Statistics
| Branch: | Revision:

root / qemu-doc.texi @ aa71cf80

History | View | Annotate | Download (103.1 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@end itemize
95

    
96
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
97

    
98
@node Installation
99
@chapter Installation
100

    
101
If you want to compile QEMU yourself, see @ref{compilation}.
102

    
103
@menu
104
* install_linux::   Linux
105
* install_windows:: Windows
106
* install_mac::     Macintosh
107
@end menu
108

    
109
@node install_linux
110
@section Linux
111

    
112
If a precompiled package is available for your distribution - you just
113
have to install it. Otherwise, see @ref{compilation}.
114

    
115
@node install_windows
116
@section Windows
117

    
118
Download the experimental binary installer at
119
@url{http://www.free.oszoo.org/@/download.html}.
120

    
121
@node install_mac
122
@section Mac OS X
123

    
124
Download the experimental binary installer at
125
@url{http://www.free.oszoo.org/@/download.html}.
126

    
127
@node QEMU PC System emulator
128
@chapter QEMU PC System emulator
129

    
130
@menu
131
* pcsys_introduction:: Introduction
132
* pcsys_quickstart::   Quick Start
133
* sec_invocation::     Invocation
134
* pcsys_keys::         Keys
135
* pcsys_monitor::      QEMU Monitor
136
* disk_images::        Disk Images
137
* pcsys_network::      Network emulation
138
* direct_linux_boot::  Direct Linux Boot
139
* pcsys_usb::          USB emulation
140
* vnc_security::       VNC security
141
* gdb_usage::          GDB usage
142
* pcsys_os_specific::  Target OS specific information
143
@end menu
144

    
145
@node pcsys_introduction
146
@section Introduction
147

    
148
@c man begin DESCRIPTION
149

    
150
The QEMU PC System emulator simulates the
151
following peripherals:
152

    
153
@itemize @minus
154
@item
155
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156
@item
157
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158
extensions (hardware level, including all non standard modes).
159
@item
160
PS/2 mouse and keyboard
161
@item
162
2 PCI IDE interfaces with hard disk and CD-ROM support
163
@item
164
Floppy disk
165
@item
166
PCI/ISA PCI network adapters
167
@item
168
Serial ports
169
@item
170
Creative SoundBlaster 16 sound card
171
@item
172
ENSONIQ AudioPCI ES1370 sound card
173
@item
174
Intel 82801AA AC97 Audio compatible sound card
175
@item
176
Adlib(OPL2) - Yamaha YM3812 compatible chip
177
@item
178
Gravis Ultrasound GF1 sound card
179
@item
180
CS4231A compatible sound card
181
@item
182
PCI UHCI USB controller and a virtual USB hub.
183
@end itemize
184

    
185
SMP is supported with up to 255 CPUs.
186

    
187
Note that adlib, gus and cs4231a are only available when QEMU was
188
configured with --audio-card-list option containing the name(s) of
189
required card(s).
190

    
191
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192
VGA BIOS.
193

    
194
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
195

    
196
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197
by Tibor "TS" Sch?tz.
198

    
199
CS4231A is the chip used in Windows Sound System and GUSMAX products
200

    
201
@c man end
202

    
203
@node pcsys_quickstart
204
@section Quick Start
205

    
206
Download and uncompress the linux image (@file{linux.img}) and type:
207

    
208
@example
209
qemu linux.img
210
@end example
211

    
212
Linux should boot and give you a prompt.
213

    
214
@node sec_invocation
215
@section Invocation
216

    
217
@example
218
@c man begin SYNOPSIS
219
usage: qemu [options] [@var{disk_image}]
220
@c man end
221
@end example
222

    
223
@c man begin OPTIONS
224
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225
targets do not need a disk image.
226

    
227
General options:
228
@table @option
229
@item -h
230
Display help and exit
231

    
232
@item -M @var{machine}
233
Select the emulated @var{machine} (@code{-M ?} for list)
234

    
235
@item -cpu @var{model}
236
Select CPU model (-cpu ? for list and additional feature selection)
237

    
238
@item -smp @var{n}
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241
to 4.
242

    
243
@item -fda @var{file}
244
@item -fdb @var{file}
245
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
247

    
248
@item -hda @var{file}
249
@item -hdb @var{file}
250
@item -hdc @var{file}
251
@item -hdd @var{file}
252
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
253

    
254
@item -cdrom @var{file}
255
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256
@option{-cdrom} at the same time). You can use the host CD-ROM by
257
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
258

    
259
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
260

    
261
Define a new drive. Valid options are:
262

    
263
@table @code
264
@item file=@var{file}
265
This option defines which disk image (@pxref{disk_images}) to use with
266
this drive. If the filename contains comma, you must double it
267
(for instance, "file=my,,file" to use file "my,file").
268
@item if=@var{interface}
269
This option defines on which type on interface the drive is connected.
270
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271
@item bus=@var{bus},unit=@var{unit}
272
These options define where is connected the drive by defining the bus number and
273
the unit id.
274
@item index=@var{index}
275
This option defines where is connected the drive by using an index in the list
276
of available connectors of a given interface type.
277
@item media=@var{media}
278
This option defines the type of the media: disk or cdrom.
279
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280
These options have the same definition as they have in @option{-hdachs}.
281
@item snapshot=@var{snapshot}
282
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283
@item cache=@var{cache}
284
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285
@item format=@var{format}
286
Specify which disk @var{format} will be used rather than detecting
287
the format.  Can be used to specifiy format=raw to avoid interpreting
288
an untrusted format header.
289
@item serial=@var{serial}
290
This option specifies the serial number to assign to the device.
291
@end table
292

    
293
By default, writethrough caching is used for all block device.  This means that
294
the host page cache will be used to read and write data but write notification
295
will be sent to the guest only when the data has been reported as written by
296
the storage subsystem.
297

    
298
Writeback caching will report data writes as completed as soon as the data is
299
present in the host page cache.  This is safe as long as you trust your host.
300
If your host crashes or loses power, then the guest may experience data
301
corruption.  When using the @option{-snapshot} option, writeback caching is
302
used by default.
303

    
304
The host page can be avoided entirely with @option{cache=none}.  This will
305
attempt to do disk IO directly to the guests memory.  QEMU may still perform
306
an internal copy of the data.
307

    
308
Some block drivers perform badly with @option{cache=writethrough}, most notably,
309
qcow2.  If performance is more important than correctness,
310
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
311
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312
used.  For all other disk types, @option{cache=writethrough} is the default.
313

    
314
Instead of @option{-cdrom} you can use:
315
@example
316
qemu -drive file=file,index=2,media=cdrom
317
@end example
318

    
319
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320
use:
321
@example
322
qemu -drive file=file,index=0,media=disk
323
qemu -drive file=file,index=1,media=disk
324
qemu -drive file=file,index=2,media=disk
325
qemu -drive file=file,index=3,media=disk
326
@end example
327

    
328
You can connect a CDROM to the slave of ide0:
329
@example
330
qemu -drive file=file,if=ide,index=1,media=cdrom
331
@end example
332

    
333
If you don't specify the "file=" argument, you define an empty drive:
334
@example
335
qemu -drive if=ide,index=1,media=cdrom
336
@end example
337

    
338
You can connect a SCSI disk with unit ID 6 on the bus #0:
339
@example
340
qemu -drive file=file,if=scsi,bus=0,unit=6
341
@end example
342

    
343
Instead of @option{-fda}, @option{-fdb}, you can use:
344
@example
345
qemu -drive file=file,index=0,if=floppy
346
qemu -drive file=file,index=1,if=floppy
347
@end example
348

    
349
By default, @var{interface} is "ide" and @var{index} is automatically
350
incremented:
351
@example
352
qemu -drive file=a -drive file=b"
353
@end example
354
is interpreted like:
355
@example
356
qemu -hda a -hdb b
357
@end example
358

    
359
@item -mtdblock file
360
Use 'file' as on-board Flash memory image.
361

    
362
@item -sd file
363
Use 'file' as SecureDigital card image.
364

    
365
@item -pflash file
366
Use 'file' as a parallel flash image.
367

    
368
@item -boot [a|c|d|n]
369
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370
is the default.
371

    
372
@item -snapshot
373
Write to temporary files instead of disk image files. In this case,
374
the raw disk image you use is not written back. You can however force
375
the write back by pressing @key{C-a s} (@pxref{disk_images}).
376

    
377
@item -m @var{megs}
378
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
379
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380
gigabytes respectively.
381

    
382
@item -k @var{language}
383

    
384
Use keyboard layout @var{language} (for example @code{fr} for
385
French). This option is only needed where it is not easy to get raw PC
386
keycodes (e.g. on Macs, with some X11 servers or with a VNC
387
display). You don't normally need to use it on PC/Linux or PC/Windows
388
hosts.
389

    
390
The available layouts are:
391
@example
392
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
393
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
394
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
395
@end example
396

    
397
The default is @code{en-us}.
398

    
399
@item -audio-help
400

    
401
Will show the audio subsystem help: list of drivers, tunable
402
parameters.
403

    
404
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
405

    
406
Enable audio and selected sound hardware. Use ? to print all
407
available sound hardware.
408

    
409
@example
410
qemu -soundhw sb16,adlib disk.img
411
qemu -soundhw es1370 disk.img
412
qemu -soundhw ac97 disk.img
413
qemu -soundhw all disk.img
414
qemu -soundhw ?
415
@end example
416

    
417
Note that Linux's i810_audio OSS kernel (for AC97) module might
418
require manually specifying clocking.
419

    
420
@example
421
modprobe i810_audio clocking=48000
422
@end example
423

    
424
@end table
425

    
426
USB options:
427
@table @option
428

    
429
@item -usb
430
Enable the USB driver (will be the default soon)
431

    
432
@item -usbdevice @var{devname}
433
Add the USB device @var{devname}. @xref{usb_devices}.
434

    
435
@table @code
436

    
437
@item mouse
438
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
439

    
440
@item tablet
441
Pointer device that uses absolute coordinates (like a touchscreen). This
442
means qemu is able to report the mouse position without having to grab the
443
mouse. Also overrides the PS/2 mouse emulation when activated.
444

    
445
@item disk:[format=@var{format}]:file
446
Mass storage device based on file. The optional @var{format} argument
447
will be used rather than detecting the format. Can be used to specifiy
448
format=raw to avoid interpreting an untrusted format header.
449

    
450
@item host:bus.addr
451
Pass through the host device identified by bus.addr (Linux only).
452

    
453
@item host:vendor_id:product_id
454
Pass through the host device identified by vendor_id:product_id (Linux only).
455

    
456
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457
Serial converter to host character device @var{dev}, see @code{-serial} for the
458
available devices.
459

    
460
@item braille
461
Braille device.  This will use BrlAPI to display the braille output on a real
462
or fake device.
463

    
464
@item net:options
465
Network adapter that supports CDC ethernet and RNDIS protocols.
466

    
467
@end table
468

    
469
@item -name @var{name}
470
Sets the @var{name} of the guest.
471
This name will be displayed in the SDL window caption.
472
The @var{name} will also be used for the VNC server.
473

    
474
@item -uuid @var{uuid}
475
Set system UUID.
476

    
477
@end table
478

    
479
Display options:
480
@table @option
481

    
482
@item -nographic
483

    
484
Normally, QEMU uses SDL to display the VGA output. With this option,
485
you can totally disable graphical output so that QEMU is a simple
486
command line application. The emulated serial port is redirected on
487
the console. Therefore, you can still use QEMU to debug a Linux kernel
488
with a serial console.
489

    
490
@item -curses
491

    
492
Normally, QEMU uses SDL to display the VGA output.  With this option,
493
QEMU can display the VGA output when in text mode using a 
494
curses/ncurses interface.  Nothing is displayed in graphical mode.
495

    
496
@item -no-frame
497

    
498
Do not use decorations for SDL windows and start them using the whole
499
available screen space. This makes the using QEMU in a dedicated desktop
500
workspace more convenient.
501

    
502
@item -alt-grab
503

    
504
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
505

    
506
@item -no-quit
507

    
508
Disable SDL window close capability.
509

    
510
@item -sdl
511

    
512
Enable SDL.
513

    
514
@item -portrait
515

    
516
Rotate graphical output 90 deg left (only PXA LCD).
517

    
518
@item -vga @var{type}
519
Select type of VGA card to emulate. Valid values for @var{type} are
520
@table @code
521
@item cirrus
522
Cirrus Logic GD5446 Video card. All Windows versions starting from
523
Windows 95 should recognize and use this graphic card. For optimal
524
performances, use 16 bit color depth in the guest and the host OS.
525
(This one is the default)
526
@item std
527
Standard VGA card with Bochs VBE extensions.  If your guest OS
528
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529
to use high resolution modes (>= 1280x1024x16) then you should use
530
this option.
531
@item vmware
532
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533
recent XFree86/XOrg server or Windows guest with a driver for this
534
card.
535
@item none
536
Disable VGA card.
537
@end table
538

    
539
@item -full-screen
540
Start in full screen.
541

    
542
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
543

    
544
Normally, QEMU uses SDL to display the VGA output.  With this option,
545
you can have QEMU listen on VNC display @var{display} and redirect the VGA
546
display over the VNC session.  It is very useful to enable the usb
547
tablet device when using this option (option @option{-usbdevice
548
tablet}). When using the VNC display, you must use the @option{-k}
549
parameter to set the keyboard layout if you are not using en-us. Valid
550
syntax for the @var{display} is
551

    
552
@table @code
553

    
554
@item @var{host}:@var{d}
555

    
556
TCP connections will only be allowed from @var{host} on display @var{d}.
557
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558
be omitted in which case the server will accept connections from any host.
559

    
560
@item @code{unix}:@var{path}
561

    
562
Connections will be allowed over UNIX domain sockets where @var{path} is the
563
location of a unix socket to listen for connections on.
564

    
565
@item none
566

    
567
VNC is initialized but not started. The monitor @code{change} command
568
can be used to later start the VNC server.
569

    
570
@end table
571

    
572
Following the @var{display} value there may be one or more @var{option} flags
573
separated by commas. Valid options are
574

    
575
@table @code
576

    
577
@item reverse
578

    
579
Connect to a listening VNC client via a ``reverse'' connection. The
580
client is specified by the @var{display}. For reverse network
581
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582
is a TCP port number, not a display number.
583

    
584
@item password
585

    
586
Require that password based authentication is used for client connections.
587
The password must be set separately using the @code{change} command in the
588
@ref{pcsys_monitor}
589

    
590
@item tls
591

    
592
Require that client use TLS when communicating with the VNC server. This
593
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594
attack. It is recommended that this option be combined with either the
595
@var{x509} or @var{x509verify} options.
596

    
597
@item x509=@var{/path/to/certificate/dir}
598

    
599
Valid if @option{tls} is specified. Require that x509 credentials are used
600
for negotiating the TLS session. The server will send its x509 certificate
601
to the client. It is recommended that a password be set on the VNC server
602
to provide authentication of the client when this is used. The path following
603
this option specifies where the x509 certificates are to be loaded from.
604
See the @ref{vnc_security} section for details on generating certificates.
605

    
606
@item x509verify=@var{/path/to/certificate/dir}
607

    
608
Valid if @option{tls} is specified. Require that x509 credentials are used
609
for negotiating the TLS session. The server will send its x509 certificate
610
to the client, and request that the client send its own x509 certificate.
611
The server will validate the client's certificate against the CA certificate,
612
and reject clients when validation fails. If the certificate authority is
613
trusted, this is a sufficient authentication mechanism. You may still wish
614
to set a password on the VNC server as a second authentication layer. The
615
path following this option specifies where the x509 certificates are to
616
be loaded from. See the @ref{vnc_security} section for details on generating
617
certificates.
618

    
619
@end table
620

    
621
@end table
622

    
623
Network options:
624

    
625
@table @option
626

    
627
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629
= 0 is the default). The NIC is an ne2k_pci by default on the PC
630
target. Optionally, the MAC address can be changed to @var{addr}
631
and a @var{name} can be assigned for use in monitor commands. If no
632
@option{-net} option is specified, a single NIC is created.
633
Qemu can emulate several different models of network card.
634
Valid values for @var{type} are
635
@code{i82551}, @code{i82557b}, @code{i82559er},
636
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638
Not all devices are supported on all targets.  Use -net nic,model=?
639
for a list of available devices for your target.
640

    
641
@item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642
Use the user mode network stack which requires no administrator
643
privilege to run.  @option{hostname=name} can be used to specify the client
644
hostname reported by the builtin DHCP server.
645

    
646
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
647
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
648
the network script @var{file} to configure it and the network script 
649
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
650
automatically provides one. @option{fd}=@var{h} can be used to specify
651
the handle of an already opened host TAP interface. The default network 
652
configure script is @file{/etc/qemu-ifup} and the default network 
653
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
654
or @option{downscript=no} to disable script execution. Example:
655

    
656
@example
657
qemu linux.img -net nic -net tap
658
@end example
659

    
660
More complicated example (two NICs, each one connected to a TAP device)
661
@example
662
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
663
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
664
@end example
665

    
666

    
667
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
668

    
669
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
670
machine using a TCP socket connection. If @option{listen} is
671
specified, QEMU waits for incoming connections on @var{port}
672
(@var{host} is optional). @option{connect} is used to connect to
673
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
674
specifies an already opened TCP socket.
675

    
676
Example:
677
@example
678
# launch a first QEMU instance
679
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
680
               -net socket,listen=:1234
681
# connect the VLAN 0 of this instance to the VLAN 0
682
# of the first instance
683
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
684
               -net socket,connect=127.0.0.1:1234
685
@end example
686

    
687
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
688

    
689
Create a VLAN @var{n} shared with another QEMU virtual
690
machines using a UDP multicast socket, effectively making a bus for
691
every QEMU with same multicast address @var{maddr} and @var{port}.
692
NOTES:
693
@enumerate
694
@item
695
Several QEMU can be running on different hosts and share same bus (assuming
696
correct multicast setup for these hosts).
697
@item
698
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
699
@url{http://user-mode-linux.sf.net}.
700
@item
701
Use @option{fd=h} to specify an already opened UDP multicast socket.
702
@end enumerate
703

    
704
Example:
705
@example
706
# launch one QEMU instance
707
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
708
               -net socket,mcast=230.0.0.1:1234
709
# launch another QEMU instance on same "bus"
710
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
711
               -net socket,mcast=230.0.0.1:1234
712
# launch yet another QEMU instance on same "bus"
713
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
714
               -net socket,mcast=230.0.0.1:1234
715
@end example
716

    
717
Example (User Mode Linux compat.):
718
@example
719
# launch QEMU instance (note mcast address selected
720
# is UML's default)
721
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
722
               -net socket,mcast=239.192.168.1:1102
723
# launch UML
724
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
725
@end example
726

    
727
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
728
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
729
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
730
and MODE @var{octalmode} to change default ownership and permissions for
731
communication port. This option is available only if QEMU has been compiled
732
with vde support enabled.
733

    
734
Example:
735
@example
736
# launch vde switch
737
vde_switch -F -sock /tmp/myswitch
738
# launch QEMU instance
739
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
740
@end example
741

    
742
@item -net none
743
Indicate that no network devices should be configured. It is used to
744
override the default configuration (@option{-net nic -net user}) which
745
is activated if no @option{-net} options are provided.
746

    
747
@item -tftp @var{dir}
748
When using the user mode network stack, activate a built-in TFTP
749
server. The files in @var{dir} will be exposed as the root of a TFTP server.
750
The TFTP client on the guest must be configured in binary mode (use the command
751
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
752
usual 10.0.2.2.
753

    
754
@item -bootp @var{file}
755
When using the user mode network stack, broadcast @var{file} as the BOOTP
756
filename.  In conjunction with @option{-tftp}, this can be used to network boot
757
a guest from a local directory.
758

    
759
Example (using pxelinux):
760
@example
761
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
762
@end example
763

    
764
@item -smb @var{dir}
765
When using the user mode network stack, activate a built-in SMB
766
server so that Windows OSes can access to the host files in @file{@var{dir}}
767
transparently.
768

    
769
In the guest Windows OS, the line:
770
@example
771
10.0.2.4 smbserver
772
@end example
773
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
774
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
775

    
776
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
777

    
778
Note that a SAMBA server must be installed on the host OS in
779
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
780
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
781

    
782
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
783

    
784
When using the user mode network stack, redirect incoming TCP or UDP
785
connections to the host port @var{host-port} to the guest
786
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
787
is not specified, its value is 10.0.2.15 (default address given by the
788
built-in DHCP server).
789

    
790
For example, to redirect host X11 connection from screen 1 to guest
791
screen 0, use the following:
792

    
793
@example
794
# on the host
795
qemu -redir tcp:6001::6000 [...]
796
# this host xterm should open in the guest X11 server
797
xterm -display :1
798
@end example
799

    
800
To redirect telnet connections from host port 5555 to telnet port on
801
the guest, use the following:
802

    
803
@example
804
# on the host
805
qemu -redir tcp:5555::23 [...]
806
telnet localhost 5555
807
@end example
808

    
809
Then when you use on the host @code{telnet localhost 5555}, you
810
connect to the guest telnet server.
811

    
812
@end table
813

    
814
Bluetooth(R) options:
815
@table @option
816

    
817
@item -bt hci[...]
818
Defines the function of the corresponding Bluetooth HCI.  -bt options
819
are matched with the HCIs present in the chosen machine type.  For
820
example when emulating a machine with only one HCI built into it, only
821
the first @code{-bt hci[...]} option is valid and defines the HCI's
822
logic.  The Transport Layer is decided by the machine type.  Currently
823
the machines @code{n800} and @code{n810} have one HCI and all other
824
machines have none.
825

    
826
@anchor{bt-hcis}
827
The following three types are recognized:
828

    
829
@table @code
830
@item -bt hci,null
831
(default) The corresponding Bluetooth HCI assumes no internal logic
832
and will not respond to any HCI commands or emit events.
833

    
834
@item -bt hci,host[:@var{id}]
835
(@code{bluez} only) The corresponding HCI passes commands / events
836
to / from the physical HCI identified by the name @var{id} (default:
837
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
838
capable systems like Linux.
839

    
840
@item -bt hci[,vlan=@var{n}]
841
Add a virtual, standard HCI that will participate in the Bluetooth
842
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
843
VLANs, devices inside a bluetooth network @var{n} can only communicate
844
with other devices in the same network (scatternet).
845
@end table
846

    
847
@item -bt vhci[,vlan=@var{n}]
848
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
849
to the host bluetooth stack instead of to the emulated target.  This
850
allows the host and target machines to participate in a common scatternet
851
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
852
be used as following:
853

    
854
@example
855
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
856
@end example
857

    
858
@item -bt device:@var{dev}[,vlan=@var{n}]
859
Emulate a bluetooth device @var{dev} and place it in network @var{n}
860
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
861
currently:
862

    
863
@table @code
864
@item keyboard
865
Virtual wireless keyboard implementing the HIDP bluetooth profile.
866
@end table
867

    
868
@end table
869

    
870
i386 target only:
871

    
872
@table @option
873

    
874
@item -win2k-hack
875
Use it when installing Windows 2000 to avoid a disk full bug. After
876
Windows 2000 is installed, you no longer need this option (this option
877
slows down the IDE transfers).
878

    
879
@item -rtc-td-hack
880
Use it if you experience time drift problem in Windows with ACPI HAL.
881
This option will try to figure out how many timer interrupts were not
882
processed by the Windows guest and will re-inject them.
883

    
884
@item -no-fd-bootchk
885
Disable boot signature checking for floppy disks in Bochs BIOS. It may
886
be needed to boot from old floppy disks.
887

    
888
@item -no-acpi
889
Disable ACPI (Advanced Configuration and Power Interface) support. Use
890
it if your guest OS complains about ACPI problems (PC target machine
891
only).
892

    
893
@item -no-hpet
894
Disable HPET support.
895

    
896
@end table
897

    
898
Linux boot specific: When using these options, you can use a given
899
Linux kernel without installing it in the disk image. It can be useful
900
for easier testing of various kernels.
901

    
902
@table @option
903

    
904
@item -kernel @var{bzImage}
905
Use @var{bzImage} as kernel image.
906

    
907
@item -append @var{cmdline}
908
Use @var{cmdline} as kernel command line
909

    
910
@item -initrd @var{file}
911
Use @var{file} as initial ram disk.
912

    
913
@end table
914

    
915
Debug/Expert options:
916
@table @option
917

    
918
@item -serial @var{dev}
919
Redirect the virtual serial port to host character device
920
@var{dev}. The default device is @code{vc} in graphical mode and
921
@code{stdio} in non graphical mode.
922

    
923
This option can be used several times to simulate up to 4 serial
924
ports.
925

    
926
Use @code{-serial none} to disable all serial ports.
927

    
928
Available character devices are:
929
@table @code
930
@item vc[:WxH]
931
Virtual console. Optionally, a width and height can be given in pixel with
932
@example
933
vc:800x600
934
@end example
935
It is also possible to specify width or height in characters:
936
@example
937
vc:80Cx24C
938
@end example
939
@item pty
940
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
941
@item none
942
No device is allocated.
943
@item null
944
void device
945
@item /dev/XXX
946
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
947
parameters are set according to the emulated ones.
948
@item /dev/parport@var{N}
949
[Linux only, parallel port only] Use host parallel port
950
@var{N}. Currently SPP and EPP parallel port features can be used.
951
@item file:@var{filename}
952
Write output to @var{filename}. No character can be read.
953
@item stdio
954
[Unix only] standard input/output
955
@item pipe:@var{filename}
956
name pipe @var{filename}
957
@item COM@var{n}
958
[Windows only] Use host serial port @var{n}
959
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
960
This implements UDP Net Console.
961
When @var{remote_host} or @var{src_ip} are not specified
962
they default to @code{0.0.0.0}.
963
When not using a specified @var{src_port} a random port is automatically chosen.
964
@item msmouse
965
Three button serial mouse. Configure the guest to use Microsoft protocol.
966

    
967
If you just want a simple readonly console you can use @code{netcat} or
968
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
969
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
970
will appear in the netconsole session.
971

    
972
If you plan to send characters back via netconsole or you want to stop
973
and start qemu a lot of times, you should have qemu use the same
974
source port each time by using something like @code{-serial
975
udp::4555@@:4556} to qemu. Another approach is to use a patched
976
version of netcat which can listen to a TCP port and send and receive
977
characters via udp.  If you have a patched version of netcat which
978
activates telnet remote echo and single char transfer, then you can
979
use the following options to step up a netcat redirector to allow
980
telnet on port 5555 to access the qemu port.
981
@table @code
982
@item Qemu Options:
983
-serial udp::4555@@:4556
984
@item netcat options:
985
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
986
@item telnet options:
987
localhost 5555
988
@end table
989

    
990

    
991
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
992
The TCP Net Console has two modes of operation.  It can send the serial
993
I/O to a location or wait for a connection from a location.  By default
994
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
995
the @var{server} option QEMU will wait for a client socket application
996
to connect to the port before continuing, unless the @code{nowait}
997
option was specified.  The @code{nodelay} option disables the Nagle buffering
998
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
999
one TCP connection at a time is accepted. You can use @code{telnet} to
1000
connect to the corresponding character device.
1001
@table @code
1002
@item Example to send tcp console to 192.168.0.2 port 4444
1003
-serial tcp:192.168.0.2:4444
1004
@item Example to listen and wait on port 4444 for connection
1005
-serial tcp::4444,server
1006
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1007
-serial tcp:192.168.0.100:4444,server,nowait
1008
@end table
1009

    
1010
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1011
The telnet protocol is used instead of raw tcp sockets.  The options
1012
work the same as if you had specified @code{-serial tcp}.  The
1013
difference is that the port acts like a telnet server or client using
1014
telnet option negotiation.  This will also allow you to send the
1015
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1016
sequence.  Typically in unix telnet you do it with Control-] and then
1017
type "send break" followed by pressing the enter key.
1018

    
1019
@item unix:@var{path}[,server][,nowait]
1020
A unix domain socket is used instead of a tcp socket.  The option works the
1021
same as if you had specified @code{-serial tcp} except the unix domain socket
1022
@var{path} is used for connections.
1023

    
1024
@item mon:@var{dev_string}
1025
This is a special option to allow the monitor to be multiplexed onto
1026
another serial port.  The monitor is accessed with key sequence of
1027
@key{Control-a} and then pressing @key{c}. See monitor access
1028
@ref{pcsys_keys} in the -nographic section for more keys.
1029
@var{dev_string} should be any one of the serial devices specified
1030
above.  An example to multiplex the monitor onto a telnet server
1031
listening on port 4444 would be:
1032
@table @code
1033
@item -serial mon:telnet::4444,server,nowait
1034
@end table
1035

    
1036
@item braille
1037
Braille device.  This will use BrlAPI to display the braille output on a real
1038
or fake device.
1039

    
1040
@end table
1041

    
1042
@item -parallel @var{dev}
1043
Redirect the virtual parallel port to host device @var{dev} (same
1044
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1045
be used to use hardware devices connected on the corresponding host
1046
parallel port.
1047

    
1048
This option can be used several times to simulate up to 3 parallel
1049
ports.
1050

    
1051
Use @code{-parallel none} to disable all parallel ports.
1052

    
1053
@item -monitor @var{dev}
1054
Redirect the monitor to host device @var{dev} (same devices as the
1055
serial port).
1056
The default device is @code{vc} in graphical mode and @code{stdio} in
1057
non graphical mode.
1058

    
1059
@item -pidfile @var{file}
1060
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1061
from a script.
1062

    
1063
@item -S
1064
Do not start CPU at startup (you must type 'c' in the monitor).
1065

    
1066
@item -s
1067
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1068

    
1069
@item -p @var{port}
1070
Change gdb connection port.  @var{port} can be either a decimal number
1071
to specify a TCP port, or a host device (same devices as the serial port).
1072

    
1073
@item -d
1074
Output log in /tmp/qemu.log
1075
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1076
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1077
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1078
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1079
all those parameters. This option is useful for old MS-DOS disk
1080
images.
1081

    
1082
@item -L  @var{path}
1083
Set the directory for the BIOS, VGA BIOS and keymaps.
1084

    
1085
@item -bios @var{file}
1086
Set the filename for the BIOS.
1087

    
1088
@item -kernel-kqemu
1089
Enable KQEMU full virtualization (default is user mode only).
1090

    
1091
@item -no-kqemu
1092
Disable KQEMU kernel module usage. KQEMU options are only available if
1093
KQEMU support is enabled when compiling.
1094

    
1095
@item -enable-kvm
1096
Enable KVM full virtualization support. This option is only available
1097
if KVM support is enabled when compiling.
1098

    
1099
@item -no-reboot
1100
Exit instead of rebooting.
1101

    
1102
@item -no-shutdown
1103
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1104
This allows for instance switching to monitor to commit changes to the
1105
disk image.
1106

    
1107
@item -loadvm @var{file}
1108
Start right away with a saved state (@code{loadvm} in monitor)
1109

    
1110
@item -daemonize
1111
Daemonize the QEMU process after initialization.  QEMU will not detach from
1112
standard IO until it is ready to receive connections on any of its devices.
1113
This option is a useful way for external programs to launch QEMU without having
1114
to cope with initialization race conditions.
1115

    
1116
@item -option-rom @var{file}
1117
Load the contents of @var{file} as an option ROM.
1118
This option is useful to load things like EtherBoot.
1119

    
1120
@item -clock @var{method}
1121
Force the use of the given methods for timer alarm. To see what timers
1122
are available use -clock ?.
1123

    
1124
@item -localtime
1125
Set the real time clock to local time (the default is to UTC
1126
time). This option is needed to have correct date in MS-DOS or
1127
Windows.
1128

    
1129
@item -startdate @var{date}
1130
Set the initial date of the real time clock. Valid formats for
1131
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1132
@code{2006-06-17}. The default value is @code{now}.
1133

    
1134
@item -icount [N|auto]
1135
Enable virtual instruction counter.  The virtual cpu will execute one
1136
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1137
then the virtual cpu speed will be automatically adjusted to keep virtual
1138
time within a few seconds of real time.
1139

    
1140
Note that while this option can give deterministic behavior, it does not
1141
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1142
order cores with complex cache hierarchies.  The number of instructions
1143
executed often has little or no correlation with actual performance.
1144

    
1145
@item -echr numeric_ascii_value
1146
Change the escape character used for switching to the monitor when using
1147
monitor and serial sharing.  The default is @code{0x01} when using the
1148
@code{-nographic} option.  @code{0x01} is equal to pressing
1149
@code{Control-a}.  You can select a different character from the ascii
1150
control keys where 1 through 26 map to Control-a through Control-z.  For
1151
instance you could use the either of the following to change the escape
1152
character to Control-t.
1153
@table @code
1154
@item -echr 0x14
1155
@item -echr 20
1156
@end table
1157

    
1158
@end table
1159

    
1160
@c man end
1161

    
1162
@node pcsys_keys
1163
@section Keys
1164

    
1165
@c man begin OPTIONS
1166

    
1167
During the graphical emulation, you can use the following keys:
1168
@table @key
1169
@item Ctrl-Alt-f
1170
Toggle full screen
1171

    
1172
@item Ctrl-Alt-n
1173
Switch to virtual console 'n'. Standard console mappings are:
1174
@table @emph
1175
@item 1
1176
Target system display
1177
@item 2
1178
Monitor
1179
@item 3
1180
Serial port
1181
@end table
1182

    
1183
@item Ctrl-Alt
1184
Toggle mouse and keyboard grab.
1185
@end table
1186

    
1187
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1188
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1189

    
1190
During emulation, if you are using the @option{-nographic} option, use
1191
@key{Ctrl-a h} to get terminal commands:
1192

    
1193
@table @key
1194
@item Ctrl-a h
1195
@item Ctrl-a ?
1196
Print this help
1197
@item Ctrl-a x
1198
Exit emulator
1199
@item Ctrl-a s
1200
Save disk data back to file (if -snapshot)
1201
@item Ctrl-a t
1202
Toggle console timestamps
1203
@item Ctrl-a b
1204
Send break (magic sysrq in Linux)
1205
@item Ctrl-a c
1206
Switch between console and monitor
1207
@item Ctrl-a Ctrl-a
1208
Send Ctrl-a
1209
@end table
1210
@c man end
1211

    
1212
@ignore
1213

    
1214
@c man begin SEEALSO
1215
The HTML documentation of QEMU for more precise information and Linux
1216
user mode emulator invocation.
1217
@c man end
1218

    
1219
@c man begin AUTHOR
1220
Fabrice Bellard
1221
@c man end
1222

    
1223
@end ignore
1224

    
1225
@node pcsys_monitor
1226
@section QEMU Monitor
1227

    
1228
The QEMU monitor is used to give complex commands to the QEMU
1229
emulator. You can use it to:
1230

    
1231
@itemize @minus
1232

    
1233
@item
1234
Remove or insert removable media images
1235
(such as CD-ROM or floppies).
1236

    
1237
@item
1238
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1239
from a disk file.
1240

    
1241
@item Inspect the VM state without an external debugger.
1242

    
1243
@end itemize
1244

    
1245
@subsection Commands
1246

    
1247
The following commands are available:
1248

    
1249
@table @option
1250

    
1251
@item help or ? [@var{cmd}]
1252
Show the help for all commands or just for command @var{cmd}.
1253

    
1254
@item commit
1255
Commit changes to the disk images (if -snapshot is used).
1256

    
1257
@item info @var{subcommand}
1258
Show various information about the system state.
1259

    
1260
@table @option
1261
@item info version
1262
show the version of QEMU
1263
@item info network
1264
show the various VLANs and the associated devices
1265
@item info chardev
1266
show the character devices
1267
@item info block
1268
show the block devices
1269
@item info block
1270
show block device statistics
1271
@item info registers
1272
show the cpu registers
1273
@item info cpus
1274
show infos for each CPU
1275
@item info history
1276
show the command line history
1277
@item info irq
1278
show the interrupts statistics (if available)
1279
@item info pic
1280
show i8259 (PIC) state
1281
@item info pci
1282
show emulated PCI device info
1283
@item info tlb
1284
show virtual to physical memory mappings (i386 only)
1285
@item info mem
1286
show the active virtual memory mappings (i386 only)
1287
@item info hpet
1288
show state of HPET (i386 only)
1289
@item info kqemu
1290
show KQEMU information
1291
@item info kvm
1292
show KVM information
1293
@item info usb
1294
show USB devices plugged on the virtual USB hub
1295
@item info usbhost
1296
show all USB host devices
1297
@item info profile
1298
show profiling information
1299
@item info capture
1300
show information about active capturing
1301
@item info snapshots
1302
show list of VM snapshots
1303
@item info status
1304
show the current VM status (running|paused)
1305
@item info pcmcia
1306
show guest PCMCIA status
1307
@item info mice
1308
show which guest mouse is receiving events
1309
@item info vnc
1310
show the vnc server status
1311
@item info name
1312
show the current VM name
1313
@item info uuid
1314
show the current VM UUID
1315
@item info cpustats
1316
show CPU statistics
1317
@item info slirp
1318
show SLIRP statistics (if available)
1319
@item info migrate
1320
show migration status
1321
@item info balloon
1322
show balloon information
1323
@end table
1324

    
1325
@item q or quit
1326
Quit the emulator.
1327

    
1328
@item eject [-f] @var{device}
1329
Eject a removable medium (use -f to force it).
1330

    
1331
@item change @var{device} @var{setting}
1332

    
1333
Change the configuration of a device.
1334

    
1335
@table @option
1336
@item change @var{diskdevice} @var{filename} [@var{format}]
1337
Change the medium for a removable disk device to point to @var{filename}. eg
1338

    
1339
@example
1340
(qemu) change ide1-cd0 /path/to/some.iso
1341
@end example
1342

    
1343
@var{format} is optional.
1344

    
1345
@item change vnc @var{display},@var{options}
1346
Change the configuration of the VNC server. The valid syntax for @var{display}
1347
and @var{options} are described at @ref{sec_invocation}. eg
1348

    
1349
@example
1350
(qemu) change vnc localhost:1
1351
@end example
1352

    
1353
@item change vnc password [@var{password}]
1354

    
1355
Change the password associated with the VNC server. If the new password is not
1356
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1357
significant up to 8 letters. eg
1358

    
1359
@example
1360
(qemu) change vnc password
1361
Password: ********
1362
@end example
1363

    
1364
@end table
1365

    
1366
@item screendump @var{filename}
1367
Save screen into PPM image @var{filename}.
1368

    
1369
@item logfile @var{filename}
1370
Output logs to @var{filename}.
1371

    
1372
@item log @var{item1}[,...]
1373
Activate logging of the specified items to @file{/tmp/qemu.log}.
1374

    
1375
@item savevm [@var{tag}|@var{id}]
1376
Create a snapshot of the whole virtual machine. If @var{tag} is
1377
provided, it is used as human readable identifier. If there is already
1378
a snapshot with the same tag or ID, it is replaced. More info at
1379
@ref{vm_snapshots}.
1380

    
1381
@item loadvm @var{tag}|@var{id}
1382
Set the whole virtual machine to the snapshot identified by the tag
1383
@var{tag} or the unique snapshot ID @var{id}.
1384

    
1385
@item delvm @var{tag}|@var{id}
1386
Delete the snapshot identified by @var{tag} or @var{id}.
1387

    
1388
@item stop
1389
Stop emulation.
1390

    
1391
@item c or cont
1392
Resume emulation.
1393

    
1394
@item gdbserver [@var{port}]
1395
Start gdbserver session (default @var{port}=1234)
1396

    
1397
@item x/fmt @var{addr}
1398
Virtual memory dump starting at @var{addr}.
1399

    
1400
@item xp /@var{fmt} @var{addr}
1401
Physical memory dump starting at @var{addr}.
1402

    
1403
@var{fmt} is a format which tells the command how to format the
1404
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1405

    
1406
@table @var
1407
@item count
1408
is the number of items to be dumped.
1409

    
1410
@item format
1411
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1412
c (char) or i (asm instruction).
1413

    
1414
@item size
1415
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1416
@code{h} or @code{w} can be specified with the @code{i} format to
1417
respectively select 16 or 32 bit code instruction size.
1418

    
1419
@end table
1420

    
1421
Examples:
1422
@itemize
1423
@item
1424
Dump 10 instructions at the current instruction pointer:
1425
@example
1426
(qemu) x/10i $eip
1427
0x90107063:  ret
1428
0x90107064:  sti
1429
0x90107065:  lea    0x0(%esi,1),%esi
1430
0x90107069:  lea    0x0(%edi,1),%edi
1431
0x90107070:  ret
1432
0x90107071:  jmp    0x90107080
1433
0x90107073:  nop
1434
0x90107074:  nop
1435
0x90107075:  nop
1436
0x90107076:  nop
1437
@end example
1438

    
1439
@item
1440
Dump 80 16 bit values at the start of the video memory.
1441
@smallexample
1442
(qemu) xp/80hx 0xb8000
1443
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1444
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1445
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1446
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1447
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1448
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1449
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1450
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1451
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1452
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1453
@end smallexample
1454
@end itemize
1455

    
1456
@item p or print/@var{fmt} @var{expr}
1457

    
1458
Print expression value. Only the @var{format} part of @var{fmt} is
1459
used.
1460

    
1461
@item sendkey @var{keys}
1462

    
1463
Send @var{keys} to the emulator. @var{keys} could be the name of the
1464
key or @code{#} followed by the raw value in either decimal or hexadecimal
1465
format. Use @code{-} to press several keys simultaneously. Example:
1466
@example
1467
sendkey ctrl-alt-f1
1468
@end example
1469

    
1470
This command is useful to send keys that your graphical user interface
1471
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1472

    
1473
@item system_reset
1474

    
1475
Reset the system.
1476

    
1477
@item system_powerdown
1478

    
1479
Power down the system (if supported).
1480

    
1481
@item sum @var{addr} @var{size}
1482

    
1483
Compute the checksum of a memory region.
1484

    
1485
@item usb_add @var{devname}
1486

    
1487
Add the USB device @var{devname}.  For details of available devices see
1488
@ref{usb_devices}
1489

    
1490
@item usb_del @var{devname}
1491

    
1492
Remove the USB device @var{devname} from the QEMU virtual USB
1493
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1494
command @code{info usb} to see the devices you can remove.
1495

    
1496
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1497
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1498
with optional scroll axis @var{dz}.
1499

    
1500
@item mouse_button @var{val}
1501
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1502

    
1503
@item mouse_set @var{index}
1504
Set which mouse device receives events at given @var{index}, index
1505
can be obtained with
1506
@example
1507
info mice
1508
@end example
1509

    
1510
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1511
Capture audio into @var{filename}. Using sample rate @var{frequency}
1512
bits per sample @var{bits} and number of channels @var{channels}.
1513

    
1514
Defaults:
1515
@itemize @minus
1516
@item Sample rate = 44100 Hz - CD quality
1517
@item Bits = 16
1518
@item Number of channels = 2 - Stereo
1519
@end itemize
1520

    
1521
@item stopcapture @var{index}
1522
Stop capture with a given @var{index}, index can be obtained with
1523
@example
1524
info capture
1525
@end example
1526

    
1527
@item memsave @var{addr} @var{size} @var{file}
1528
save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1529

    
1530
@item pmemsave @var{addr} @var{size} @var{file}
1531
save to disk physical memory dump starting at @var{addr} of size @var{size}.
1532

    
1533
@item boot_set @var{bootdevicelist}
1534

    
1535
Define new values for the boot device list. Those values will override
1536
the values specified on the command line through the @code{-boot} option.
1537

    
1538
The values that can be specified here depend on the machine type, but are
1539
the same that can be specified in the @code{-boot} command line option.
1540

    
1541
@item nmi @var{cpu}
1542
Inject an NMI on the given CPU.
1543

    
1544
@item migrate [-d] @var{uri}
1545
Migrate to @var{uri} (using -d to not wait for completion).
1546

    
1547
@item migrate_cancel
1548
Cancel the current VM migration.
1549

    
1550
@item migrate_set_speed @var{value}
1551
Set maximum speed to @var{value} (in bytes) for migrations.
1552

    
1553
@item balloon @var{value}
1554
Request VM to change its memory allocation to @var{value} (in MB).
1555

    
1556
@item set_link @var{name} [up|down]
1557
Set link @var{name} up or down.
1558

    
1559
@end table
1560

    
1561
@subsection Integer expressions
1562

    
1563
The monitor understands integers expressions for every integer
1564
argument. You can use register names to get the value of specifics
1565
CPU registers by prefixing them with @emph{$}.
1566

    
1567
@node disk_images
1568
@section Disk Images
1569

    
1570
Since version 0.6.1, QEMU supports many disk image formats, including
1571
growable disk images (their size increase as non empty sectors are
1572
written), compressed and encrypted disk images. Version 0.8.3 added
1573
the new qcow2 disk image format which is essential to support VM
1574
snapshots.
1575

    
1576
@menu
1577
* disk_images_quickstart::    Quick start for disk image creation
1578
* disk_images_snapshot_mode:: Snapshot mode
1579
* vm_snapshots::              VM snapshots
1580
* qemu_img_invocation::       qemu-img Invocation
1581
* qemu_nbd_invocation::       qemu-nbd Invocation
1582
* host_drives::               Using host drives
1583
* disk_images_fat_images::    Virtual FAT disk images
1584
* disk_images_nbd::           NBD access
1585
@end menu
1586

    
1587
@node disk_images_quickstart
1588
@subsection Quick start for disk image creation
1589

    
1590
You can create a disk image with the command:
1591
@example
1592
qemu-img create myimage.img mysize
1593
@end example
1594
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1595
size in kilobytes. You can add an @code{M} suffix to give the size in
1596
megabytes and a @code{G} suffix for gigabytes.
1597

    
1598
See @ref{qemu_img_invocation} for more information.
1599

    
1600
@node disk_images_snapshot_mode
1601
@subsection Snapshot mode
1602

    
1603
If you use the option @option{-snapshot}, all disk images are
1604
considered as read only. When sectors in written, they are written in
1605
a temporary file created in @file{/tmp}. You can however force the
1606
write back to the raw disk images by using the @code{commit} monitor
1607
command (or @key{C-a s} in the serial console).
1608

    
1609
@node vm_snapshots
1610
@subsection VM snapshots
1611

    
1612
VM snapshots are snapshots of the complete virtual machine including
1613
CPU state, RAM, device state and the content of all the writable
1614
disks. In order to use VM snapshots, you must have at least one non
1615
removable and writable block device using the @code{qcow2} disk image
1616
format. Normally this device is the first virtual hard drive.
1617

    
1618
Use the monitor command @code{savevm} to create a new VM snapshot or
1619
replace an existing one. A human readable name can be assigned to each
1620
snapshot in addition to its numerical ID.
1621

    
1622
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1623
a VM snapshot. @code{info snapshots} lists the available snapshots
1624
with their associated information:
1625

    
1626
@example
1627
(qemu) info snapshots
1628
Snapshot devices: hda
1629
Snapshot list (from hda):
1630
ID        TAG                 VM SIZE                DATE       VM CLOCK
1631
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1632
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1633
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1634
@end example
1635

    
1636
A VM snapshot is made of a VM state info (its size is shown in
1637
@code{info snapshots}) and a snapshot of every writable disk image.
1638
The VM state info is stored in the first @code{qcow2} non removable
1639
and writable block device. The disk image snapshots are stored in
1640
every disk image. The size of a snapshot in a disk image is difficult
1641
to evaluate and is not shown by @code{info snapshots} because the
1642
associated disk sectors are shared among all the snapshots to save
1643
disk space (otherwise each snapshot would need a full copy of all the
1644
disk images).
1645

    
1646
When using the (unrelated) @code{-snapshot} option
1647
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1648
but they are deleted as soon as you exit QEMU.
1649

    
1650
VM snapshots currently have the following known limitations:
1651
@itemize
1652
@item
1653
They cannot cope with removable devices if they are removed or
1654
inserted after a snapshot is done.
1655
@item
1656
A few device drivers still have incomplete snapshot support so their
1657
state is not saved or restored properly (in particular USB).
1658
@end itemize
1659

    
1660
@node qemu_img_invocation
1661
@subsection @code{qemu-img} Invocation
1662

    
1663
@include qemu-img.texi
1664

    
1665
@node qemu_nbd_invocation
1666
@subsection @code{qemu-nbd} Invocation
1667

    
1668
@include qemu-nbd.texi
1669

    
1670
@node host_drives
1671
@subsection Using host drives
1672

    
1673
In addition to disk image files, QEMU can directly access host
1674
devices. We describe here the usage for QEMU version >= 0.8.3.
1675

    
1676
@subsubsection Linux
1677

    
1678
On Linux, you can directly use the host device filename instead of a
1679
disk image filename provided you have enough privileges to access
1680
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1681
@file{/dev/fd0} for the floppy.
1682

    
1683
@table @code
1684
@item CD
1685
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1686
specific code to detect CDROM insertion or removal. CDROM ejection by
1687
the guest OS is supported. Currently only data CDs are supported.
1688
@item Floppy
1689
You can specify a floppy device even if no floppy is loaded. Floppy
1690
removal is currently not detected accurately (if you change floppy
1691
without doing floppy access while the floppy is not loaded, the guest
1692
OS will think that the same floppy is loaded).
1693
@item Hard disks
1694
Hard disks can be used. Normally you must specify the whole disk
1695
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1696
see it as a partitioned disk. WARNING: unless you know what you do, it
1697
is better to only make READ-ONLY accesses to the hard disk otherwise
1698
you may corrupt your host data (use the @option{-snapshot} command
1699
line option or modify the device permissions accordingly).
1700
@end table
1701

    
1702
@subsubsection Windows
1703

    
1704
@table @code
1705
@item CD
1706
The preferred syntax is the drive letter (e.g. @file{d:}). The
1707
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1708
supported as an alias to the first CDROM drive.
1709

    
1710
Currently there is no specific code to handle removable media, so it
1711
is better to use the @code{change} or @code{eject} monitor commands to
1712
change or eject media.
1713
@item Hard disks
1714
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1715
where @var{N} is the drive number (0 is the first hard disk).
1716

    
1717
WARNING: unless you know what you do, it is better to only make
1718
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1719
host data (use the @option{-snapshot} command line so that the
1720
modifications are written in a temporary file).
1721
@end table
1722

    
1723

    
1724
@subsubsection Mac OS X
1725

    
1726
@file{/dev/cdrom} is an alias to the first CDROM.
1727

    
1728
Currently there is no specific code to handle removable media, so it
1729
is better to use the @code{change} or @code{eject} monitor commands to
1730
change or eject media.
1731

    
1732
@node disk_images_fat_images
1733
@subsection Virtual FAT disk images
1734

    
1735
QEMU can automatically create a virtual FAT disk image from a
1736
directory tree. In order to use it, just type:
1737

    
1738
@example
1739
qemu linux.img -hdb fat:/my_directory
1740
@end example
1741

    
1742
Then you access access to all the files in the @file{/my_directory}
1743
directory without having to copy them in a disk image or to export
1744
them via SAMBA or NFS. The default access is @emph{read-only}.
1745

    
1746
Floppies can be emulated with the @code{:floppy:} option:
1747

    
1748
@example
1749
qemu linux.img -fda fat:floppy:/my_directory
1750
@end example
1751

    
1752
A read/write support is available for testing (beta stage) with the
1753
@code{:rw:} option:
1754

    
1755
@example
1756
qemu linux.img -fda fat:floppy:rw:/my_directory
1757
@end example
1758

    
1759
What you should @emph{never} do:
1760
@itemize
1761
@item use non-ASCII filenames ;
1762
@item use "-snapshot" together with ":rw:" ;
1763
@item expect it to work when loadvm'ing ;
1764
@item write to the FAT directory on the host system while accessing it with the guest system.
1765
@end itemize
1766

    
1767
@node disk_images_nbd
1768
@subsection NBD access
1769

    
1770
QEMU can access directly to block device exported using the Network Block Device
1771
protocol.
1772

    
1773
@example
1774
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1775
@end example
1776

    
1777
If the NBD server is located on the same host, you can use an unix socket instead
1778
of an inet socket:
1779

    
1780
@example
1781
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1782
@end example
1783

    
1784
In this case, the block device must be exported using qemu-nbd:
1785

    
1786
@example
1787
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1788
@end example
1789

    
1790
The use of qemu-nbd allows to share a disk between several guests:
1791
@example
1792
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1793
@end example
1794

    
1795
and then you can use it with two guests:
1796
@example
1797
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1798
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1799
@end example
1800

    
1801
@node pcsys_network
1802
@section Network emulation
1803

    
1804
QEMU can simulate several network cards (PCI or ISA cards on the PC
1805
target) and can connect them to an arbitrary number of Virtual Local
1806
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1807
VLAN. VLAN can be connected between separate instances of QEMU to
1808
simulate large networks. For simpler usage, a non privileged user mode
1809
network stack can replace the TAP device to have a basic network
1810
connection.
1811

    
1812
@subsection VLANs
1813

    
1814
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1815
connection between several network devices. These devices can be for
1816
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1817
(TAP devices).
1818

    
1819
@subsection Using TAP network interfaces
1820

    
1821
This is the standard way to connect QEMU to a real network. QEMU adds
1822
a virtual network device on your host (called @code{tapN}), and you
1823
can then configure it as if it was a real ethernet card.
1824

    
1825
@subsubsection Linux host
1826

    
1827
As an example, you can download the @file{linux-test-xxx.tar.gz}
1828
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1829
configure properly @code{sudo} so that the command @code{ifconfig}
1830
contained in @file{qemu-ifup} can be executed as root. You must verify
1831
that your host kernel supports the TAP network interfaces: the
1832
device @file{/dev/net/tun} must be present.
1833

    
1834
See @ref{sec_invocation} to have examples of command lines using the
1835
TAP network interfaces.
1836

    
1837
@subsubsection Windows host
1838

    
1839
There is a virtual ethernet driver for Windows 2000/XP systems, called
1840
TAP-Win32. But it is not included in standard QEMU for Windows,
1841
so you will need to get it separately. It is part of OpenVPN package,
1842
so download OpenVPN from : @url{http://openvpn.net/}.
1843

    
1844
@subsection Using the user mode network stack
1845

    
1846
By using the option @option{-net user} (default configuration if no
1847
@option{-net} option is specified), QEMU uses a completely user mode
1848
network stack (you don't need root privilege to use the virtual
1849
network). The virtual network configuration is the following:
1850

    
1851
@example
1852

    
1853
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1854
                           |          (10.0.2.2)
1855
                           |
1856
                           ---->  DNS server (10.0.2.3)
1857
                           |
1858
                           ---->  SMB server (10.0.2.4)
1859
@end example
1860

    
1861
The QEMU VM behaves as if it was behind a firewall which blocks all
1862
incoming connections. You can use a DHCP client to automatically
1863
configure the network in the QEMU VM. The DHCP server assign addresses
1864
to the hosts starting from 10.0.2.15.
1865

    
1866
In order to check that the user mode network is working, you can ping
1867
the address 10.0.2.2 and verify that you got an address in the range
1868
10.0.2.x from the QEMU virtual DHCP server.
1869

    
1870
Note that @code{ping} is not supported reliably to the internet as it
1871
would require root privileges. It means you can only ping the local
1872
router (10.0.2.2).
1873

    
1874
When using the built-in TFTP server, the router is also the TFTP
1875
server.
1876

    
1877
When using the @option{-redir} option, TCP or UDP connections can be
1878
redirected from the host to the guest. It allows for example to
1879
redirect X11, telnet or SSH connections.
1880

    
1881
@subsection Connecting VLANs between QEMU instances
1882

    
1883
Using the @option{-net socket} option, it is possible to make VLANs
1884
that span several QEMU instances. See @ref{sec_invocation} to have a
1885
basic example.
1886

    
1887
@node direct_linux_boot
1888
@section Direct Linux Boot
1889

    
1890
This section explains how to launch a Linux kernel inside QEMU without
1891
having to make a full bootable image. It is very useful for fast Linux
1892
kernel testing.
1893

    
1894
The syntax is:
1895
@example
1896
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1897
@end example
1898

    
1899
Use @option{-kernel} to provide the Linux kernel image and
1900
@option{-append} to give the kernel command line arguments. The
1901
@option{-initrd} option can be used to provide an INITRD image.
1902

    
1903
When using the direct Linux boot, a disk image for the first hard disk
1904
@file{hda} is required because its boot sector is used to launch the
1905
Linux kernel.
1906

    
1907
If you do not need graphical output, you can disable it and redirect
1908
the virtual serial port and the QEMU monitor to the console with the
1909
@option{-nographic} option. The typical command line is:
1910
@example
1911
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1912
     -append "root=/dev/hda console=ttyS0" -nographic
1913
@end example
1914

    
1915
Use @key{Ctrl-a c} to switch between the serial console and the
1916
monitor (@pxref{pcsys_keys}).
1917

    
1918
@node pcsys_usb
1919
@section USB emulation
1920

    
1921
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1922
virtual USB devices or real host USB devices (experimental, works only
1923
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1924
as necessary to connect multiple USB devices.
1925

    
1926
@menu
1927
* usb_devices::
1928
* host_usb_devices::
1929
@end menu
1930
@node usb_devices
1931
@subsection Connecting USB devices
1932

    
1933
USB devices can be connected with the @option{-usbdevice} commandline option
1934
or the @code{usb_add} monitor command.  Available devices are:
1935

    
1936
@table @code
1937
@item mouse
1938
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1939
@item tablet
1940
Pointer device that uses absolute coordinates (like a touchscreen).
1941
This means qemu is able to report the mouse position without having
1942
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1943
@item disk:@var{file}
1944
Mass storage device based on @var{file} (@pxref{disk_images})
1945
@item host:@var{bus.addr}
1946
Pass through the host device identified by @var{bus.addr}
1947
(Linux only)
1948
@item host:@var{vendor_id:product_id}
1949
Pass through the host device identified by @var{vendor_id:product_id}
1950
(Linux only)
1951
@item wacom-tablet
1952
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1953
above but it can be used with the tslib library because in addition to touch
1954
coordinates it reports touch pressure.
1955
@item keyboard
1956
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1957
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1958
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1959
device @var{dev}. The available character devices are the same as for the
1960
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1961
used to override the default 0403:6001. For instance, 
1962
@example
1963
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1964
@end example
1965
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1966
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1967
@item braille
1968
Braille device.  This will use BrlAPI to display the braille output on a real
1969
or fake device.
1970
@item net:@var{options}
1971
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1972
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1973
For instance, user-mode networking can be used with
1974
@example
1975
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1976
@end example
1977
Currently this cannot be used in machines that support PCI NICs.
1978
@item bt[:@var{hci-type}]
1979
Bluetooth dongle whose type is specified in the same format as with
1980
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1981
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1982
This USB device implements the USB Transport Layer of HCI.  Example
1983
usage:
1984
@example
1985
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1986
@end example
1987
@end table
1988

    
1989
@node host_usb_devices
1990
@subsection Using host USB devices on a Linux host
1991

    
1992
WARNING: this is an experimental feature. QEMU will slow down when
1993
using it. USB devices requiring real time streaming (i.e. USB Video
1994
Cameras) are not supported yet.
1995

    
1996
@enumerate
1997
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1998
is actually using the USB device. A simple way to do that is simply to
1999
disable the corresponding kernel module by renaming it from @file{mydriver.o}
2000
to @file{mydriver.o.disabled}.
2001

    
2002
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2003
@example
2004
ls /proc/bus/usb
2005
001  devices  drivers
2006
@end example
2007

    
2008
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2009
@example
2010
chown -R myuid /proc/bus/usb
2011
@end example
2012

    
2013
@item Launch QEMU and do in the monitor:
2014
@example
2015
info usbhost
2016
  Device 1.2, speed 480 Mb/s
2017
    Class 00: USB device 1234:5678, USB DISK
2018
@end example
2019
You should see the list of the devices you can use (Never try to use
2020
hubs, it won't work).
2021

    
2022
@item Add the device in QEMU by using:
2023
@example
2024
usb_add host:1234:5678
2025
@end example
2026

    
2027
Normally the guest OS should report that a new USB device is
2028
plugged. You can use the option @option{-usbdevice} to do the same.
2029

    
2030
@item Now you can try to use the host USB device in QEMU.
2031

    
2032
@end enumerate
2033

    
2034
When relaunching QEMU, you may have to unplug and plug again the USB
2035
device to make it work again (this is a bug).
2036

    
2037
@node vnc_security
2038
@section VNC security
2039

    
2040
The VNC server capability provides access to the graphical console
2041
of the guest VM across the network. This has a number of security
2042
considerations depending on the deployment scenarios.
2043

    
2044
@menu
2045
* vnc_sec_none::
2046
* vnc_sec_password::
2047
* vnc_sec_certificate::
2048
* vnc_sec_certificate_verify::
2049
* vnc_sec_certificate_pw::
2050
* vnc_generate_cert::
2051
@end menu
2052
@node vnc_sec_none
2053
@subsection Without passwords
2054

    
2055
The simplest VNC server setup does not include any form of authentication.
2056
For this setup it is recommended to restrict it to listen on a UNIX domain
2057
socket only. For example
2058

    
2059
@example
2060
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2061
@end example
2062

    
2063
This ensures that only users on local box with read/write access to that
2064
path can access the VNC server. To securely access the VNC server from a
2065
remote machine, a combination of netcat+ssh can be used to provide a secure
2066
tunnel.
2067

    
2068
@node vnc_sec_password
2069
@subsection With passwords
2070

    
2071
The VNC protocol has limited support for password based authentication. Since
2072
the protocol limits passwords to 8 characters it should not be considered
2073
to provide high security. The password can be fairly easily brute-forced by
2074
a client making repeat connections. For this reason, a VNC server using password
2075
authentication should be restricted to only listen on the loopback interface
2076
or UNIX domain sockets. Password authentication is requested with the @code{password}
2077
option, and then once QEMU is running the password is set with the monitor. Until
2078
the monitor is used to set the password all clients will be rejected.
2079

    
2080
@example
2081
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2082
(qemu) change vnc password
2083
Password: ********
2084
(qemu)
2085
@end example
2086

    
2087
@node vnc_sec_certificate
2088
@subsection With x509 certificates
2089

    
2090
The QEMU VNC server also implements the VeNCrypt extension allowing use of
2091
TLS for encryption of the session, and x509 certificates for authentication.
2092
The use of x509 certificates is strongly recommended, because TLS on its
2093
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2094
support provides a secure session, but no authentication. This allows any
2095
client to connect, and provides an encrypted session.
2096

    
2097
@example
2098
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2099
@end example
2100

    
2101
In the above example @code{/etc/pki/qemu} should contain at least three files,
2102
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2103
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2104
NB the @code{server-key.pem} file should be protected with file mode 0600 to
2105
only be readable by the user owning it.
2106

    
2107
@node vnc_sec_certificate_verify
2108
@subsection With x509 certificates and client verification
2109

    
2110
Certificates can also provide a means to authenticate the client connecting.
2111
The server will request that the client provide a certificate, which it will
2112
then validate against the CA certificate. This is a good choice if deploying
2113
in an environment with a private internal certificate authority.
2114

    
2115
@example
2116
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2117
@end example
2118

    
2119

    
2120
@node vnc_sec_certificate_pw
2121
@subsection With x509 certificates, client verification and passwords
2122

    
2123
Finally, the previous method can be combined with VNC password authentication
2124
to provide two layers of authentication for clients.
2125

    
2126
@example
2127
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2128
(qemu) change vnc password
2129
Password: ********
2130
(qemu)
2131
@end example
2132

    
2133
@node vnc_generate_cert
2134
@subsection Generating certificates for VNC
2135

    
2136
The GNU TLS packages provides a command called @code{certtool} which can
2137
be used to generate certificates and keys in PEM format. At a minimum it
2138
is neccessary to setup a certificate authority, and issue certificates to
2139
each server. If using certificates for authentication, then each client
2140
will also need to be issued a certificate. The recommendation is for the
2141
server to keep its certificates in either @code{/etc/pki/qemu} or for
2142
unprivileged users in @code{$HOME/.pki/qemu}.
2143

    
2144
@menu
2145
* vnc_generate_ca::
2146
* vnc_generate_server::
2147
* vnc_generate_client::
2148
@end menu
2149
@node vnc_generate_ca
2150
@subsubsection Setup the Certificate Authority
2151

    
2152
This step only needs to be performed once per organization / organizational
2153
unit. First the CA needs a private key. This key must be kept VERY secret
2154
and secure. If this key is compromised the entire trust chain of the certificates
2155
issued with it is lost.
2156

    
2157
@example
2158
# certtool --generate-privkey > ca-key.pem
2159
@end example
2160

    
2161
A CA needs to have a public certificate. For simplicity it can be a self-signed
2162
certificate, or one issue by a commercial certificate issuing authority. To
2163
generate a self-signed certificate requires one core piece of information, the
2164
name of the organization.
2165

    
2166
@example
2167
# cat > ca.info <<EOF
2168
cn = Name of your organization
2169
ca
2170
cert_signing_key
2171
EOF
2172
# certtool --generate-self-signed \
2173
           --load-privkey ca-key.pem
2174
           --template ca.info \
2175
           --outfile ca-cert.pem
2176
@end example
2177

    
2178
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2179
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2180

    
2181
@node vnc_generate_server
2182
@subsubsection Issuing server certificates
2183

    
2184
Each server (or host) needs to be issued with a key and certificate. When connecting
2185
the certificate is sent to the client which validates it against the CA certificate.
2186
The core piece of information for a server certificate is the hostname. This should
2187
be the fully qualified hostname that the client will connect with, since the client
2188
will typically also verify the hostname in the certificate. On the host holding the
2189
secure CA private key:
2190

    
2191
@example
2192
# cat > server.info <<EOF
2193
organization = Name  of your organization
2194
cn = server.foo.example.com
2195
tls_www_server
2196
encryption_key
2197
signing_key
2198
EOF
2199
# certtool --generate-privkey > server-key.pem
2200
# certtool --generate-certificate \
2201
           --load-ca-certificate ca-cert.pem \
2202
           --load-ca-privkey ca-key.pem \
2203
           --load-privkey server server-key.pem \
2204
           --template server.info \
2205
           --outfile server-cert.pem
2206
@end example
2207

    
2208
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2209
to the server for which they were generated. The @code{server-key.pem} is security
2210
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2211

    
2212
@node vnc_generate_client
2213
@subsubsection Issuing client certificates
2214

    
2215
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2216
certificates as its authentication mechanism, each client also needs to be issued
2217
a certificate. The client certificate contains enough metadata to uniquely identify
2218
the client, typically organization, state, city, building, etc. On the host holding
2219
the secure CA private key:
2220

    
2221
@example
2222
# cat > client.info <<EOF
2223
country = GB
2224
state = London
2225
locality = London
2226
organiazation = Name of your organization
2227
cn = client.foo.example.com
2228
tls_www_client
2229
encryption_key
2230
signing_key
2231
EOF
2232
# certtool --generate-privkey > client-key.pem
2233
# certtool --generate-certificate \
2234
           --load-ca-certificate ca-cert.pem \
2235
           --load-ca-privkey ca-key.pem \
2236
           --load-privkey client-key.pem \
2237
           --template client.info \
2238
           --outfile client-cert.pem
2239
@end example
2240

    
2241
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2242
copied to the client for which they were generated.
2243

    
2244
@node gdb_usage
2245
@section GDB usage
2246

    
2247
QEMU has a primitive support to work with gdb, so that you can do
2248
'Ctrl-C' while the virtual machine is running and inspect its state.
2249

    
2250
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2251
gdb connection:
2252
@example
2253
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2254
       -append "root=/dev/hda"
2255
Connected to host network interface: tun0
2256
Waiting gdb connection on port 1234
2257
@end example
2258

    
2259
Then launch gdb on the 'vmlinux' executable:
2260
@example
2261
> gdb vmlinux
2262
@end example
2263

    
2264
In gdb, connect to QEMU:
2265
@example
2266
(gdb) target remote localhost:1234
2267
@end example
2268

    
2269
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2270
@example
2271
(gdb) c
2272
@end example
2273

    
2274
Here are some useful tips in order to use gdb on system code:
2275

    
2276
@enumerate
2277
@item
2278
Use @code{info reg} to display all the CPU registers.
2279
@item
2280
Use @code{x/10i $eip} to display the code at the PC position.
2281
@item
2282
Use @code{set architecture i8086} to dump 16 bit code. Then use
2283
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2284
@end enumerate
2285

    
2286
Advanced debugging options:
2287

    
2288
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2289
@table @code
2290
@item maintenance packet qqemu.sstepbits
2291

    
2292
This will display the MASK bits used to control the single stepping IE:
2293
@example
2294
(gdb) maintenance packet qqemu.sstepbits
2295
sending: "qqemu.sstepbits"
2296
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2297
@end example
2298
@item maintenance packet qqemu.sstep
2299

    
2300
This will display the current value of the mask used when single stepping IE:
2301
@example
2302
(gdb) maintenance packet qqemu.sstep
2303
sending: "qqemu.sstep"
2304
received: "0x7"
2305
@end example
2306
@item maintenance packet Qqemu.sstep=HEX_VALUE
2307

    
2308
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2309
@example
2310
(gdb) maintenance packet Qqemu.sstep=0x5
2311
sending: "qemu.sstep=0x5"
2312
received: "OK"
2313
@end example
2314
@end table
2315

    
2316
@node pcsys_os_specific
2317
@section Target OS specific information
2318

    
2319
@subsection Linux
2320

    
2321
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2322
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2323
color depth in the guest and the host OS.
2324

    
2325
When using a 2.6 guest Linux kernel, you should add the option
2326
@code{clock=pit} on the kernel command line because the 2.6 Linux
2327
kernels make very strict real time clock checks by default that QEMU
2328
cannot simulate exactly.
2329

    
2330
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2331
not activated because QEMU is slower with this patch. The QEMU
2332
Accelerator Module is also much slower in this case. Earlier Fedora
2333
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2334
patch by default. Newer kernels don't have it.
2335

    
2336
@subsection Windows
2337

    
2338
If you have a slow host, using Windows 95 is better as it gives the
2339
best speed. Windows 2000 is also a good choice.
2340

    
2341
@subsubsection SVGA graphic modes support
2342

    
2343
QEMU emulates a Cirrus Logic GD5446 Video
2344
card. All Windows versions starting from Windows 95 should recognize
2345
and use this graphic card. For optimal performances, use 16 bit color
2346
depth in the guest and the host OS.
2347

    
2348
If you are using Windows XP as guest OS and if you want to use high
2349
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2350
1280x1024x16), then you should use the VESA VBE virtual graphic card
2351
(option @option{-std-vga}).
2352

    
2353
@subsubsection CPU usage reduction
2354

    
2355
Windows 9x does not correctly use the CPU HLT
2356
instruction. The result is that it takes host CPU cycles even when
2357
idle. You can install the utility from
2358
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2359
problem. Note that no such tool is needed for NT, 2000 or XP.
2360

    
2361
@subsubsection Windows 2000 disk full problem
2362

    
2363
Windows 2000 has a bug which gives a disk full problem during its
2364
installation. When installing it, use the @option{-win2k-hack} QEMU
2365
option to enable a specific workaround. After Windows 2000 is
2366
installed, you no longer need this option (this option slows down the
2367
IDE transfers).
2368

    
2369
@subsubsection Windows 2000 shutdown
2370

    
2371
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2372
can. It comes from the fact that Windows 2000 does not automatically
2373
use the APM driver provided by the BIOS.
2374

    
2375
In order to correct that, do the following (thanks to Struan
2376
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2377
Add/Troubleshoot a device => Add a new device & Next => No, select the
2378
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2379
(again) a few times. Now the driver is installed and Windows 2000 now
2380
correctly instructs QEMU to shutdown at the appropriate moment.
2381

    
2382
@subsubsection Share a directory between Unix and Windows
2383

    
2384
See @ref{sec_invocation} about the help of the option @option{-smb}.
2385

    
2386
@subsubsection Windows XP security problem
2387

    
2388
Some releases of Windows XP install correctly but give a security
2389
error when booting:
2390
@example
2391
A problem is preventing Windows from accurately checking the
2392
license for this computer. Error code: 0x800703e6.
2393
@end example
2394

    
2395
The workaround is to install a service pack for XP after a boot in safe
2396
mode. Then reboot, and the problem should go away. Since there is no
2397
network while in safe mode, its recommended to download the full
2398
installation of SP1 or SP2 and transfer that via an ISO or using the
2399
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2400

    
2401
@subsection MS-DOS and FreeDOS
2402

    
2403
@subsubsection CPU usage reduction
2404

    
2405
DOS does not correctly use the CPU HLT instruction. The result is that
2406
it takes host CPU cycles even when idle. You can install the utility
2407
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2408
problem.
2409

    
2410
@node QEMU System emulator for non PC targets
2411
@chapter QEMU System emulator for non PC targets
2412

    
2413
QEMU is a generic emulator and it emulates many non PC
2414
machines. Most of the options are similar to the PC emulator. The
2415
differences are mentioned in the following sections.
2416

    
2417
@menu
2418
* QEMU PowerPC System emulator::
2419
* Sparc32 System emulator::
2420
* Sparc64 System emulator::
2421
* MIPS System emulator::
2422
* ARM System emulator::
2423
* ColdFire System emulator::
2424
@end menu
2425

    
2426
@node QEMU PowerPC System emulator
2427
@section QEMU PowerPC System emulator
2428

    
2429
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2430
or PowerMac PowerPC system.
2431

    
2432
QEMU emulates the following PowerMac peripherals:
2433

    
2434
@itemize @minus
2435
@item
2436
UniNorth PCI Bridge
2437
@item
2438
PCI VGA compatible card with VESA Bochs Extensions
2439
@item
2440
2 PMAC IDE interfaces with hard disk and CD-ROM support
2441
@item
2442
NE2000 PCI adapters
2443
@item
2444
Non Volatile RAM
2445
@item
2446
VIA-CUDA with ADB keyboard and mouse.
2447
@end itemize
2448

    
2449
QEMU emulates the following PREP peripherals:
2450

    
2451
@itemize @minus
2452
@item
2453
PCI Bridge
2454
@item
2455
PCI VGA compatible card with VESA Bochs Extensions
2456
@item
2457
2 IDE interfaces with hard disk and CD-ROM support
2458
@item
2459
Floppy disk
2460
@item
2461
NE2000 network adapters
2462
@item
2463
Serial port
2464
@item
2465
PREP Non Volatile RAM
2466
@item
2467
PC compatible keyboard and mouse.
2468
@end itemize
2469

    
2470
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2471
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2472

    
2473
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2474
for the g3beige PowerMac machine. OpenBIOS is a free (GPL v2) portable
2475
firmware implementation. The goal is to implement a 100% IEEE
2476
1275-1994 (referred to as Open Firmware) compliant firmware.
2477

    
2478
@c man begin OPTIONS
2479

    
2480
The following options are specific to the PowerPC emulation:
2481

    
2482
@table @option
2483

    
2484
@item -g WxH[xDEPTH]
2485

    
2486
Set the initial VGA graphic mode. The default is 800x600x15.
2487

    
2488
@item -prom-env string
2489

    
2490
Set OpenBIOS variables in NVRAM, for example:
2491

    
2492
@example
2493
qemu-system-ppc -prom-env 'auto-boot?=false' \
2494
 -prom-env 'boot-device=hd:2,\yaboot' \
2495
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2496
@end example
2497

    
2498
These variables are not used by Open Hack'Ware.
2499

    
2500
@end table
2501

    
2502
@c man end
2503

    
2504

    
2505
More information is available at
2506
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2507

    
2508
@node Sparc32 System emulator
2509
@section Sparc32 System emulator
2510

    
2511
Use the executable @file{qemu-system-sparc} to simulate the following
2512
Sun4m architecture machines:
2513
@itemize @minus
2514
@item
2515
SPARCstation 4
2516
@item
2517
SPARCstation 5
2518
@item
2519
SPARCstation 10
2520
@item
2521
SPARCstation 20
2522
@item
2523
SPARCserver 600MP
2524
@item
2525
SPARCstation LX
2526
@item
2527
SPARCstation Voyager
2528
@item
2529
SPARCclassic
2530
@item
2531
SPARCbook
2532
@end itemize
2533

    
2534
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2535
but Linux limits the number of usable CPUs to 4.
2536

    
2537
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2538
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2539
emulators are not usable yet.
2540

    
2541
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2542

    
2543
@itemize @minus
2544
@item
2545
IOMMU or IO-UNITs
2546
@item
2547
TCX Frame buffer
2548
@item
2549
Lance (Am7990) Ethernet
2550
@item
2551
Non Volatile RAM M48T02/M48T08
2552
@item
2553
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2554
and power/reset logic
2555
@item
2556
ESP SCSI controller with hard disk and CD-ROM support
2557
@item
2558
Floppy drive (not on SS-600MP)
2559
@item
2560
CS4231 sound device (only on SS-5, not working yet)
2561
@end itemize
2562

    
2563
The number of peripherals is fixed in the architecture.  Maximum
2564
memory size depends on the machine type, for SS-5 it is 256MB and for
2565
others 2047MB.
2566

    
2567
Since version 0.8.2, QEMU uses OpenBIOS
2568
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2569
firmware implementation. The goal is to implement a 100% IEEE
2570
1275-1994 (referred to as Open Firmware) compliant firmware.
2571

    
2572
A sample Linux 2.6 series kernel and ram disk image are available on
2573
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2574
some kernel versions work. Please note that currently Solaris kernels
2575
don't work probably due to interface issues between OpenBIOS and
2576
Solaris.
2577

    
2578
@c man begin OPTIONS
2579

    
2580
The following options are specific to the Sparc32 emulation:
2581

    
2582
@table @option
2583

    
2584
@item -g WxHx[xDEPTH]
2585

    
2586
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2587
the only other possible mode is 1024x768x24.
2588

    
2589
@item -prom-env string
2590

    
2591
Set OpenBIOS variables in NVRAM, for example:
2592

    
2593
@example
2594
qemu-system-sparc -prom-env 'auto-boot?=false' \
2595
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2596
@end example
2597

    
2598
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2599

    
2600
Set the emulated machine type. Default is SS-5.
2601

    
2602
@end table
2603

    
2604
@c man end
2605

    
2606
@node Sparc64 System emulator
2607
@section Sparc64 System emulator
2608

    
2609
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2610
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2611
Niagara (T1) machine. The emulator is not usable for anything yet, but
2612
it can launch some kernels.
2613

    
2614
QEMU emulates the following peripherals:
2615

    
2616
@itemize @minus
2617
@item
2618
UltraSparc IIi APB PCI Bridge
2619
@item
2620
PCI VGA compatible card with VESA Bochs Extensions
2621
@item
2622
PS/2 mouse and keyboard
2623
@item
2624
Non Volatile RAM M48T59
2625
@item
2626
PC-compatible serial ports
2627
@item
2628
2 PCI IDE interfaces with hard disk and CD-ROM support
2629
@item
2630
Floppy disk
2631
@end itemize
2632

    
2633
@c man begin OPTIONS
2634

    
2635
The following options are specific to the Sparc64 emulation:
2636

    
2637
@table @option
2638

    
2639
@item -prom-env string
2640

    
2641
Set OpenBIOS variables in NVRAM, for example:
2642

    
2643
@example
2644
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2645
@end example
2646

    
2647
@item -M [sun4u|sun4v|Niagara]
2648

    
2649
Set the emulated machine type. The default is sun4u.
2650

    
2651
@end table
2652

    
2653
@c man end
2654

    
2655
@node MIPS System emulator
2656
@section MIPS System emulator
2657

    
2658
Four executables cover simulation of 32 and 64-bit MIPS systems in
2659
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2660
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2661
Five different machine types are emulated:
2662

    
2663
@itemize @minus
2664
@item
2665
A generic ISA PC-like machine "mips"
2666
@item
2667
The MIPS Malta prototype board "malta"
2668
@item
2669
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2670
@item
2671
MIPS emulator pseudo board "mipssim"
2672
@item
2673
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2674
@end itemize
2675

    
2676
The generic emulation is supported by Debian 'Etch' and is able to
2677
install Debian into a virtual disk image. The following devices are
2678
emulated:
2679

    
2680
@itemize @minus
2681
@item
2682
A range of MIPS CPUs, default is the 24Kf
2683
@item
2684
PC style serial port
2685
@item
2686
PC style IDE disk
2687
@item
2688
NE2000 network card
2689
@end itemize
2690

    
2691
The Malta emulation supports the following devices:
2692

    
2693
@itemize @minus
2694
@item
2695
Core board with MIPS 24Kf CPU and Galileo system controller
2696
@item
2697
PIIX4 PCI/USB/SMbus controller
2698
@item
2699
The Multi-I/O chip's serial device
2700
@item
2701
PCnet32 PCI network card
2702
@item
2703
Malta FPGA serial device
2704
@item
2705
Cirrus (default) or any other PCI VGA graphics card
2706
@end itemize
2707

    
2708
The ACER Pica emulation supports:
2709

    
2710
@itemize @minus
2711
@item
2712
MIPS R4000 CPU
2713
@item
2714
PC-style IRQ and DMA controllers
2715
@item
2716
PC Keyboard
2717
@item
2718
IDE controller
2719
@end itemize
2720

    
2721
The mipssim pseudo board emulation provides an environment similiar
2722
to what the proprietary MIPS emulator uses for running Linux.
2723
It supports:
2724

    
2725
@itemize @minus
2726
@item
2727
A range of MIPS CPUs, default is the 24Kf
2728
@item
2729
PC style serial port
2730
@item
2731
MIPSnet network emulation
2732
@end itemize
2733

    
2734
The MIPS Magnum R4000 emulation supports:
2735

    
2736
@itemize @minus
2737
@item
2738
MIPS R4000 CPU
2739
@item
2740
PC-style IRQ controller
2741
@item
2742
PC Keyboard
2743
@item
2744
SCSI controller
2745
@item
2746
G364 framebuffer
2747
@end itemize
2748

    
2749

    
2750
@node ARM System emulator
2751
@section ARM System emulator
2752

    
2753
Use the executable @file{qemu-system-arm} to simulate a ARM
2754
machine. The ARM Integrator/CP board is emulated with the following
2755
devices:
2756

    
2757
@itemize @minus
2758
@item
2759
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2760
@item
2761
Two PL011 UARTs
2762
@item
2763
SMC 91c111 Ethernet adapter
2764
@item
2765
PL110 LCD controller
2766
@item
2767
PL050 KMI with PS/2 keyboard and mouse.
2768
@item
2769
PL181 MultiMedia Card Interface with SD card.
2770
@end itemize
2771

    
2772
The ARM Versatile baseboard is emulated with the following devices:
2773

    
2774
@itemize @minus
2775
@item
2776
ARM926E, ARM1136 or Cortex-A8 CPU
2777
@item
2778
PL190 Vectored Interrupt Controller
2779
@item
2780
Four PL011 UARTs
2781
@item
2782
SMC 91c111 Ethernet adapter
2783
@item
2784
PL110 LCD controller
2785
@item
2786
PL050 KMI with PS/2 keyboard and mouse.
2787
@item
2788
PCI host bridge.  Note the emulated PCI bridge only provides access to
2789
PCI memory space.  It does not provide access to PCI IO space.
2790
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2791
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2792
mapped control registers.
2793
@item
2794
PCI OHCI USB controller.
2795
@item
2796
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2797
@item
2798
PL181 MultiMedia Card Interface with SD card.
2799
@end itemize
2800

    
2801
The ARM RealView Emulation baseboard is emulated with the following devices:
2802

    
2803
@itemize @minus
2804
@item
2805
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2806
@item
2807
ARM AMBA Generic/Distributed Interrupt Controller
2808
@item
2809
Four PL011 UARTs
2810
@item
2811
SMC 91c111 Ethernet adapter
2812
@item
2813
PL110 LCD controller
2814
@item
2815
PL050 KMI with PS/2 keyboard and mouse
2816
@item
2817
PCI host bridge
2818
@item
2819
PCI OHCI USB controller
2820
@item
2821
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2822
@item
2823
PL181 MultiMedia Card Interface with SD card.
2824
@end itemize
2825

    
2826
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2827
and "Terrier") emulation includes the following peripherals:
2828

    
2829
@itemize @minus
2830
@item
2831
Intel PXA270 System-on-chip (ARM V5TE core)
2832
@item
2833
NAND Flash memory
2834
@item
2835
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2836
@item
2837
On-chip OHCI USB controller
2838
@item
2839
On-chip LCD controller
2840
@item
2841
On-chip Real Time Clock
2842
@item
2843
TI ADS7846 touchscreen controller on SSP bus
2844
@item
2845
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2846
@item
2847
GPIO-connected keyboard controller and LEDs
2848
@item
2849
Secure Digital card connected to PXA MMC/SD host
2850
@item
2851
Three on-chip UARTs
2852
@item
2853
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2854
@end itemize
2855

    
2856
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2857
following elements:
2858

    
2859
@itemize @minus
2860
@item
2861
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2862
@item
2863
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2864
@item
2865
On-chip LCD controller
2866
@item
2867
On-chip Real Time Clock
2868
@item
2869
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2870
CODEC, connected through MicroWire and I@math{^2}S busses
2871
@item
2872
GPIO-connected matrix keypad
2873
@item
2874
Secure Digital card connected to OMAP MMC/SD host
2875
@item
2876
Three on-chip UARTs
2877
@end itemize
2878

    
2879
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2880
emulation supports the following elements:
2881

    
2882
@itemize @minus
2883
@item
2884
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2885
@item
2886
RAM and non-volatile OneNAND Flash memories
2887
@item
2888
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2889
display controller and a LS041y3 MIPI DBI-C controller
2890
@item
2891
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2892
driven through SPI bus
2893
@item
2894
National Semiconductor LM8323-controlled qwerty keyboard driven
2895
through I@math{^2}C bus
2896
@item
2897
Secure Digital card connected to OMAP MMC/SD host
2898
@item
2899
Three OMAP on-chip UARTs and on-chip STI debugging console
2900
@item
2901
A Bluetooth(R) transciever and HCI connected to an UART
2902
@item
2903
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2904
TUSB6010 chip - only USB host mode is supported
2905
@item
2906
TI TMP105 temperature sensor driven through I@math{^2}C bus
2907
@item
2908
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2909
@item
2910
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2911
through CBUS
2912
@end itemize
2913

    
2914
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2915
devices:
2916

    
2917
@itemize @minus
2918
@item
2919
Cortex-M3 CPU core.
2920
@item
2921
64k Flash and 8k SRAM.
2922
@item
2923
Timers, UARTs, ADC and I@math{^2}C interface.
2924
@item
2925
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2926
@end itemize
2927

    
2928
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2929
devices:
2930

    
2931
@itemize @minus
2932
@item
2933
Cortex-M3 CPU core.
2934
@item
2935
256k Flash and 64k SRAM.
2936
@item
2937
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2938
@item
2939
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2940
@end itemize
2941

    
2942
The Freecom MusicPal internet radio emulation includes the following
2943
elements:
2944

    
2945
@itemize @minus
2946
@item
2947
Marvell MV88W8618 ARM core.
2948
@item
2949
32 MB RAM, 256 KB SRAM, 8 MB flash.
2950
@item
2951
Up to 2 16550 UARTs
2952
@item
2953
MV88W8xx8 Ethernet controller
2954
@item
2955
MV88W8618 audio controller, WM8750 CODEC and mixer
2956
@item
2957
128?64 display with brightness control
2958
@item
2959
2 buttons, 2 navigation wheels with button function
2960
@end itemize
2961

    
2962
The Siemens SX1 models v1 and v2 (default) basic emulation.
2963
The emulaton includes the following elements:
2964

    
2965
@itemize @minus
2966
@item
2967
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2968
@item
2969
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2970
V1
2971
1 Flash of 16MB and 1 Flash of 8MB
2972
V2
2973
1 Flash of 32MB
2974
@item
2975
On-chip LCD controller
2976
@item
2977
On-chip Real Time Clock
2978
@item
2979
Secure Digital card connected to OMAP MMC/SD host
2980
@item
2981
Three on-chip UARTs
2982
@end itemize
2983

    
2984
A Linux 2.6 test image is available on the QEMU web site. More
2985
information is available in the QEMU mailing-list archive.
2986

    
2987
@c man begin OPTIONS
2988

    
2989
The following options are specific to the ARM emulation:
2990

    
2991
@table @option
2992

    
2993
@item -semihosting
2994
Enable semihosting syscall emulation.
2995

    
2996
On ARM this implements the "Angel" interface.
2997

    
2998
Note that this allows guest direct access to the host filesystem,
2999
so should only be used with trusted guest OS.
3000

    
3001
@end table
3002

    
3003
@node ColdFire System emulator
3004
@section ColdFire System emulator
3005

    
3006
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3007
The emulator is able to boot a uClinux kernel.
3008

    
3009
The M5208EVB emulation includes the following devices:
3010

    
3011
@itemize @minus
3012
@item
3013
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3014
@item
3015
Three Two on-chip UARTs.
3016
@item
3017
Fast Ethernet Controller (FEC)
3018
@end itemize
3019

    
3020
The AN5206 emulation includes the following devices:
3021

    
3022
@itemize @minus
3023
@item
3024
MCF5206 ColdFire V2 Microprocessor.
3025
@item
3026
Two on-chip UARTs.
3027
@end itemize
3028

    
3029
@c man begin OPTIONS
3030

    
3031
The following options are specific to the ARM emulation:
3032

    
3033
@table @option
3034

    
3035
@item -semihosting
3036
Enable semihosting syscall emulation.
3037

    
3038
On M68K this implements the "ColdFire GDB" interface used by libgloss.
3039

    
3040
Note that this allows guest direct access to the host filesystem,
3041
so should only be used with trusted guest OS.
3042

    
3043
@end table
3044

    
3045
@node QEMU User space emulator
3046
@chapter QEMU User space emulator
3047

    
3048
@menu
3049
* Supported Operating Systems ::
3050
* Linux User space emulator::
3051
* Mac OS X/Darwin User space emulator ::
3052
* BSD User space emulator ::
3053
@end menu
3054

    
3055
@node Supported Operating Systems
3056
@section Supported Operating Systems
3057

    
3058
The following OS are supported in user space emulation:
3059

    
3060
@itemize @minus
3061
@item
3062
Linux (referred as qemu-linux-user)
3063
@item
3064
Mac OS X/Darwin (referred as qemu-darwin-user)
3065
@item
3066
BSD (referred as qemu-bsd-user)
3067
@end itemize
3068

    
3069
@node Linux User space emulator
3070
@section Linux User space emulator
3071

    
3072
@menu
3073
* Quick Start::
3074
* Wine launch::
3075
* Command line options::
3076
* Other binaries::
3077
@end menu
3078

    
3079
@node Quick Start
3080
@subsection Quick Start
3081

    
3082
In order to launch a Linux process, QEMU needs the process executable
3083
itself and all the target (x86) dynamic libraries used by it.
3084

    
3085
@itemize
3086

    
3087
@item On x86, you can just try to launch any process by using the native
3088
libraries:
3089

    
3090
@example
3091
qemu-i386 -L / /bin/ls
3092
@end example
3093

    
3094
@code{-L /} tells that the x86 dynamic linker must be searched with a
3095
@file{/} prefix.
3096

    
3097
@item Since QEMU is also a linux process, you can launch qemu with
3098
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3099

    
3100
@example
3101
qemu-i386 -L / qemu-i386 -L / /bin/ls
3102
@end example
3103

    
3104
@item On non x86 CPUs, you need first to download at least an x86 glibc
3105
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3106
@code{LD_LIBRARY_PATH} is not set:
3107

    
3108
@example
3109
unset LD_LIBRARY_PATH
3110
@end example
3111

    
3112
Then you can launch the precompiled @file{ls} x86 executable:
3113

    
3114
@example
3115
qemu-i386 tests/i386/ls
3116
@end example
3117
You can look at @file{qemu-binfmt-conf.sh} so that
3118
QEMU is automatically launched by the Linux kernel when you try to
3119
launch x86 executables. It requires the @code{binfmt_misc} module in the
3120
Linux kernel.
3121

    
3122
@item The x86 version of QEMU is also included. You can try weird things such as:
3123
@example
3124
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3125
          /usr/local/qemu-i386/bin/ls-i386
3126
@end example
3127

    
3128
@end itemize
3129

    
3130
@node Wine launch
3131
@subsection Wine launch
3132

    
3133
@itemize
3134

    
3135
@item Ensure that you have a working QEMU with the x86 glibc
3136
distribution (see previous section). In order to verify it, you must be
3137
able to do:
3138

    
3139
@example
3140
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3141
@end example
3142

    
3143
@item Download the binary x86 Wine install
3144
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3145

    
3146
@item Configure Wine on your account. Look at the provided script
3147
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3148
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3149

    
3150
@item Then you can try the example @file{putty.exe}:
3151

    
3152
@example
3153
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3154
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3155
@end example
3156

    
3157
@end itemize
3158

    
3159
@node Command line options
3160
@subsection Command line options
3161

    
3162
@example
3163
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3164
@end example
3165

    
3166
@table @option
3167
@item -h
3168
Print the help
3169
@item -L path
3170
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3171
@item -s size
3172
Set the x86 stack size in bytes (default=524288)
3173
@item -cpu model
3174
Select CPU model (-cpu ? for list and additional feature selection)
3175
@end table
3176

    
3177
Debug options:
3178

    
3179
@table @option
3180
@item -d
3181
Activate log (logfile=/tmp/qemu.log)
3182
@item -p pagesize
3183
Act as if the host page size was 'pagesize' bytes
3184
@item -g port
3185
Wait gdb connection to port
3186
@end table
3187

    
3188
Environment variables:
3189

    
3190
@table @env
3191
@item QEMU_STRACE
3192
Print system calls and arguments similar to the 'strace' program
3193
(NOTE: the actual 'strace' program will not work because the user
3194
space emulator hasn't implemented ptrace).  At the moment this is
3195
incomplete.  All system calls that don't have a specific argument
3196
format are printed with information for six arguments.  Many
3197
flag-style arguments don't have decoders and will show up as numbers.
3198
@end table
3199

    
3200
@node Other binaries
3201
@subsection Other binaries
3202

    
3203
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3204
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3205
configurations), and arm-uclinux bFLT format binaries.
3206

    
3207
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3208
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3209
coldfire uClinux bFLT format binaries.
3210

    
3211
The binary format is detected automatically.
3212

    
3213
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3214

    
3215
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3216
(Sparc64 CPU, 32 bit ABI).
3217

    
3218
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3219
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3220

    
3221
@node Mac OS X/Darwin User space emulator
3222
@section Mac OS X/Darwin User space emulator
3223

    
3224
@menu
3225
* Mac OS X/Darwin Status::
3226
* Mac OS X/Darwin Quick Start::
3227
* Mac OS X/Darwin Command line options::
3228
@end menu
3229

    
3230
@node Mac OS X/Darwin Status
3231
@subsection Mac OS X/Darwin Status
3232

    
3233
@itemize @minus
3234
@item
3235
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3236
@item
3237
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3238
@item
3239
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3240
@item
3241
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3242
@end itemize
3243

    
3244
[1] If you're host commpage can be executed by qemu.
3245

    
3246
@node Mac OS X/Darwin Quick Start
3247
@subsection Quick Start
3248

    
3249
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3250
itself and all the target dynamic libraries used by it. If you don't have the FAT
3251
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3252
CD or compile them by hand.
3253

    
3254
@itemize
3255

    
3256
@item On x86, you can just try to launch any process by using the native
3257
libraries:
3258

    
3259
@example
3260
qemu-i386 /bin/ls
3261
@end example
3262

    
3263
or to run the ppc version of the executable:
3264

    
3265
@example
3266
qemu-ppc /bin/ls
3267
@end example
3268

    
3269
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3270
are installed:
3271

    
3272
@example
3273
qemu-i386 -L /opt/x86_root/ /bin/ls
3274
@end example
3275

    
3276
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3277
@file{/opt/x86_root/usr/bin/dyld}.
3278

    
3279
@end itemize
3280

    
3281
@node Mac OS X/Darwin Command line options
3282
@subsection Command line options
3283

    
3284
@example
3285
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3286
@end example
3287

    
3288
@table @option
3289
@item -h
3290
Print the help
3291
@item -L path
3292
Set the library root path (default=/)
3293
@item -s size
3294
Set the stack size in bytes (default=524288)
3295
@end table
3296

    
3297
Debug options:
3298

    
3299
@table @option
3300
@item -d
3301
Activate log (logfile=/tmp/qemu.log)
3302
@item -p pagesize
3303
Act as if the host page size was 'pagesize' bytes
3304
@end table
3305

    
3306
@node BSD User space emulator
3307
@section BSD User space emulator
3308

    
3309
@menu
3310
* BSD Status::
3311
* BSD Quick Start::
3312
* BSD Command line options::
3313
@end menu
3314

    
3315
@node BSD Status
3316
@subsection BSD Status
3317

    
3318
@itemize @minus
3319
@item
3320
target Sparc64 on Sparc64: Some trivial programs work.
3321
@end itemize
3322

    
3323
@node BSD Quick Start
3324
@subsection Quick Start
3325

    
3326
In order to launch a BSD process, QEMU needs the process executable
3327
itself and all the target dynamic libraries used by it.
3328

    
3329
@itemize
3330

    
3331
@item On Sparc64, you can just try to launch any process by using the native
3332
libraries:
3333

    
3334
@example
3335
qemu-sparc64 /bin/ls
3336
@end example
3337

    
3338
@end itemize
3339

    
3340
@node BSD Command line options
3341
@subsection Command line options
3342

    
3343
@example
3344
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3345
@end example
3346

    
3347
@table @option
3348
@item -h
3349
Print the help
3350
@item -L path
3351
Set the library root path (default=/)
3352
@item -s size
3353
Set the stack size in bytes (default=524288)
3354
@item -bsd type
3355
Set the type of the emulated BSD Operating system. Valid values are
3356
FreeBSD, NetBSD and OpenBSD (default).
3357
@end table
3358

    
3359
Debug options:
3360

    
3361
@table @option
3362
@item -d
3363
Activate log (logfile=/tmp/qemu.log)
3364
@item -p pagesize
3365
Act as if the host page size was 'pagesize' bytes
3366
@end table
3367

    
3368
@node compilation
3369
@chapter Compilation from the sources
3370

    
3371
@menu
3372
* Linux/Unix::
3373
* Windows::
3374
* Cross compilation for Windows with Linux::
3375
* Mac OS X::
3376
@end menu
3377

    
3378
@node Linux/Unix
3379
@section Linux/Unix
3380

    
3381
@subsection Compilation
3382

    
3383
First you must decompress the sources:
3384
@example
3385
cd /tmp
3386
tar zxvf qemu-x.y.z.tar.gz
3387
cd qemu-x.y.z
3388
@end example
3389

    
3390
Then you configure QEMU and build it (usually no options are needed):
3391
@example
3392
./configure
3393
make
3394
@end example
3395

    
3396
Then type as root user:
3397
@example
3398
make install
3399
@end example
3400
to install QEMU in @file{/usr/local}.
3401

    
3402
@subsection GCC version
3403

    
3404
In order to compile QEMU successfully, it is very important that you
3405
have the right tools. The most important one is gcc. On most hosts and
3406
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3407
Linux distribution includes a gcc 4.x compiler, you can usually
3408
install an older version (it is invoked by @code{gcc32} or
3409
@code{gcc34}). The QEMU configure script automatically probes for
3410
these older versions so that usually you don't have to do anything.
3411

    
3412
@node Windows
3413
@section Windows
3414

    
3415
@itemize
3416
@item Install the current versions of MSYS and MinGW from
3417
@url{http://www.mingw.org/}. You can find detailed installation
3418
instructions in the download section and the FAQ.
3419

    
3420
@item Download
3421
the MinGW development library of SDL 1.2.x
3422
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3423
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3424
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3425
directory. Edit the @file{sdl-config} script so that it gives the
3426
correct SDL directory when invoked.
3427

    
3428
@item Extract the current version of QEMU.
3429

    
3430
@item Start the MSYS shell (file @file{msys.bat}).
3431

    
3432
@item Change to the QEMU directory. Launch @file{./configure} and
3433
@file{make}.  If you have problems using SDL, verify that
3434
@file{sdl-config} can be launched from the MSYS command line.
3435

    
3436
@item You can install QEMU in @file{Program Files/Qemu} by typing
3437
@file{make install}. Don't forget to copy @file{SDL.dll} in
3438
@file{Program Files/Qemu}.
3439

    
3440
@end itemize
3441

    
3442
@node Cross compilation for Windows with Linux
3443
@section Cross compilation for Windows with Linux
3444

    
3445
@itemize
3446
@item
3447
Install the MinGW cross compilation tools available at
3448
@url{http://www.mingw.org/}.
3449

    
3450
@item
3451
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3452
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3453
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3454
the QEMU configuration script.
3455

    
3456
@item
3457
Configure QEMU for Windows cross compilation:
3458
@example
3459
./configure --enable-mingw32
3460
@end example
3461
If necessary, you can change the cross-prefix according to the prefix
3462
chosen for the MinGW tools with --cross-prefix. You can also use
3463
--prefix to set the Win32 install path.
3464

    
3465
@item You can install QEMU in the installation directory by typing
3466
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3467
installation directory.
3468

    
3469
@end itemize
3470

    
3471
Note: Currently, Wine does not seem able to launch
3472
QEMU for Win32.
3473

    
3474
@node Mac OS X
3475
@section Mac OS X
3476

    
3477
The Mac OS X patches are not fully merged in QEMU, so you should look
3478
at the QEMU mailing list archive to have all the necessary
3479
information.
3480

    
3481
@node Index
3482
@chapter Index
3483
@printindex cp
3484

    
3485
@bye