Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ aa28b9bf

History | View | Annotate | Download (18.5 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "qemu-timer.h"
26
#include "sysemu.h"
27
#include "pc.h"
28
#include "apic.h"
29
#include "isa.h"
30
#include "hpet_emul.h"
31

    
32
//#define DEBUG_CMOS
33

    
34
#define RTC_REINJECT_ON_ACK_COUNT 20
35

    
36
#define RTC_SECONDS             0
37
#define RTC_SECONDS_ALARM       1
38
#define RTC_MINUTES             2
39
#define RTC_MINUTES_ALARM       3
40
#define RTC_HOURS               4
41
#define RTC_HOURS_ALARM         5
42
#define RTC_ALARM_DONT_CARE    0xC0
43

    
44
#define RTC_DAY_OF_WEEK         6
45
#define RTC_DAY_OF_MONTH        7
46
#define RTC_MONTH               8
47
#define RTC_YEAR                9
48

    
49
#define RTC_REG_A               10
50
#define RTC_REG_B               11
51
#define RTC_REG_C               12
52
#define RTC_REG_D               13
53

    
54
#define REG_A_UIP 0x80
55

    
56
#define REG_B_SET  0x80
57
#define REG_B_PIE  0x40
58
#define REG_B_AIE  0x20
59
#define REG_B_UIE  0x10
60
#define REG_B_SQWE 0x08
61
#define REG_B_DM   0x04
62

    
63
#define REG_C_UF   0x10
64
#define REG_C_IRQF 0x80
65
#define REG_C_PF   0x40
66
#define REG_C_AF   0x20
67

    
68
struct RTCState {
69
    ISADevice dev;
70
    uint8_t cmos_data[128];
71
    uint8_t cmos_index;
72
    struct tm current_tm;
73
    int32_t base_year;
74
    qemu_irq irq;
75
    qemu_irq sqw_irq;
76
    int it_shift;
77
    /* periodic timer */
78
    QEMUTimer *periodic_timer;
79
    int64_t next_periodic_time;
80
    /* second update */
81
    int64_t next_second_time;
82
    uint16_t irq_reinject_on_ack_count;
83
    uint32_t irq_coalesced;
84
    uint32_t period;
85
    QEMUTimer *coalesced_timer;
86
    QEMUTimer *second_timer;
87
    QEMUTimer *second_timer2;
88
};
89

    
90
static void rtc_irq_raise(qemu_irq irq)
91
{
92
    /* When HPET is operating in legacy mode, RTC interrupts are disabled
93
     * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
94
     * mode is established while interrupt is raised. We want it to
95
     * be lowered in any case
96
     */
97
#if defined TARGET_I386
98
    if (!hpet_in_legacy_mode())
99
#endif
100
        qemu_irq_raise(irq);
101
}
102

    
103
static void rtc_set_time(RTCState *s);
104
static void rtc_copy_date(RTCState *s);
105

    
106
#ifdef TARGET_I386
107
static void rtc_coalesced_timer_update(RTCState *s)
108
{
109
    if (s->irq_coalesced == 0) {
110
        qemu_del_timer(s->coalesced_timer);
111
    } else {
112
        /* divide each RTC interval to 2 - 8 smaller intervals */
113
        int c = MIN(s->irq_coalesced, 7) + 1; 
114
        int64_t next_clock = qemu_get_clock(rtc_clock) +
115
            muldiv64(s->period / c, get_ticks_per_sec(), 32768);
116
        qemu_mod_timer(s->coalesced_timer, next_clock);
117
    }
118
}
119

    
120
static void rtc_coalesced_timer(void *opaque)
121
{
122
    RTCState *s = opaque;
123

    
124
    if (s->irq_coalesced != 0) {
125
        apic_reset_irq_delivered();
126
        s->cmos_data[RTC_REG_C] |= 0xc0;
127
        rtc_irq_raise(s->irq);
128
        if (apic_get_irq_delivered()) {
129
            s->irq_coalesced--;
130
        }
131
    }
132

    
133
    rtc_coalesced_timer_update(s);
134
}
135
#endif
136

    
137
static void rtc_timer_update(RTCState *s, int64_t current_time)
138
{
139
    int period_code, period;
140
    int64_t cur_clock, next_irq_clock;
141
    int enable_pie;
142

    
143
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
144
#if defined TARGET_I386
145
    /* disable periodic timer if hpet is in legacy mode, since interrupts are
146
     * disabled anyway.
147
     */
148
    enable_pie = !hpet_in_legacy_mode();
149
#else
150
    enable_pie = 1;
151
#endif
152
    if (period_code != 0
153
        && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
154
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
155
        if (period_code <= 2)
156
            period_code += 7;
157
        /* period in 32 Khz cycles */
158
        period = 1 << (period_code - 1);
159
#ifdef TARGET_I386
160
        if(period != s->period)
161
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
162
        s->period = period;
163
#endif
164
        /* compute 32 khz clock */
165
        cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
166
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
167
        s->next_periodic_time =
168
            muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
169
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
170
    } else {
171
#ifdef TARGET_I386
172
        s->irq_coalesced = 0;
173
#endif
174
        qemu_del_timer(s->periodic_timer);
175
    }
176
}
177

    
178
static void rtc_periodic_timer(void *opaque)
179
{
180
    RTCState *s = opaque;
181

    
182
    rtc_timer_update(s, s->next_periodic_time);
183
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
184
        s->cmos_data[RTC_REG_C] |= 0xc0;
185
#ifdef TARGET_I386
186
        if(rtc_td_hack) {
187
            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
188
                s->irq_reinject_on_ack_count = 0;                
189
            apic_reset_irq_delivered();
190
            rtc_irq_raise(s->irq);
191
            if (!apic_get_irq_delivered()) {
192
                s->irq_coalesced++;
193
                rtc_coalesced_timer_update(s);
194
            }
195
        } else
196
#endif
197
        rtc_irq_raise(s->irq);
198
    }
199
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
200
        /* Not square wave at all but we don't want 2048Hz interrupts!
201
           Must be seen as a pulse.  */
202
        qemu_irq_raise(s->sqw_irq);
203
    }
204
}
205

    
206
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
207
{
208
    RTCState *s = opaque;
209

    
210
    if ((addr & 1) == 0) {
211
        s->cmos_index = data & 0x7f;
212
    } else {
213
#ifdef DEBUG_CMOS
214
        printf("cmos: write index=0x%02x val=0x%02x\n",
215
               s->cmos_index, data);
216
#endif
217
        switch(s->cmos_index) {
218
        case RTC_SECONDS_ALARM:
219
        case RTC_MINUTES_ALARM:
220
        case RTC_HOURS_ALARM:
221
            /* XXX: not supported */
222
            s->cmos_data[s->cmos_index] = data;
223
            break;
224
        case RTC_SECONDS:
225
        case RTC_MINUTES:
226
        case RTC_HOURS:
227
        case RTC_DAY_OF_WEEK:
228
        case RTC_DAY_OF_MONTH:
229
        case RTC_MONTH:
230
        case RTC_YEAR:
231
            s->cmos_data[s->cmos_index] = data;
232
            /* if in set mode, do not update the time */
233
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
234
                rtc_set_time(s);
235
            }
236
            break;
237
        case RTC_REG_A:
238
            /* UIP bit is read only */
239
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
240
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
241
            rtc_timer_update(s, qemu_get_clock(rtc_clock));
242
            break;
243
        case RTC_REG_B:
244
            if (data & REG_B_SET) {
245
                /* set mode: reset UIP mode */
246
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
247
                data &= ~REG_B_UIE;
248
            } else {
249
                /* if disabling set mode, update the time */
250
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
251
                    rtc_set_time(s);
252
                }
253
            }
254
            s->cmos_data[RTC_REG_B] = data;
255
            rtc_timer_update(s, qemu_get_clock(rtc_clock));
256
            break;
257
        case RTC_REG_C:
258
        case RTC_REG_D:
259
            /* cannot write to them */
260
            break;
261
        default:
262
            s->cmos_data[s->cmos_index] = data;
263
            break;
264
        }
265
    }
266
}
267

    
268
static inline int rtc_to_bcd(RTCState *s, int a)
269
{
270
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
271
        return a;
272
    } else {
273
        return ((a / 10) << 4) | (a % 10);
274
    }
275
}
276

    
277
static inline int rtc_from_bcd(RTCState *s, int a)
278
{
279
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
280
        return a;
281
    } else {
282
        return ((a >> 4) * 10) + (a & 0x0f);
283
    }
284
}
285

    
286
static void rtc_set_time(RTCState *s)
287
{
288
    struct tm *tm = &s->current_tm;
289

    
290
    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
291
    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
292
    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
293
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
294
        (s->cmos_data[RTC_HOURS] & 0x80)) {
295
        tm->tm_hour += 12;
296
    }
297
    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
298
    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
299
    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
300
    tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
301

    
302
    rtc_change_mon_event(tm);
303
}
304

    
305
static void rtc_copy_date(RTCState *s)
306
{
307
    const struct tm *tm = &s->current_tm;
308
    int year;
309

    
310
    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
311
    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
312
    if (s->cmos_data[RTC_REG_B] & 0x02) {
313
        /* 24 hour format */
314
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
315
    } else {
316
        /* 12 hour format */
317
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
318
        if (tm->tm_hour >= 12)
319
            s->cmos_data[RTC_HOURS] |= 0x80;
320
    }
321
    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
322
    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
323
    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
324
    year = (tm->tm_year - s->base_year) % 100;
325
    if (year < 0)
326
        year += 100;
327
    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
328
}
329

    
330
/* month is between 0 and 11. */
331
static int get_days_in_month(int month, int year)
332
{
333
    static const int days_tab[12] = {
334
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
335
    };
336
    int d;
337
    if ((unsigned )month >= 12)
338
        return 31;
339
    d = days_tab[month];
340
    if (month == 1) {
341
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
342
            d++;
343
    }
344
    return d;
345
}
346

    
347
/* update 'tm' to the next second */
348
static void rtc_next_second(struct tm *tm)
349
{
350
    int days_in_month;
351

    
352
    tm->tm_sec++;
353
    if ((unsigned)tm->tm_sec >= 60) {
354
        tm->tm_sec = 0;
355
        tm->tm_min++;
356
        if ((unsigned)tm->tm_min >= 60) {
357
            tm->tm_min = 0;
358
            tm->tm_hour++;
359
            if ((unsigned)tm->tm_hour >= 24) {
360
                tm->tm_hour = 0;
361
                /* next day */
362
                tm->tm_wday++;
363
                if ((unsigned)tm->tm_wday >= 7)
364
                    tm->tm_wday = 0;
365
                days_in_month = get_days_in_month(tm->tm_mon,
366
                                                  tm->tm_year + 1900);
367
                tm->tm_mday++;
368
                if (tm->tm_mday < 1) {
369
                    tm->tm_mday = 1;
370
                } else if (tm->tm_mday > days_in_month) {
371
                    tm->tm_mday = 1;
372
                    tm->tm_mon++;
373
                    if (tm->tm_mon >= 12) {
374
                        tm->tm_mon = 0;
375
                        tm->tm_year++;
376
                    }
377
                }
378
            }
379
        }
380
    }
381
}
382

    
383

    
384
static void rtc_update_second(void *opaque)
385
{
386
    RTCState *s = opaque;
387
    int64_t delay;
388

    
389
    /* if the oscillator is not in normal operation, we do not update */
390
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
391
        s->next_second_time += get_ticks_per_sec();
392
        qemu_mod_timer(s->second_timer, s->next_second_time);
393
    } else {
394
        rtc_next_second(&s->current_tm);
395

    
396
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
397
            /* update in progress bit */
398
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
399
        }
400
        /* should be 244 us = 8 / 32768 seconds, but currently the
401
           timers do not have the necessary resolution. */
402
        delay = (get_ticks_per_sec() * 1) / 100;
403
        if (delay < 1)
404
            delay = 1;
405
        qemu_mod_timer(s->second_timer2,
406
                       s->next_second_time + delay);
407
    }
408
}
409

    
410
static void rtc_update_second2(void *opaque)
411
{
412
    RTCState *s = opaque;
413

    
414
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
415
        rtc_copy_date(s);
416
    }
417

    
418
    /* check alarm */
419
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
420
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
421
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
422
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
423
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
424
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
425
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
426

    
427
            s->cmos_data[RTC_REG_C] |= 0xa0;
428
            rtc_irq_raise(s->irq);
429
        }
430
    }
431

    
432
    /* update ended interrupt */
433
    s->cmos_data[RTC_REG_C] |= REG_C_UF;
434
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
435
      s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
436
      rtc_irq_raise(s->irq);
437
    }
438

    
439
    /* clear update in progress bit */
440
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
441

    
442
    s->next_second_time += get_ticks_per_sec();
443
    qemu_mod_timer(s->second_timer, s->next_second_time);
444
}
445

    
446
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
447
{
448
    RTCState *s = opaque;
449
    int ret;
450
    if ((addr & 1) == 0) {
451
        return 0xff;
452
    } else {
453
        switch(s->cmos_index) {
454
        case RTC_SECONDS:
455
        case RTC_MINUTES:
456
        case RTC_HOURS:
457
        case RTC_DAY_OF_WEEK:
458
        case RTC_DAY_OF_MONTH:
459
        case RTC_MONTH:
460
        case RTC_YEAR:
461
            ret = s->cmos_data[s->cmos_index];
462
            break;
463
        case RTC_REG_A:
464
            ret = s->cmos_data[s->cmos_index];
465
            break;
466
        case RTC_REG_C:
467
            ret = s->cmos_data[s->cmos_index];
468
            qemu_irq_lower(s->irq);
469
#ifdef TARGET_I386
470
            if(s->irq_coalesced &&
471
                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
472
                s->irq_reinject_on_ack_count++;
473
                apic_reset_irq_delivered();
474
                qemu_irq_raise(s->irq);
475
                if (apic_get_irq_delivered())
476
                    s->irq_coalesced--;
477
                break;
478
            }
479
#endif
480

    
481
            s->cmos_data[RTC_REG_C] = 0x00;
482
            break;
483
        default:
484
            ret = s->cmos_data[s->cmos_index];
485
            break;
486
        }
487
#ifdef DEBUG_CMOS
488
        printf("cmos: read index=0x%02x val=0x%02x\n",
489
               s->cmos_index, ret);
490
#endif
491
        return ret;
492
    }
493
}
494

    
495
void rtc_set_memory(RTCState *s, int addr, int val)
496
{
497
    if (addr >= 0 && addr <= 127)
498
        s->cmos_data[addr] = val;
499
}
500

    
501
void rtc_set_date(RTCState *s, const struct tm *tm)
502
{
503
    s->current_tm = *tm;
504
    rtc_copy_date(s);
505
}
506

    
507
/* PC cmos mappings */
508
#define REG_IBM_CENTURY_BYTE        0x32
509
#define REG_IBM_PS2_CENTURY_BYTE    0x37
510

    
511
static void rtc_set_date_from_host(RTCState *s)
512
{
513
    struct tm tm;
514
    int val;
515

    
516
    /* set the CMOS date */
517
    qemu_get_timedate(&tm, 0);
518
    rtc_set_date(s, &tm);
519

    
520
    val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
521
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
522
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
523
}
524

    
525
static int rtc_post_load(void *opaque, int version_id)
526
{
527
#ifdef TARGET_I386
528
    RTCState *s = opaque;
529

    
530
    if (version_id >= 2) {
531
        if (rtc_td_hack) {
532
            rtc_coalesced_timer_update(s);
533
        }
534
    }
535
#endif
536
    return 0;
537
}
538

    
539
static const VMStateDescription vmstate_rtc = {
540
    .name = "mc146818rtc",
541
    .version_id = 2,
542
    .minimum_version_id = 1,
543
    .minimum_version_id_old = 1,
544
    .post_load = rtc_post_load,
545
    .fields      = (VMStateField []) {
546
        VMSTATE_BUFFER(cmos_data, RTCState),
547
        VMSTATE_UINT8(cmos_index, RTCState),
548
        VMSTATE_INT32(current_tm.tm_sec, RTCState),
549
        VMSTATE_INT32(current_tm.tm_min, RTCState),
550
        VMSTATE_INT32(current_tm.tm_hour, RTCState),
551
        VMSTATE_INT32(current_tm.tm_wday, RTCState),
552
        VMSTATE_INT32(current_tm.tm_mday, RTCState),
553
        VMSTATE_INT32(current_tm.tm_mon, RTCState),
554
        VMSTATE_INT32(current_tm.tm_year, RTCState),
555
        VMSTATE_TIMER(periodic_timer, RTCState),
556
        VMSTATE_INT64(next_periodic_time, RTCState),
557
        VMSTATE_INT64(next_second_time, RTCState),
558
        VMSTATE_TIMER(second_timer, RTCState),
559
        VMSTATE_TIMER(second_timer2, RTCState),
560
        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
561
        VMSTATE_UINT32_V(period, RTCState, 2),
562
        VMSTATE_END_OF_LIST()
563
    }
564
};
565

    
566
static void rtc_reset(void *opaque)
567
{
568
    RTCState *s = opaque;
569

    
570
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
571
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
572

    
573
    qemu_irq_lower(s->irq);
574

    
575
#ifdef TARGET_I386
576
    if (rtc_td_hack)
577
            s->irq_coalesced = 0;
578
#endif
579
}
580

    
581
static int rtc_initfn(ISADevice *dev)
582
{
583
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
584
    int base = 0x70;
585
    int isairq = 8;
586

    
587
    isa_init_irq(dev, &s->irq, isairq);
588

    
589
    s->cmos_data[RTC_REG_A] = 0x26;
590
    s->cmos_data[RTC_REG_B] = 0x02;
591
    s->cmos_data[RTC_REG_C] = 0x00;
592
    s->cmos_data[RTC_REG_D] = 0x80;
593

    
594
    rtc_set_date_from_host(s);
595

    
596
    s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
597
#ifdef TARGET_I386
598
    if (rtc_td_hack)
599
        s->coalesced_timer =
600
            qemu_new_timer(rtc_clock, rtc_coalesced_timer, s);
601
#endif
602
    s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
603
    s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
604

    
605
    s->next_second_time =
606
        qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
607
    qemu_mod_timer(s->second_timer2, s->next_second_time);
608

    
609
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
610
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
611

    
612
    vmstate_register(base, &vmstate_rtc, s);
613
    qemu_register_reset(rtc_reset, s);
614
    return 0;
615
}
616

    
617
RTCState *rtc_init(int base_year)
618
{
619
    ISADevice *dev;
620

    
621
    dev = isa_create("mc146818rtc");
622
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
623
    qdev_init_nofail(&dev->qdev);
624
    return DO_UPCAST(RTCState, dev, dev);
625
}
626

    
627
static ISADeviceInfo mc146818rtc_info = {
628
    .qdev.name     = "mc146818rtc",
629
    .qdev.size     = sizeof(RTCState),
630
    .qdev.no_user  = 1,
631
    .init          = rtc_initfn,
632
    .qdev.props    = (Property[]) {
633
        DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
634
        DEFINE_PROP_END_OF_LIST(),
635
    }
636
};
637

    
638
static void mc146818rtc_register(void)
639
{
640
    isa_qdev_register(&mc146818rtc_info);
641
}
642
device_init(mc146818rtc_register)