARM1026E or ARM946E CPU
1732
@item
1733
Two PL011 UARTs
1734
@item 
1735
SMC 91c111 Ethernet adapter
1736
@item
1737
PL110 LCD controller
1738
@item
1739
PL050 KMI with PS/2 keyboard and mouse.
1740
@item
1741
PL181 MultiMedia Card Interface with SD card.
1742
@end itemize
1743

    
1744
The ARM Versatile baseboard is emulated with the following devices:
1745

    
1746
@itemize @minus
1747
@item
1748
ARM926E CPU
1749
@item
1750
PL190 Vectored Interrupt Controller
1751
@item
1752
Four PL011 UARTs
1753
@item 
1754
SMC 91c111 Ethernet adapter
1755
@item
1756
PL110 LCD controller
1757
@item
1758
PL050 KMI with PS/2 keyboard and mouse.
1759
@item
1760
PCI host bridge.  Note the emulated PCI bridge only provides access to
1761
PCI memory space.  It does not provide access to PCI IO space.
1762
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1763
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1764
mapped control registers.
1765
@item
1766
PCI OHCI USB controller.
1767
@item
1768
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1769
@item
1770
PL181 MultiMedia Card Interface with SD card.
1771
@end itemize
1772

    
1773
The ARM RealView Emulation baseboard is emulated with the following devices:
1774

    
1775
@itemize @minus
1776
@item
1777
ARM926E CPU
1778
@item
1779
ARM AMBA Generic/Distributed Interrupt Controller
1780
@item
1781
Four PL011 UARTs
1782
@item 
1783
SMC 91c111 Ethernet adapter
1784
@item
1785
PL110 LCD controller
1786
@item
1787
PL050 KMI with PS/2 keyboard and mouse
1788
@item
1789
PCI host bridge
1790
@item
1791
PCI OHCI USB controller
1792
@item
1793
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1794
@item
1795
PL181 MultiMedia Card Interface with SD card.
1796
@end itemize
1797

    
1798
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1799
and "Terrier") emulation includes the following peripherals:
1800

    
1801
@itemize @minus
1802
@item
1803
Intel PXA270 System-on-chip (ARM V5TE core)
1804
@item
1805
NAND Flash memory
1806
@item
1807
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1808
@item
1809
On-chip OHCI USB controller
1810
@item
1811
On-chip LCD controller
1812
@item
1813
On-chip Real Time Clock
1814
@item
1815
TI ADS7846 touchscreen controller on SSP bus
1816
@item
1817
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1818
@item
1819
GPIO-connected keyboard controller and LEDs
1820
@item
1821
Secure Digital card connected to PXA MMC/SD host
1822
@item
1823
Three on-chip UARTs
1824
@item
1825
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1826
@end itemize
1827

    
1828
A Linux 2.6 test image is available on the QEMU web site. More
1829
information is available in the QEMU mailing-list archive.
1830

    
1831
@node ColdFire System emulator invocation
1832
@section ColdFire System emulator invocation
1833

    
1834
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1835
The emulator is able to boot a uClinux kernel.
1836
The following devices are emulated:
1837

    
1838
@itemize @minus
1839
@item 
1840
MCF5206 ColdFire V2 Microprocessor.
1841
@item
1842
Two on-chip UARTs.
1843
@end itemize
1844

    
1845
@node QEMU User space emulator 
1846
@chapter QEMU User space emulator 
1847

    
1848
@menu
1849
* Supported Operating Systems ::
1850
* Linux User space emulator::
1851
* Mac OS X/Darwin User space emulator ::
1852
@end menu
1853

    
1854
@node Supported Operating Systems
1855
@section Supported Operating Systems
1856

    
1857
The following OS are supported in user space emulation:
1858

    
1859
@itemize @minus
1860
@item
1861
Linux (refered as qemu-linux-user)
1862
@item
1863
Mac OS X/Darwin (refered as qemu-darwin-user)
1864
@end itemize
1865

    
1866
@node Linux User space emulator
1867
@section Linux User space emulator
1868

    
1869
@menu
1870
* Quick Start::
1871
* Wine launch::
1872
* Command line options::
1873
* Other binaries::
1874
@end menu
1875

    
1876
@node Quick Start
1877
@subsection Quick Start
1878

    
1879
In order to launch a Linux process, QEMU needs the process executable
1880
itself and all the target (x86) dynamic libraries used by it. 
1881

    
1882
@itemize
1883

    
1884
@item On x86, you can just try to launch any process by using the native
1885
libraries:
1886

    
1887
@example 
1888
qemu-i386 -L / /bin/ls
1889
@end example
1890

    
1891
@code{-L /} tells that the x86 dynamic linker must be searched with a
1892
@file{/} prefix.
1893

    
1894
@item Since QEMU is also a linux process, you can launch qemu with
1895
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1896

    
1897
@example 
1898
qemu-i386 -L / qemu-i386 -L / /bin/ls
1899
@end example
1900

    
1901
@item On non x86 CPUs, you need first to download at least an x86 glibc
1902
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1903
@code{LD_LIBRARY_PATH} is not set:
1904

    
1905
@example
1906
unset LD_LIBRARY_PATH 
1907
@end example
1908

    
1909
Then you can launch the precompiled @file{ls} x86 executable:
1910

    
1911
@example
1912
qemu-i386 tests/i386/ls
1913
@end example
1914
You can look at @file{qemu-binfmt-conf.sh} so that
1915
QEMU is automatically launched by the Linux kernel when you try to
1916
launch x86 executables. It requires the @code{binfmt_misc} module in the
1917
Linux kernel.
1918

    
1919
@item The x86 version of QEMU is also included. You can try weird things such as:
1920
@example
1921
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1922
          /usr/local/qemu-i386/bin/ls-i386
1923
@end example
1924

    
1925
@end itemize
1926

    
1927
@node Wine launch
1928
@subsection Wine launch
1929

    
1930
@itemize
1931

    
1932
@item Ensure that you have a working QEMU with the x86 glibc
1933
distribution (see previous section). In order to verify it, you must be
1934
able to do:
1935

    
1936
@example
1937
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1938
@end example
1939

    
1940
@item Download the binary x86 Wine install
1941
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1942

    
1943
@item Configure Wine on your account. Look at the provided script
1944
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1945
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1946

    
1947
@item Then you can try the example @file{putty.exe}:
1948

    
1949
@example
1950
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1951
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1952
@end example
1953

    
1954
@end itemize
1955

    
1956
@node Command line options
1957
@subsection Command line options
1958

    
1959
@example
1960
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1961
@end example
1962

    
1963
@table @option
1964
@item -h
1965
Print the help
1966
@item -L path   
1967
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1968
@item -s size
1969
Set the x86 stack size in bytes (default=524288)
1970
@end table
1971

    
1972
Debug options:
1973

    
1974
@table @option
1975
@item -d
1976
Activate log (logfile=/tmp/qemu.log)
1977
@item -p pagesize
1978
Act as if the host page size was 'pagesize' bytes
1979
@end table
1980

    
1981
@node Other binaries
1982
@subsection Other binaries
1983

    
1984
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1985
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1986
configurations), and arm-uclinux bFLT format binaries.
1987

    
1988
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
1989
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1990
coldfire uClinux bFLT format binaries.
1991

    
1992
The binary format is detected automatically.
1993

    
1994
@node Mac OS X/Darwin User space emulator
1995
@section Mac OS X/Darwin User space emulator
1996

    
1997
@menu
1998
* Mac OS X/Darwin Status::
1999
* Mac OS X/Darwin Quick Start::
2000
* Mac OS X/Darwin Command line options::
2001
@end menu
2002

    
2003
@node Mac OS X/Darwin Status
2004
@subsection Mac OS X/Darwin Status
2005

    
2006
@itemize @minus
2007
@item
2008
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2009
@item
2010
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2011
@item
2012
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2013
@item
2014
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2015
@end itemize
2016

    
2017
[1] If you're host commpage can be executed by qemu.
2018

    
2019
@node Mac OS X/Darwin Quick Start
2020
@subsection Quick Start
2021

    
2022
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2023
itself and all the target dynamic libraries used by it. If you don't have the FAT
2024
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2025
CD or compile them by hand.
2026

    
2027
@itemize
2028

    
2029
@item On x86, you can just try to launch any process by using the native
2030
libraries:
2031

    
2032
@example 
2033
qemu-i386 /bin/ls
2034
@end example
2035

    
2036
or to run the ppc version of the executable:
2037

    
2038
@example 
2039
qemu-ppc /bin/ls
2040
@end example
2041

    
2042
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2043
are installed:
2044

    
2045
@example 
2046
qemu-i386 -L /opt/x86_root/ /bin/ls
2047
@end example
2048

    
2049
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2050
@file{/opt/x86_root/usr/bin/dyld}.
2051

    
2052
@end itemize
2053

    
2054
@node Mac OS X/Darwin Command line options
2055
@subsection Command line options
2056

    
2057
@example
2058
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2059
@end example
2060

    
2061
@table @option
2062
@item -h
2063
Print the help
2064
@item -L path   
2065
Set the library root path (default=/)
2066
@item -s size
2067
Set the stack size in bytes (default=524288)
2068
@end table
2069

    
2070
Debug options:
2071

    
2072
@table @option
2073
@item -d
2074
Activate log (logfile=/tmp/qemu.log)
2075
@item -p pagesize
2076
Act as if the host page size was 'pagesize' bytes
2077
@end table
2078

    
2079
@node compilation
2080
@chapter Compilation from the sources
2081

    
2082
@menu
2083
* Linux/Unix::
2084
* Windows::
2085
* Cross compilation for Windows with Linux::
2086
* Mac OS X::
2087
@end menu
2088

    
2089
@node Linux/Unix
2090
@section Linux/Unix
2091

    
2092
@subsection Compilation
2093

    
2094
First you must decompress the sources:
2095
@example
2096
cd /tmp
2097
tar zxvf qemu-x.y.z.tar.gz
2098
cd qemu-x.y.z
2099
@end example
2100

    
2101
Then you configure QEMU and build it (usually no options are needed):
2102
@example
2103
./configure
2104
make
2105
@end example
2106

    
2107
Then type as root user:
2108
@example
2109
make install
2110
@end example
2111
to install QEMU in @file{/usr/local}.
2112

    
2113
@subsection GCC version
2114

    
2115
In order to compile QEMU successfully, it is very important that you
2116
have the right tools. The most important one is gcc. On most hosts and
2117
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2118
Linux distribution includes a gcc 4.x compiler, you can usually
2119
install an older version (it is invoked by @code{gcc32} or
2120
@code{gcc34}). The QEMU configure script automatically probes for
2121
these older versions so that usally you don't have to do anything.
2122

    
2123
@node Windows
2124
@section Windows
2125

    
2126
@itemize
2127
@item Install the current versions of MSYS and MinGW from
2128
@url{http://www.mingw.org/}. You can find detailed installation
2129
instructions in the download section and the FAQ.
2130

    
2131
@item Download 
2132
the MinGW development library of SDL 1.2.x
2133
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2134
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2135
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2136
directory. Edit the @file{sdl-config} script so that it gives the
2137
correct SDL directory when invoked.
2138

    
2139
@item Extract the current version of QEMU.
2140
 
2141
@item Start the MSYS shell (file @file{msys.bat}).
2142

    
2143
@item Change to the QEMU directory. Launch @file{./configure} and 
2144
@file{make}.  If you have problems using SDL, verify that
2145
@file{sdl-config} can be launched from the MSYS command line.
2146

    
2147
@item You can install QEMU in @file{Program Files/Qemu} by typing 
2148
@file{make install}. Don't forget to copy @file{SDL.dll} in
2149
@file{Program Files/Qemu}.
2150

    
2151
@end itemize
2152

    
2153
@node Cross compilation for Windows with Linux
2154
@section Cross compilation for Windows with Linux
2155

    
2156
@itemize
2157
@item
2158
Install the MinGW cross compilation tools available at
2159
@url{http://www.mingw.org/}.
2160

    
2161
@item 
2162
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2163
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2164
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2165
the QEMU configuration script.
2166

    
2167
@item 
2168
Configure QEMU for Windows cross compilation:
2169
@example
2170
./configure --enable-mingw32
2171
@end example
2172
If necessary, you can change the cross-prefix according to the prefix
2173
choosen for the MinGW tools with --cross-prefix. You can also use
2174
--prefix to set the Win32 install path.
2175

    
2176
@item You can install QEMU in the installation directory by typing 
2177
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2178
installation directory. 
2179

    
2180
@end itemize
2181

    
2182
Note: Currently, Wine does not seem able to launch
2183
QEMU for Win32.
2184

    
2185
@node Mac OS X
2186
@section Mac OS X
2187

    
2188
The Mac OS X patches are not fully merged in QEMU, so you should look
2189
at the QEMU mailing list archive to have all the necessary
2190
information.
2191

    
2192
@node Index
2193
@chapter Index
2194
@printindex cp
2195

    
2196
@bye