Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ aa343735

History | View | Annotate | Download (42.4 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#define GETPC() (__builtin_return_address(0))
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27

    
28
void do_raise_exception_err (uint32_t exception, int error_code)
29
{
30
#if 1
31
    if (logfile && exception < 0x100)
32
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33
#endif
34
    env->exception_index = exception;
35
    env->error_code = error_code;
36
    T0 = 0;
37
    cpu_loop_exit();
38
}
39

    
40
void do_raise_exception (uint32_t exception)
41
{
42
    do_raise_exception_err(exception, 0);
43
}
44

    
45
void do_restore_state (void *pc_ptr)
46
{
47
  TranslationBlock *tb;
48
  unsigned long pc = (unsigned long) pc_ptr;
49

    
50
  tb = tb_find_pc (pc);
51
  cpu_restore_state (tb, env, pc, NULL);
52
}
53

    
54
void do_raise_exception_direct_err (uint32_t exception, int error_code)
55
{
56
    do_restore_state (GETPC ());
57
    do_raise_exception_err (exception, error_code);
58
}
59

    
60
void do_raise_exception_direct (uint32_t exception)
61
{
62
    do_raise_exception_direct_err (exception, 0);
63
}
64

    
65
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
66
#if TARGET_LONG_BITS > HOST_LONG_BITS
67
/* Those might call libgcc functions.  */
68
void do_dsll (void)
69
{
70
    T0 = T0 << T1;
71
}
72

    
73
void do_dsll32 (void)
74
{
75
    T0 = T0 << (T1 + 32);
76
}
77

    
78
void do_dsra (void)
79
{
80
    T0 = (int64_t)T0 >> T1;
81
}
82

    
83
void do_dsra32 (void)
84
{
85
    T0 = (int64_t)T0 >> (T1 + 32);
86
}
87

    
88
void do_dsrl (void)
89
{
90
    T0 = T0 >> T1;
91
}
92

    
93
void do_dsrl32 (void)
94
{
95
    T0 = T0 >> (T1 + 32);
96
}
97

    
98
void do_drotr (void)
99
{
100
    target_ulong tmp;
101

    
102
    if (T1) {
103
       tmp = T0 << (0x40 - T1);
104
       T0 = (T0 >> T1) | tmp;
105
    }
106
}
107

    
108
void do_drotr32 (void)
109
{
110
    target_ulong tmp;
111

    
112
    if (T1) {
113
       tmp = T0 << (0x40 - (32 + T1));
114
       T0 = (T0 >> (32 + T1)) | tmp;
115
    }
116
}
117

    
118
void do_dsllv (void)
119
{
120
    T0 = T1 << (T0 & 0x3F);
121
}
122

    
123
void do_dsrav (void)
124
{
125
    T0 = (int64_t)T1 >> (T0 & 0x3F);
126
}
127

    
128
void do_dsrlv (void)
129
{
130
    T0 = T1 >> (T0 & 0x3F);
131
}
132

    
133
void do_drotrv (void)
134
{
135
    target_ulong tmp;
136

    
137
    T0 &= 0x3F;
138
    if (T0) {
139
       tmp = T1 << (0x40 - T0);
140
       T0 = (T1 >> T0) | tmp;
141
    } else
142
       T0 = T1;
143
}
144
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
145
#endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
146

    
147
/* 64 bits arithmetic for 32 bits hosts */
148
#if TARGET_LONG_BITS > HOST_LONG_BITS
149
static always_inline uint64_t get_HILO (void)
150
{
151
    return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
152
}
153

    
154
static always_inline void set_HILO (uint64_t HILO)
155
{
156
    env->LO[0][env->current_tc] = (int32_t)HILO;
157
    env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
158
}
159

    
160
void do_mult (void)
161
{
162
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
163
}
164

    
165
void do_multu (void)
166
{
167
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
168
}
169

    
170
void do_madd (void)
171
{
172
    int64_t tmp;
173

    
174
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
175
    set_HILO((int64_t)get_HILO() + tmp);
176
}
177

    
178
void do_maddu (void)
179
{
180
    uint64_t tmp;
181

    
182
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
183
    set_HILO(get_HILO() + tmp);
184
}
185

    
186
void do_msub (void)
187
{
188
    int64_t tmp;
189

    
190
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
191
    set_HILO((int64_t)get_HILO() - tmp);
192
}
193

    
194
void do_msubu (void)
195
{
196
    uint64_t tmp;
197

    
198
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
199
    set_HILO(get_HILO() - tmp);
200
}
201
#endif
202

    
203
#if HOST_LONG_BITS < 64
204
void do_div (void)
205
{
206
    /* 64bit datatypes because we may see overflow/underflow. */
207
    if (T1 != 0) {
208
        env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
209
        env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
210
    }
211
}
212
#endif
213

    
214
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
215
void do_ddiv (void)
216
{
217
    if (T1 != 0) {
218
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
219
        env->LO[0][env->current_tc] = res.quot;
220
        env->HI[0][env->current_tc] = res.rem;
221
    }
222
}
223

    
224
#if TARGET_LONG_BITS > HOST_LONG_BITS
225
void do_ddivu (void)
226
{
227
    if (T1 != 0) {
228
        env->LO[0][env->current_tc] = T0 / T1;
229
        env->HI[0][env->current_tc] = T0 % T1;
230
    }
231
}
232
#endif
233
#endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
234

    
235
#if defined(CONFIG_USER_ONLY)
236
void do_mfc0_random (void)
237
{
238
    cpu_abort(env, "mfc0 random\n");
239
}
240

    
241
void do_mfc0_count (void)
242
{
243
    cpu_abort(env, "mfc0 count\n");
244
}
245

    
246
void cpu_mips_store_count(CPUState *env, uint32_t value)
247
{
248
    cpu_abort(env, "mtc0 count\n");
249
}
250

    
251
void cpu_mips_store_compare(CPUState *env, uint32_t value)
252
{
253
    cpu_abort(env, "mtc0 compare\n");
254
}
255

    
256
void cpu_mips_start_count(CPUState *env)
257
{
258
    cpu_abort(env, "start count\n");
259
}
260

    
261
void cpu_mips_stop_count(CPUState *env)
262
{
263
    cpu_abort(env, "stop count\n");
264
}
265

    
266
void cpu_mips_update_irq(CPUState *env)
267
{
268
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
269
}
270

    
271
void do_mtc0_status_debug(uint32_t old, uint32_t val)
272
{
273
    cpu_abort(env, "mtc0 status debug\n");
274
}
275

    
276
void do_mtc0_status_irqraise_debug (void)
277
{
278
    cpu_abort(env, "mtc0 status irqraise debug\n");
279
}
280

    
281
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
282
{
283
    cpu_abort(env, "mips_tlb_flush\n");
284
}
285

    
286
#else
287

    
288
/* CP0 helpers */
289
void do_mfc0_random (void)
290
{
291
    T0 = (int32_t)cpu_mips_get_random(env);
292
}
293

    
294
void do_mfc0_count (void)
295
{
296
    T0 = (int32_t)cpu_mips_get_count(env);
297
}
298

    
299
void do_mtc0_status_debug(uint32_t old, uint32_t val)
300
{
301
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
302
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
303
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
304
            env->CP0_Cause);
305
    (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
306
                                  : fputs("\n", logfile);
307
}
308

    
309
void do_mtc0_status_irqraise_debug(void)
310
{
311
    fprintf(logfile, "Raise pending IRQs\n");
312
}
313

    
314
void fpu_handle_exception(void)
315
{
316
#ifdef CONFIG_SOFTFLOAT
317
    int flags = get_float_exception_flags(&env->fpu->fp_status);
318
    unsigned int cpuflags = 0, enable, cause = 0;
319

    
320
    enable = GET_FP_ENABLE(env->fpu->fcr31);
321

    
322
    /* determine current flags */
323
    if (flags & float_flag_invalid) {
324
        cpuflags |= FP_INVALID;
325
        cause |= FP_INVALID & enable;
326
    }
327
    if (flags & float_flag_divbyzero) {
328
        cpuflags |= FP_DIV0;
329
        cause |= FP_DIV0 & enable;
330
    }
331
    if (flags & float_flag_overflow) {
332
        cpuflags |= FP_OVERFLOW;
333
        cause |= FP_OVERFLOW & enable;
334
    }
335
    if (flags & float_flag_underflow) {
336
        cpuflags |= FP_UNDERFLOW;
337
        cause |= FP_UNDERFLOW & enable;
338
    }
339
    if (flags & float_flag_inexact) {
340
        cpuflags |= FP_INEXACT;
341
        cause |= FP_INEXACT & enable;
342
    }
343
    SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
344
    SET_FP_CAUSE(env->fpu->fcr31, cause);
345
#else
346
    SET_FP_FLAGS(env->fpu->fcr31, 0);
347
    SET_FP_CAUSE(env->fpu->fcr31, 0);
348
#endif
349
}
350

    
351
/* TLB management */
352
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
353
{
354
    /* Flush qemu's TLB and discard all shadowed entries.  */
355
    tlb_flush (env, flush_global);
356
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
357
}
358

    
359
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
360
{
361
    /* Discard entries from env->tlb[first] onwards.  */
362
    while (env->tlb->tlb_in_use > first) {
363
        r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
364
    }
365
}
366

    
367
static void r4k_fill_tlb (int idx)
368
{
369
    r4k_tlb_t *tlb;
370

    
371
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
372
    tlb = &env->tlb->mmu.r4k.tlb[idx];
373
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
374
#if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
375
    tlb->VPN &= env->SEGMask;
376
#endif
377
    tlb->ASID = env->CP0_EntryHi & 0xFF;
378
    tlb->PageMask = env->CP0_PageMask;
379
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
380
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
381
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
382
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
383
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
384
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
385
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
386
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
387
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
388
}
389

    
390
void r4k_do_tlbwi (void)
391
{
392
    /* Discard cached TLB entries.  We could avoid doing this if the
393
       tlbwi is just upgrading access permissions on the current entry;
394
       that might be a further win.  */
395
    r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
396

    
397
    r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
398
    r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
399
}
400

    
401
void r4k_do_tlbwr (void)
402
{
403
    int r = cpu_mips_get_random(env);
404

    
405
    r4k_invalidate_tlb(env, r, 1);
406
    r4k_fill_tlb(r);
407
}
408

    
409
void r4k_do_tlbp (void)
410
{
411
    r4k_tlb_t *tlb;
412
    target_ulong mask;
413
    target_ulong tag;
414
    target_ulong VPN;
415
    uint8_t ASID;
416
    int i;
417

    
418
    ASID = env->CP0_EntryHi & 0xFF;
419
    for (i = 0; i < env->tlb->nb_tlb; i++) {
420
        tlb = &env->tlb->mmu.r4k.tlb[i];
421
        /* 1k pages are not supported. */
422
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
423
        tag = env->CP0_EntryHi & ~mask;
424
        VPN = tlb->VPN & ~mask;
425
        /* Check ASID, virtual page number & size */
426
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
427
            /* TLB match */
428
            env->CP0_Index = i;
429
            break;
430
        }
431
    }
432
    if (i == env->tlb->nb_tlb) {
433
        /* No match.  Discard any shadow entries, if any of them match.  */
434
        for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
435
            tlb = &env->tlb->mmu.r4k.tlb[i];
436
            /* 1k pages are not supported. */
437
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
438
            tag = env->CP0_EntryHi & ~mask;
439
            VPN = tlb->VPN & ~mask;
440
            /* Check ASID, virtual page number & size */
441
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
442
                r4k_mips_tlb_flush_extra (env, i);
443
                break;
444
            }
445
        }
446

    
447
        env->CP0_Index |= 0x80000000;
448
    }
449
}
450

    
451
void r4k_do_tlbr (void)
452
{
453
    r4k_tlb_t *tlb;
454
    uint8_t ASID;
455

    
456
    ASID = env->CP0_EntryHi & 0xFF;
457
    tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
458

    
459
    /* If this will change the current ASID, flush qemu's TLB.  */
460
    if (ASID != tlb->ASID)
461
        cpu_mips_tlb_flush (env, 1);
462

    
463
    r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
464

    
465
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
466
    env->CP0_PageMask = tlb->PageMask;
467
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
468
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
469
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
470
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
471
}
472

    
473
#endif /* !CONFIG_USER_ONLY */
474

    
475
void dump_ldst (const unsigned char *func)
476
{
477
    if (loglevel)
478
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
479
}
480

    
481
void dump_sc (void)
482
{
483
    if (loglevel) {
484
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
485
                T1, T0, env->CP0_LLAddr);
486
    }
487
}
488

    
489
void debug_pre_eret (void)
490
{
491
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
492
            env->PC[env->current_tc], env->CP0_EPC);
493
    if (env->CP0_Status & (1 << CP0St_ERL))
494
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
495
    if (env->hflags & MIPS_HFLAG_DM)
496
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
497
    fputs("\n", logfile);
498
}
499

    
500
void debug_post_eret (void)
501
{
502
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
503
            env->PC[env->current_tc], env->CP0_EPC);
504
    if (env->CP0_Status & (1 << CP0St_ERL))
505
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
506
    if (env->hflags & MIPS_HFLAG_DM)
507
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
508
    if (env->hflags & MIPS_HFLAG_UM)
509
        fputs(", UM\n", logfile);
510
    else
511
        fputs("\n", logfile);
512
}
513

    
514
void do_pmon (int function)
515
{
516
    function /= 2;
517
    switch (function) {
518
    case 2: /* TODO: char inbyte(int waitflag); */
519
        if (env->gpr[4][env->current_tc] == 0)
520
            env->gpr[2][env->current_tc] = -1;
521
        /* Fall through */
522
    case 11: /* TODO: char inbyte (void); */
523
        env->gpr[2][env->current_tc] = -1;
524
        break;
525
    case 3:
526
    case 12:
527
        printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
528
        break;
529
    case 17:
530
        break;
531
    case 158:
532
        {
533
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
534
            printf("%s", fmt);
535
        }
536
        break;
537
    }
538
}
539

    
540
#if !defined(CONFIG_USER_ONLY)
541

    
542
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
543

    
544
#define MMUSUFFIX _mmu
545
#define ALIGNED_ONLY
546

    
547
#define SHIFT 0
548
#include "softmmu_template.h"
549

    
550
#define SHIFT 1
551
#include "softmmu_template.h"
552

    
553
#define SHIFT 2
554
#include "softmmu_template.h"
555

    
556
#define SHIFT 3
557
#include "softmmu_template.h"
558

    
559
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
560
{
561
    env->CP0_BadVAddr = addr;
562
    do_restore_state (retaddr);
563
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
564
}
565

    
566
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
567
{
568
    TranslationBlock *tb;
569
    CPUState *saved_env;
570
    unsigned long pc;
571
    int ret;
572

    
573
    /* XXX: hack to restore env in all cases, even if not called from
574
       generated code */
575
    saved_env = env;
576
    env = cpu_single_env;
577
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
578
    if (ret) {
579
        if (retaddr) {
580
            /* now we have a real cpu fault */
581
            pc = (unsigned long)retaddr;
582
            tb = tb_find_pc(pc);
583
            if (tb) {
584
                /* the PC is inside the translated code. It means that we have
585
                   a virtual CPU fault */
586
                cpu_restore_state(tb, env, pc, NULL);
587
            }
588
        }
589
        do_raise_exception_err(env->exception_index, env->error_code);
590
    }
591
    env = saved_env;
592
}
593

    
594
#endif
595

    
596
/* Complex FPU operations which may need stack space. */
597

    
598
#define FLOAT_SIGN32 (1 << 31)
599
#define FLOAT_SIGN64 (1ULL << 63)
600
#define FLOAT_ONE32 (0x3f8 << 20)
601
#define FLOAT_ONE64 (0x3ffULL << 52)
602
#define FLOAT_TWO32 (1 << 30)
603
#define FLOAT_TWO64 (1ULL << 62)
604
#define FLOAT_QNAN32 0x7fbfffff
605
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
606
#define FLOAT_SNAN32 0x7fffffff
607
#define FLOAT_SNAN64 0x7fffffffffffffffULL
608

    
609
/* convert MIPS rounding mode in FCR31 to IEEE library */
610
unsigned int ieee_rm[] = {
611
    float_round_nearest_even,
612
    float_round_to_zero,
613
    float_round_up,
614
    float_round_down
615
};
616

    
617
#define RESTORE_ROUNDING_MODE \
618
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
619

    
620
void do_cfc1 (int reg)
621
{
622
    switch (reg) {
623
    case 0:
624
        T0 = (int32_t)env->fpu->fcr0;
625
        break;
626
    case 25:
627
        T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
628
        break;
629
    case 26:
630
        T0 = env->fpu->fcr31 & 0x0003f07c;
631
        break;
632
    case 28:
633
        T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
634
        break;
635
    default:
636
        T0 = (int32_t)env->fpu->fcr31;
637
        break;
638
    }
639
}
640

    
641
void do_ctc1 (int reg)
642
{
643
    switch(reg) {
644
    case 25:
645
        if (T0 & 0xffffff00)
646
            return;
647
        env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
648
                     ((T0 & 0x1) << 23);
649
        break;
650
    case 26:
651
        if (T0 & 0x007c0000)
652
            return;
653
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
654
        break;
655
    case 28:
656
        if (T0 & 0x007c0000)
657
            return;
658
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
659
                     ((T0 & 0x4) << 22);
660
        break;
661
    case 31:
662
        if (T0 & 0x007c0000)
663
            return;
664
        env->fpu->fcr31 = T0;
665
        break;
666
    default:
667
        return;
668
    }
669
    /* set rounding mode */
670
    RESTORE_ROUNDING_MODE;
671
    set_float_exception_flags(0, &env->fpu->fp_status);
672
    if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
673
        do_raise_exception(EXCP_FPE);
674
}
675

    
676
static always_inline char ieee_ex_to_mips(char xcpt)
677
{
678
    return (xcpt & float_flag_inexact) >> 5 |
679
           (xcpt & float_flag_underflow) >> 3 |
680
           (xcpt & float_flag_overflow) >> 1 |
681
           (xcpt & float_flag_divbyzero) << 1 |
682
           (xcpt & float_flag_invalid) << 4;
683
}
684

    
685
static always_inline char mips_ex_to_ieee(char xcpt)
686
{
687
    return (xcpt & FP_INEXACT) << 5 |
688
           (xcpt & FP_UNDERFLOW) << 3 |
689
           (xcpt & FP_OVERFLOW) << 1 |
690
           (xcpt & FP_DIV0) >> 1 |
691
           (xcpt & FP_INVALID) >> 4;
692
}
693

    
694
static always_inline void update_fcr31(void)
695
{
696
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
697

    
698
    SET_FP_CAUSE(env->fpu->fcr31, tmp);
699
    if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
700
        do_raise_exception(EXCP_FPE);
701
    else
702
        UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
703
}
704

    
705
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
706

    
707
FLOAT_OP(cvtd, s)
708
{
709
    set_float_exception_flags(0, &env->fpu->fp_status);
710
    FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
711
    update_fcr31();
712
}
713
FLOAT_OP(cvtd, w)
714
{
715
    set_float_exception_flags(0, &env->fpu->fp_status);
716
    FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
717
    update_fcr31();
718
}
719
FLOAT_OP(cvtd, l)
720
{
721
    set_float_exception_flags(0, &env->fpu->fp_status);
722
    FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
723
    update_fcr31();
724
}
725
FLOAT_OP(cvtl, d)
726
{
727
    set_float_exception_flags(0, &env->fpu->fp_status);
728
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
729
    update_fcr31();
730
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
731
        DT2 = FLOAT_SNAN64;
732
}
733
FLOAT_OP(cvtl, s)
734
{
735
    set_float_exception_flags(0, &env->fpu->fp_status);
736
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
737
    update_fcr31();
738
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
739
        DT2 = FLOAT_SNAN64;
740
}
741

    
742
FLOAT_OP(cvtps, pw)
743
{
744
    set_float_exception_flags(0, &env->fpu->fp_status);
745
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
746
    FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
747
    update_fcr31();
748
}
749
FLOAT_OP(cvtpw, ps)
750
{
751
    set_float_exception_flags(0, &env->fpu->fp_status);
752
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
753
    WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
754
    update_fcr31();
755
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
756
        WT2 = FLOAT_SNAN32;
757
}
758
FLOAT_OP(cvts, d)
759
{
760
    set_float_exception_flags(0, &env->fpu->fp_status);
761
    FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
762
    update_fcr31();
763
}
764
FLOAT_OP(cvts, w)
765
{
766
    set_float_exception_flags(0, &env->fpu->fp_status);
767
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
768
    update_fcr31();
769
}
770
FLOAT_OP(cvts, l)
771
{
772
    set_float_exception_flags(0, &env->fpu->fp_status);
773
    FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
774
    update_fcr31();
775
}
776
FLOAT_OP(cvts, pl)
777
{
778
    set_float_exception_flags(0, &env->fpu->fp_status);
779
    WT2 = WT0;
780
    update_fcr31();
781
}
782
FLOAT_OP(cvts, pu)
783
{
784
    set_float_exception_flags(0, &env->fpu->fp_status);
785
    WT2 = WTH0;
786
    update_fcr31();
787
}
788
FLOAT_OP(cvtw, s)
789
{
790
    set_float_exception_flags(0, &env->fpu->fp_status);
791
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
792
    update_fcr31();
793
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
794
        WT2 = FLOAT_SNAN32;
795
}
796
FLOAT_OP(cvtw, d)
797
{
798
    set_float_exception_flags(0, &env->fpu->fp_status);
799
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
800
    update_fcr31();
801
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
802
        WT2 = FLOAT_SNAN32;
803
}
804

    
805
FLOAT_OP(roundl, d)
806
{
807
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
808
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
809
    RESTORE_ROUNDING_MODE;
810
    update_fcr31();
811
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
812
        DT2 = FLOAT_SNAN64;
813
}
814
FLOAT_OP(roundl, s)
815
{
816
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
817
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
818
    RESTORE_ROUNDING_MODE;
819
    update_fcr31();
820
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
821
        DT2 = FLOAT_SNAN64;
822
}
823
FLOAT_OP(roundw, d)
824
{
825
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
826
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
827
    RESTORE_ROUNDING_MODE;
828
    update_fcr31();
829
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
830
        WT2 = FLOAT_SNAN32;
831
}
832
FLOAT_OP(roundw, s)
833
{
834
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
835
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
836
    RESTORE_ROUNDING_MODE;
837
    update_fcr31();
838
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
839
        WT2 = FLOAT_SNAN32;
840
}
841

    
842
FLOAT_OP(truncl, d)
843
{
844
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
845
    update_fcr31();
846
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
847
        DT2 = FLOAT_SNAN64;
848
}
849
FLOAT_OP(truncl, s)
850
{
851
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
852
    update_fcr31();
853
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
854
        DT2 = FLOAT_SNAN64;
855
}
856
FLOAT_OP(truncw, d)
857
{
858
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
859
    update_fcr31();
860
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
861
        WT2 = FLOAT_SNAN32;
862
}
863
FLOAT_OP(truncw, s)
864
{
865
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
866
    update_fcr31();
867
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
868
        WT2 = FLOAT_SNAN32;
869
}
870

    
871
FLOAT_OP(ceill, d)
872
{
873
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
874
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
875
    RESTORE_ROUNDING_MODE;
876
    update_fcr31();
877
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
878
        DT2 = FLOAT_SNAN64;
879
}
880
FLOAT_OP(ceill, s)
881
{
882
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
883
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
884
    RESTORE_ROUNDING_MODE;
885
    update_fcr31();
886
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
887
        DT2 = FLOAT_SNAN64;
888
}
889
FLOAT_OP(ceilw, d)
890
{
891
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
892
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
893
    RESTORE_ROUNDING_MODE;
894
    update_fcr31();
895
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
896
        WT2 = FLOAT_SNAN32;
897
}
898
FLOAT_OP(ceilw, s)
899
{
900
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
901
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
902
    RESTORE_ROUNDING_MODE;
903
    update_fcr31();
904
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
905
        WT2 = FLOAT_SNAN32;
906
}
907

    
908
FLOAT_OP(floorl, d)
909
{
910
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
911
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
912
    RESTORE_ROUNDING_MODE;
913
    update_fcr31();
914
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
915
        DT2 = FLOAT_SNAN64;
916
}
917
FLOAT_OP(floorl, s)
918
{
919
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
920
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
921
    RESTORE_ROUNDING_MODE;
922
    update_fcr31();
923
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
924
        DT2 = FLOAT_SNAN64;
925
}
926
FLOAT_OP(floorw, d)
927
{
928
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
929
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
930
    RESTORE_ROUNDING_MODE;
931
    update_fcr31();
932
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
933
        WT2 = FLOAT_SNAN32;
934
}
935
FLOAT_OP(floorw, s)
936
{
937
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
938
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
939
    RESTORE_ROUNDING_MODE;
940
    update_fcr31();
941
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
942
        WT2 = FLOAT_SNAN32;
943
}
944

    
945
/* MIPS specific unary operations */
946
FLOAT_OP(recip, d)
947
{
948
    set_float_exception_flags(0, &env->fpu->fp_status);
949
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
950
    update_fcr31();
951
}
952
FLOAT_OP(recip, s)
953
{
954
    set_float_exception_flags(0, &env->fpu->fp_status);
955
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
956
    update_fcr31();
957
}
958

    
959
FLOAT_OP(rsqrt, d)
960
{
961
    set_float_exception_flags(0, &env->fpu->fp_status);
962
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
963
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
964
    update_fcr31();
965
}
966
FLOAT_OP(rsqrt, s)
967
{
968
    set_float_exception_flags(0, &env->fpu->fp_status);
969
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
970
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
971
    update_fcr31();
972
}
973

    
974
FLOAT_OP(recip1, d)
975
{
976
    set_float_exception_flags(0, &env->fpu->fp_status);
977
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
978
    update_fcr31();
979
}
980
FLOAT_OP(recip1, s)
981
{
982
    set_float_exception_flags(0, &env->fpu->fp_status);
983
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
984
    update_fcr31();
985
}
986
FLOAT_OP(recip1, ps)
987
{
988
    set_float_exception_flags(0, &env->fpu->fp_status);
989
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
990
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
991
    update_fcr31();
992
}
993

    
994
FLOAT_OP(rsqrt1, d)
995
{
996
    set_float_exception_flags(0, &env->fpu->fp_status);
997
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
998
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
999
    update_fcr31();
1000
}
1001
FLOAT_OP(rsqrt1, s)
1002
{
1003
    set_float_exception_flags(0, &env->fpu->fp_status);
1004
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1005
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1006
    update_fcr31();
1007
}
1008
FLOAT_OP(rsqrt1, ps)
1009
{
1010
    set_float_exception_flags(0, &env->fpu->fp_status);
1011
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1012
    FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1013
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1014
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1015
    update_fcr31();
1016
}
1017

    
1018
/* binary operations */
1019
#define FLOAT_BINOP(name) \
1020
FLOAT_OP(name, d)         \
1021
{                         \
1022
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1023
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status);    \
1024
    update_fcr31();                                                \
1025
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1026
        FDT2 = FLOAT_QNAN64;                                       \
1027
}                         \
1028
FLOAT_OP(name, s)         \
1029
{                         \
1030
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1031
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1032
    update_fcr31();                                                \
1033
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1034
        FST2 = FLOAT_QNAN32;                                       \
1035
}                         \
1036
FLOAT_OP(name, ps)        \
1037
{                         \
1038
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1039
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1040
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1041
    update_fcr31();       \
1042
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) {              \
1043
        FST2 = FLOAT_QNAN32;                                       \
1044
        FSTH2 = FLOAT_QNAN32;                                      \
1045
    }                     \
1046
}
1047
FLOAT_BINOP(add)
1048
FLOAT_BINOP(sub)
1049
FLOAT_BINOP(mul)
1050
FLOAT_BINOP(div)
1051
#undef FLOAT_BINOP
1052

    
1053
/* MIPS specific binary operations */
1054
FLOAT_OP(recip2, d)
1055
{
1056
    set_float_exception_flags(0, &env->fpu->fp_status);
1057
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1058
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1059
    update_fcr31();
1060
}
1061
FLOAT_OP(recip2, s)
1062
{
1063
    set_float_exception_flags(0, &env->fpu->fp_status);
1064
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1065
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1066
    update_fcr31();
1067
}
1068
FLOAT_OP(recip2, ps)
1069
{
1070
    set_float_exception_flags(0, &env->fpu->fp_status);
1071
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1072
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1073
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1074
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1075
    update_fcr31();
1076
}
1077

    
1078
FLOAT_OP(rsqrt2, d)
1079
{
1080
    set_float_exception_flags(0, &env->fpu->fp_status);
1081
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1082
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1083
    FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1084
    update_fcr31();
1085
}
1086
FLOAT_OP(rsqrt2, s)
1087
{
1088
    set_float_exception_flags(0, &env->fpu->fp_status);
1089
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1090
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1091
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1092
    update_fcr31();
1093
}
1094
FLOAT_OP(rsqrt2, ps)
1095
{
1096
    set_float_exception_flags(0, &env->fpu->fp_status);
1097
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1098
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1099
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1100
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1101
    FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1102
    FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1103
    update_fcr31();
1104
}
1105

    
1106
FLOAT_OP(addr, ps)
1107
{
1108
    set_float_exception_flags(0, &env->fpu->fp_status);
1109
    FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1110
    FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1111
    update_fcr31();
1112
}
1113

    
1114
FLOAT_OP(mulr, ps)
1115
{
1116
    set_float_exception_flags(0, &env->fpu->fp_status);
1117
    FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1118
    FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1119
    update_fcr31();
1120
}
1121

    
1122
/* compare operations */
1123
#define FOP_COND_D(op, cond)                   \
1124
void do_cmp_d_ ## op (long cc)                 \
1125
{                                              \
1126
    int c = cond;                              \
1127
    update_fcr31();                            \
1128
    if (c)                                     \
1129
        SET_FP_COND(cc, env->fpu);             \
1130
    else                                       \
1131
        CLEAR_FP_COND(cc, env->fpu);           \
1132
}                                              \
1133
void do_cmpabs_d_ ## op (long cc)              \
1134
{                                              \
1135
    int c;                                     \
1136
    FDT0 &= ~FLOAT_SIGN64;                     \
1137
    FDT1 &= ~FLOAT_SIGN64;                     \
1138
    c = cond;                                  \
1139
    update_fcr31();                            \
1140
    if (c)                                     \
1141
        SET_FP_COND(cc, env->fpu);             \
1142
    else                                       \
1143
        CLEAR_FP_COND(cc, env->fpu);           \
1144
}
1145

    
1146
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1147
{
1148
    if (float64_is_signaling_nan(a) ||
1149
        float64_is_signaling_nan(b) ||
1150
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1151
        float_raise(float_flag_invalid, status);
1152
        return 1;
1153
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1154
        return 1;
1155
    } else {
1156
        return 0;
1157
    }
1158
}
1159

    
1160
/* NOTE: the comma operator will make "cond" to eval to false,
1161
 * but float*_is_unordered() is still called. */
1162
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1163
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1164
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1165
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1166
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1167
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1168
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1169
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1170
/* NOTE: the comma operator will make "cond" to eval to false,
1171
 * but float*_is_unordered() is still called. */
1172
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1173
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1174
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1175
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1176
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1177
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1178
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1179
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1180

    
1181
#define FOP_COND_S(op, cond)                   \
1182
void do_cmp_s_ ## op (long cc)                 \
1183
{                                              \
1184
    int c = cond;                              \
1185
    update_fcr31();                            \
1186
    if (c)                                     \
1187
        SET_FP_COND(cc, env->fpu);             \
1188
    else                                       \
1189
        CLEAR_FP_COND(cc, env->fpu);           \
1190
}                                              \
1191
void do_cmpabs_s_ ## op (long cc)              \
1192
{                                              \
1193
    int c;                                     \
1194
    FST0 &= ~FLOAT_SIGN32;                     \
1195
    FST1 &= ~FLOAT_SIGN32;                     \
1196
    c = cond;                                  \
1197
    update_fcr31();                            \
1198
    if (c)                                     \
1199
        SET_FP_COND(cc, env->fpu);             \
1200
    else                                       \
1201
        CLEAR_FP_COND(cc, env->fpu);           \
1202
}
1203

    
1204
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1205
{
1206
    if (float32_is_signaling_nan(a) ||
1207
        float32_is_signaling_nan(b) ||
1208
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1209
        float_raise(float_flag_invalid, status);
1210
        return 1;
1211
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1212
        return 1;
1213
    } else {
1214
        return 0;
1215
    }
1216
}
1217

    
1218
/* NOTE: the comma operator will make "cond" to eval to false,
1219
 * but float*_is_unordered() is still called. */
1220
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1221
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1222
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1223
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1224
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1225
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1226
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1227
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1228
/* NOTE: the comma operator will make "cond" to eval to false,
1229
 * but float*_is_unordered() is still called. */
1230
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1231
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1232
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1233
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1234
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1235
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1236
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1237
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1238

    
1239
#define FOP_COND_PS(op, condl, condh)          \
1240
void do_cmp_ps_ ## op (long cc)                \
1241
{                                              \
1242
    int cl = condl;                            \
1243
    int ch = condh;                            \
1244
    update_fcr31();                            \
1245
    if (cl)                                    \
1246
        SET_FP_COND(cc, env->fpu);             \
1247
    else                                       \
1248
        CLEAR_FP_COND(cc, env->fpu);           \
1249
    if (ch)                                    \
1250
        SET_FP_COND(cc + 1, env->fpu);         \
1251
    else                                       \
1252
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1253
}                                              \
1254
void do_cmpabs_ps_ ## op (long cc)             \
1255
{                                              \
1256
    int cl, ch;                                \
1257
    FST0 &= ~FLOAT_SIGN32;                     \
1258
    FSTH0 &= ~FLOAT_SIGN32;                    \
1259
    FST1 &= ~FLOAT_SIGN32;                     \
1260
    FSTH1 &= ~FLOAT_SIGN32;                    \
1261
    cl = condl;                                \
1262
    ch = condh;                                \
1263
    update_fcr31();                            \
1264
    if (cl)                                    \
1265
        SET_FP_COND(cc, env->fpu);             \
1266
    else                                       \
1267
        CLEAR_FP_COND(cc, env->fpu);           \
1268
    if (ch)                                    \
1269
        SET_FP_COND(cc + 1, env->fpu);         \
1270
    else                                       \
1271
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1272
}
1273

    
1274
/* NOTE: the comma operator will make "cond" to eval to false,
1275
 * but float*_is_unordered() is still called. */
1276
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1277
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1278
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1279
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1280
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1281
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1282
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1283
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1284
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1285
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1286
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1287
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1288
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1289
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1290
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1291
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1292
/* NOTE: the comma operator will make "cond" to eval to false,
1293
 * but float*_is_unordered() is still called. */
1294
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1295
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1296
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1297
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1298
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1299
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1300
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1301
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1302
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1303
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1304
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1305
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1306
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1307
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1308
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1309
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))