Statistics
| Branch: | Revision:

root / cpus.c @ ab33fcda

History | View | Annotate | Download (25.4 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor.h"
29
#include "sysemu.h"
30
#include "gdbstub.h"
31
#include "dma.h"
32
#include "kvm.h"
33
#include "exec-all.h"
34

    
35
#include "qemu-thread.h"
36
#include "cpus.h"
37
#include "compatfd.h"
38

    
39
#ifdef SIGRTMIN
40
#define SIG_IPI (SIGRTMIN+4)
41
#else
42
#define SIG_IPI SIGUSR1
43
#endif
44

    
45
#ifdef CONFIG_LINUX
46

    
47
#include <sys/prctl.h>
48

    
49
#ifndef PR_MCE_KILL
50
#define PR_MCE_KILL 33
51
#endif
52

    
53
#ifndef PR_MCE_KILL_SET
54
#define PR_MCE_KILL_SET 1
55
#endif
56

    
57
#ifndef PR_MCE_KILL_EARLY
58
#define PR_MCE_KILL_EARLY 1
59
#endif
60

    
61
#endif /* CONFIG_LINUX */
62

    
63
static CPUState *next_cpu;
64

    
65
/***********************************************************/
66
void hw_error(const char *fmt, ...)
67
{
68
    va_list ap;
69
    CPUState *env;
70

    
71
    va_start(ap, fmt);
72
    fprintf(stderr, "qemu: hardware error: ");
73
    vfprintf(stderr, fmt, ap);
74
    fprintf(stderr, "\n");
75
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
76
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
77
#ifdef TARGET_I386
78
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
79
#else
80
        cpu_dump_state(env, stderr, fprintf, 0);
81
#endif
82
    }
83
    va_end(ap);
84
    abort();
85
}
86

    
87
void cpu_synchronize_all_states(void)
88
{
89
    CPUState *cpu;
90

    
91
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
92
        cpu_synchronize_state(cpu);
93
    }
94
}
95

    
96
void cpu_synchronize_all_post_reset(void)
97
{
98
    CPUState *cpu;
99

    
100
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
101
        cpu_synchronize_post_reset(cpu);
102
    }
103
}
104

    
105
void cpu_synchronize_all_post_init(void)
106
{
107
    CPUState *cpu;
108

    
109
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
110
        cpu_synchronize_post_init(cpu);
111
    }
112
}
113

    
114
int cpu_is_stopped(CPUState *env)
115
{
116
    return !vm_running || env->stopped;
117
}
118

    
119
static void do_vm_stop(int reason)
120
{
121
    if (vm_running) {
122
        cpu_disable_ticks();
123
        vm_running = 0;
124
        pause_all_vcpus();
125
        vm_state_notify(0, reason);
126
        qemu_aio_flush();
127
        bdrv_flush_all();
128
        monitor_protocol_event(QEVENT_STOP, NULL);
129
    }
130
}
131

    
132
static int cpu_can_run(CPUState *env)
133
{
134
    if (env->stop) {
135
        return 0;
136
    }
137
    if (env->stopped || !vm_running) {
138
        return 0;
139
    }
140
    return 1;
141
}
142

    
143
static bool cpu_thread_is_idle(CPUState *env)
144
{
145
    if (env->stop || env->queued_work_first) {
146
        return false;
147
    }
148
    if (env->stopped || !vm_running) {
149
        return true;
150
    }
151
    if (!env->halted || qemu_cpu_has_work(env) ||
152
        (kvm_enabled() && kvm_irqchip_in_kernel())) {
153
        return false;
154
    }
155
    return true;
156
}
157

    
158
bool all_cpu_threads_idle(void)
159
{
160
    CPUState *env;
161

    
162
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
163
        if (!cpu_thread_is_idle(env)) {
164
            return false;
165
        }
166
    }
167
    return true;
168
}
169

    
170
static void cpu_handle_guest_debug(CPUState *env)
171
{
172
    gdb_set_stop_cpu(env);
173
    qemu_system_debug_request();
174
#ifdef CONFIG_IOTHREAD
175
    env->stopped = 1;
176
#endif
177
}
178

    
179
#ifdef CONFIG_IOTHREAD
180
static void cpu_signal(int sig)
181
{
182
    if (cpu_single_env) {
183
        cpu_exit(cpu_single_env);
184
    }
185
    exit_request = 1;
186
}
187
#endif
188

    
189
#ifdef CONFIG_LINUX
190
static void sigbus_reraise(void)
191
{
192
    sigset_t set;
193
    struct sigaction action;
194

    
195
    memset(&action, 0, sizeof(action));
196
    action.sa_handler = SIG_DFL;
197
    if (!sigaction(SIGBUS, &action, NULL)) {
198
        raise(SIGBUS);
199
        sigemptyset(&set);
200
        sigaddset(&set, SIGBUS);
201
        sigprocmask(SIG_UNBLOCK, &set, NULL);
202
    }
203
    perror("Failed to re-raise SIGBUS!\n");
204
    abort();
205
}
206

    
207
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
208
                           void *ctx)
209
{
210
    if (kvm_on_sigbus(siginfo->ssi_code,
211
                      (void *)(intptr_t)siginfo->ssi_addr)) {
212
        sigbus_reraise();
213
    }
214
}
215

    
216
static void qemu_init_sigbus(void)
217
{
218
    struct sigaction action;
219

    
220
    memset(&action, 0, sizeof(action));
221
    action.sa_flags = SA_SIGINFO;
222
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
223
    sigaction(SIGBUS, &action, NULL);
224

    
225
    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
226
}
227

    
228
static void qemu_kvm_eat_signals(CPUState *env)
229
{
230
    struct timespec ts = { 0, 0 };
231
    siginfo_t siginfo;
232
    sigset_t waitset;
233
    sigset_t chkset;
234
    int r;
235

    
236
    sigemptyset(&waitset);
237
    sigaddset(&waitset, SIG_IPI);
238
    sigaddset(&waitset, SIGBUS);
239

    
240
    do {
241
        r = sigtimedwait(&waitset, &siginfo, &ts);
242
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
243
            perror("sigtimedwait");
244
            exit(1);
245
        }
246

    
247
        switch (r) {
248
        case SIGBUS:
249
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
250
                sigbus_reraise();
251
            }
252
            break;
253
        default:
254
            break;
255
        }
256

    
257
        r = sigpending(&chkset);
258
        if (r == -1) {
259
            perror("sigpending");
260
            exit(1);
261
        }
262
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
263

    
264
#ifndef CONFIG_IOTHREAD
265
    if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
266
        qemu_notify_event();
267
    }
268
#endif
269
}
270

    
271
#else /* !CONFIG_LINUX */
272

    
273
static void qemu_init_sigbus(void)
274
{
275
}
276

    
277
static void qemu_kvm_eat_signals(CPUState *env)
278
{
279
}
280
#endif /* !CONFIG_LINUX */
281

    
282
#ifndef _WIN32
283
static int io_thread_fd = -1;
284

    
285
static void qemu_event_increment(void)
286
{
287
    /* Write 8 bytes to be compatible with eventfd.  */
288
    static const uint64_t val = 1;
289
    ssize_t ret;
290

    
291
    if (io_thread_fd == -1) {
292
        return;
293
    }
294
    do {
295
        ret = write(io_thread_fd, &val, sizeof(val));
296
    } while (ret < 0 && errno == EINTR);
297

    
298
    /* EAGAIN is fine, a read must be pending.  */
299
    if (ret < 0 && errno != EAGAIN) {
300
        fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
301
                strerror(errno));
302
        exit (1);
303
    }
304
}
305

    
306
static void qemu_event_read(void *opaque)
307
{
308
    int fd = (intptr_t)opaque;
309
    ssize_t len;
310
    char buffer[512];
311

    
312
    /* Drain the notify pipe.  For eventfd, only 8 bytes will be read.  */
313
    do {
314
        len = read(fd, buffer, sizeof(buffer));
315
    } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
316
}
317

    
318
static int qemu_event_init(void)
319
{
320
    int err;
321
    int fds[2];
322

    
323
    err = qemu_eventfd(fds);
324
    if (err == -1) {
325
        return -errno;
326
    }
327
    err = fcntl_setfl(fds[0], O_NONBLOCK);
328
    if (err < 0) {
329
        goto fail;
330
    }
331
    err = fcntl_setfl(fds[1], O_NONBLOCK);
332
    if (err < 0) {
333
        goto fail;
334
    }
335
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
336
                         (void *)(intptr_t)fds[0]);
337

    
338
    io_thread_fd = fds[1];
339
    return 0;
340

    
341
fail:
342
    close(fds[0]);
343
    close(fds[1]);
344
    return err;
345
}
346

    
347
static void dummy_signal(int sig)
348
{
349
}
350

    
351
/* If we have signalfd, we mask out the signals we want to handle and then
352
 * use signalfd to listen for them.  We rely on whatever the current signal
353
 * handler is to dispatch the signals when we receive them.
354
 */
355
static void sigfd_handler(void *opaque)
356
{
357
    int fd = (intptr_t)opaque;
358
    struct qemu_signalfd_siginfo info;
359
    struct sigaction action;
360
    ssize_t len;
361

    
362
    while (1) {
363
        do {
364
            len = read(fd, &info, sizeof(info));
365
        } while (len == -1 && errno == EINTR);
366

    
367
        if (len == -1 && errno == EAGAIN) {
368
            break;
369
        }
370

    
371
        if (len != sizeof(info)) {
372
            printf("read from sigfd returned %zd: %m\n", len);
373
            return;
374
        }
375

    
376
        sigaction(info.ssi_signo, NULL, &action);
377
        if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
378
            action.sa_sigaction(info.ssi_signo,
379
                                (siginfo_t *)&info, NULL);
380
        } else if (action.sa_handler) {
381
            action.sa_handler(info.ssi_signo);
382
        }
383
    }
384
}
385

    
386
static int qemu_signal_init(void)
387
{
388
    int sigfd;
389
    sigset_t set;
390

    
391
#ifdef CONFIG_IOTHREAD
392
    /* SIGUSR2 used by posix-aio-compat.c */
393
    sigemptyset(&set);
394
    sigaddset(&set, SIGUSR2);
395
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
396

    
397
    sigemptyset(&set);
398
    sigaddset(&set, SIGIO);
399
    sigaddset(&set, SIGALRM);
400
    sigaddset(&set, SIG_IPI);
401
    sigaddset(&set, SIGBUS);
402
    pthread_sigmask(SIG_BLOCK, &set, NULL);
403
#else
404
    sigemptyset(&set);
405
    sigaddset(&set, SIGBUS);
406
    if (kvm_enabled()) {
407
        /*
408
         * We need to process timer signals synchronously to avoid a race
409
         * between exit_request check and KVM vcpu entry.
410
         */
411
        sigaddset(&set, SIGIO);
412
        sigaddset(&set, SIGALRM);
413
    }
414
#endif
415

    
416
    sigfd = qemu_signalfd(&set);
417
    if (sigfd == -1) {
418
        fprintf(stderr, "failed to create signalfd\n");
419
        return -errno;
420
    }
421

    
422
    fcntl_setfl(sigfd, O_NONBLOCK);
423

    
424
    qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
425
                         (void *)(intptr_t)sigfd);
426

    
427
    return 0;
428
}
429

    
430
static void qemu_kvm_init_cpu_signals(CPUState *env)
431
{
432
    int r;
433
    sigset_t set;
434
    struct sigaction sigact;
435

    
436
    memset(&sigact, 0, sizeof(sigact));
437
    sigact.sa_handler = dummy_signal;
438
    sigaction(SIG_IPI, &sigact, NULL);
439

    
440
#ifdef CONFIG_IOTHREAD
441
    pthread_sigmask(SIG_BLOCK, NULL, &set);
442
    sigdelset(&set, SIG_IPI);
443
    sigdelset(&set, SIGBUS);
444
    r = kvm_set_signal_mask(env, &set);
445
    if (r) {
446
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
447
        exit(1);
448
    }
449
#else
450
    sigemptyset(&set);
451
    sigaddset(&set, SIG_IPI);
452
    sigaddset(&set, SIGIO);
453
    sigaddset(&set, SIGALRM);
454
    pthread_sigmask(SIG_BLOCK, &set, NULL);
455

    
456
    pthread_sigmask(SIG_BLOCK, NULL, &set);
457
    sigdelset(&set, SIGIO);
458
    sigdelset(&set, SIGALRM);
459
#endif
460
    sigdelset(&set, SIG_IPI);
461
    sigdelset(&set, SIGBUS);
462
    r = kvm_set_signal_mask(env, &set);
463
    if (r) {
464
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
465
        exit(1);
466
    }
467
}
468

    
469
static void qemu_tcg_init_cpu_signals(void)
470
{
471
#ifdef CONFIG_IOTHREAD
472
    sigset_t set;
473
    struct sigaction sigact;
474

    
475
    memset(&sigact, 0, sizeof(sigact));
476
    sigact.sa_handler = cpu_signal;
477
    sigaction(SIG_IPI, &sigact, NULL);
478

    
479
    sigemptyset(&set);
480
    sigaddset(&set, SIG_IPI);
481
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
482
#endif
483
}
484

    
485
#else /* _WIN32 */
486

    
487
HANDLE qemu_event_handle;
488

    
489
static void dummy_event_handler(void *opaque)
490
{
491
}
492

    
493
static int qemu_event_init(void)
494
{
495
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
496
    if (!qemu_event_handle) {
497
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
498
        return -1;
499
    }
500
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
501
    return 0;
502
}
503

    
504
static void qemu_event_increment(void)
505
{
506
    if (!SetEvent(qemu_event_handle)) {
507
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
508
                GetLastError());
509
        exit (1);
510
    }
511
}
512

    
513
static int qemu_signal_init(void)
514
{
515
    return 0;
516
}
517

    
518
static void qemu_kvm_init_cpu_signals(CPUState *env)
519
{
520
    abort();
521
}
522

    
523
static void qemu_tcg_init_cpu_signals(void)
524
{
525
}
526
#endif /* _WIN32 */
527

    
528
#ifndef CONFIG_IOTHREAD
529
int qemu_init_main_loop(void)
530
{
531
    int ret;
532

    
533
    ret = qemu_signal_init();
534
    if (ret) {
535
        return ret;
536
    }
537

    
538
    qemu_init_sigbus();
539

    
540
    return qemu_event_init();
541
}
542

    
543
void qemu_main_loop_start(void)
544
{
545
}
546

    
547
void qemu_init_vcpu(void *_env)
548
{
549
    CPUState *env = _env;
550
    int r;
551

    
552
    env->nr_cores = smp_cores;
553
    env->nr_threads = smp_threads;
554

    
555
    if (kvm_enabled()) {
556
        r = kvm_init_vcpu(env);
557
        if (r < 0) {
558
            fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
559
            exit(1);
560
        }
561
        qemu_kvm_init_cpu_signals(env);
562
    } else {
563
        qemu_tcg_init_cpu_signals();
564
    }
565
}
566

    
567
int qemu_cpu_is_self(void *env)
568
{
569
    return 1;
570
}
571

    
572
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
573
{
574
    func(data);
575
}
576

    
577
void resume_all_vcpus(void)
578
{
579
}
580

    
581
void pause_all_vcpus(void)
582
{
583
}
584

    
585
void qemu_cpu_kick(void *env)
586
{
587
}
588

    
589
void qemu_cpu_kick_self(void)
590
{
591
#ifndef _WIN32
592
    assert(cpu_single_env);
593

    
594
    raise(SIG_IPI);
595
#else
596
    abort();
597
#endif
598
}
599

    
600
void qemu_notify_event(void)
601
{
602
    CPUState *env = cpu_single_env;
603

    
604
    qemu_event_increment ();
605
    if (env) {
606
        cpu_exit(env);
607
    }
608
    if (next_cpu && env != next_cpu) {
609
        cpu_exit(next_cpu);
610
    }
611
    exit_request = 1;
612
}
613

    
614
void qemu_mutex_lock_iothread(void) {}
615
void qemu_mutex_unlock_iothread(void) {}
616

    
617
void cpu_stop_current(void)
618
{
619
}
620

    
621
void vm_stop(int reason)
622
{
623
    do_vm_stop(reason);
624
}
625

    
626
#else /* CONFIG_IOTHREAD */
627

    
628
QemuMutex qemu_global_mutex;
629
static QemuMutex qemu_fair_mutex;
630

    
631
static QemuThread io_thread;
632

    
633
static QemuThread *tcg_cpu_thread;
634
static QemuCond *tcg_halt_cond;
635

    
636
static int qemu_system_ready;
637
/* cpu creation */
638
static QemuCond qemu_cpu_cond;
639
/* system init */
640
static QemuCond qemu_system_cond;
641
static QemuCond qemu_pause_cond;
642
static QemuCond qemu_work_cond;
643

    
644
int qemu_init_main_loop(void)
645
{
646
    int ret;
647

    
648
    qemu_init_sigbus();
649

    
650
    ret = qemu_signal_init();
651
    if (ret) {
652
        return ret;
653
    }
654

    
655
    /* Note eventfd must be drained before signalfd handlers run */
656
    ret = qemu_event_init();
657
    if (ret) {
658
        return ret;
659
    }
660

    
661
    qemu_cond_init(&qemu_cpu_cond);
662
    qemu_cond_init(&qemu_system_cond);
663
    qemu_cond_init(&qemu_pause_cond);
664
    qemu_cond_init(&qemu_work_cond);
665
    qemu_mutex_init(&qemu_fair_mutex);
666
    qemu_mutex_init(&qemu_global_mutex);
667
    qemu_mutex_lock(&qemu_global_mutex);
668

    
669
    qemu_thread_get_self(&io_thread);
670

    
671
    return 0;
672
}
673

    
674
void qemu_main_loop_start(void)
675
{
676
    qemu_system_ready = 1;
677
    qemu_cond_broadcast(&qemu_system_cond);
678
}
679

    
680
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
681
{
682
    struct qemu_work_item wi;
683

    
684
    if (qemu_cpu_is_self(env)) {
685
        func(data);
686
        return;
687
    }
688

    
689
    wi.func = func;
690
    wi.data = data;
691
    if (!env->queued_work_first) {
692
        env->queued_work_first = &wi;
693
    } else {
694
        env->queued_work_last->next = &wi;
695
    }
696
    env->queued_work_last = &wi;
697
    wi.next = NULL;
698
    wi.done = false;
699

    
700
    qemu_cpu_kick(env);
701
    while (!wi.done) {
702
        CPUState *self_env = cpu_single_env;
703

    
704
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
705
        cpu_single_env = self_env;
706
    }
707
}
708

    
709
static void flush_queued_work(CPUState *env)
710
{
711
    struct qemu_work_item *wi;
712

    
713
    if (!env->queued_work_first) {
714
        return;
715
    }
716

    
717
    while ((wi = env->queued_work_first)) {
718
        env->queued_work_first = wi->next;
719
        wi->func(wi->data);
720
        wi->done = true;
721
    }
722
    env->queued_work_last = NULL;
723
    qemu_cond_broadcast(&qemu_work_cond);
724
}
725

    
726
static void qemu_wait_io_event_common(CPUState *env)
727
{
728
    if (env->stop) {
729
        env->stop = 0;
730
        env->stopped = 1;
731
        qemu_cond_signal(&qemu_pause_cond);
732
    }
733
    flush_queued_work(env);
734
    env->thread_kicked = false;
735
}
736

    
737
static void qemu_tcg_wait_io_event(void)
738
{
739
    CPUState *env;
740

    
741
    while (all_cpu_threads_idle()) {
742
       /* Start accounting real time to the virtual clock if the CPUs
743
          are idle.  */
744
        qemu_clock_warp(vm_clock);
745
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
746
    }
747

    
748
    qemu_mutex_unlock(&qemu_global_mutex);
749

    
750
    /*
751
     * Users of qemu_global_mutex can be starved, having no chance
752
     * to acquire it since this path will get to it first.
753
     * So use another lock to provide fairness.
754
     */
755
    qemu_mutex_lock(&qemu_fair_mutex);
756
    qemu_mutex_unlock(&qemu_fair_mutex);
757

    
758
    qemu_mutex_lock(&qemu_global_mutex);
759

    
760
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
761
        qemu_wait_io_event_common(env);
762
    }
763
}
764

    
765
static void qemu_kvm_wait_io_event(CPUState *env)
766
{
767
    while (cpu_thread_is_idle(env)) {
768
        qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
769
    }
770

    
771
    qemu_kvm_eat_signals(env);
772
    qemu_wait_io_event_common(env);
773
}
774

    
775
static void *qemu_kvm_cpu_thread_fn(void *arg)
776
{
777
    CPUState *env = arg;
778
    int r;
779

    
780
    qemu_mutex_lock(&qemu_global_mutex);
781
    qemu_thread_get_self(env->thread);
782
    env->thread_id = qemu_get_thread_id();
783

    
784
    r = kvm_init_vcpu(env);
785
    if (r < 0) {
786
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
787
        exit(1);
788
    }
789

    
790
    qemu_kvm_init_cpu_signals(env);
791

    
792
    /* signal CPU creation */
793
    env->created = 1;
794
    qemu_cond_signal(&qemu_cpu_cond);
795

    
796
    /* and wait for machine initialization */
797
    while (!qemu_system_ready) {
798
        qemu_cond_wait(&qemu_system_cond, &qemu_global_mutex);
799
    }
800

    
801
    while (1) {
802
        if (cpu_can_run(env)) {
803
            r = kvm_cpu_exec(env);
804
            if (r == EXCP_DEBUG) {
805
                cpu_handle_guest_debug(env);
806
            }
807
        }
808
        qemu_kvm_wait_io_event(env);
809
    }
810

    
811
    return NULL;
812
}
813

    
814
static void *qemu_tcg_cpu_thread_fn(void *arg)
815
{
816
    CPUState *env = arg;
817

    
818
    qemu_tcg_init_cpu_signals();
819
    qemu_thread_get_self(env->thread);
820

    
821
    /* signal CPU creation */
822
    qemu_mutex_lock(&qemu_global_mutex);
823
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
824
        env->thread_id = qemu_get_thread_id();
825
        env->created = 1;
826
    }
827
    qemu_cond_signal(&qemu_cpu_cond);
828

    
829
    /* and wait for machine initialization */
830
    while (!qemu_system_ready) {
831
        qemu_cond_wait(&qemu_system_cond, &qemu_global_mutex);
832
    }
833

    
834
    while (1) {
835
        cpu_exec_all();
836
        if (use_icount && qemu_next_deadline() <= 0) {
837
            qemu_notify_event();
838
        }
839
        qemu_tcg_wait_io_event();
840
    }
841

    
842
    return NULL;
843
}
844

    
845
static void qemu_cpu_kick_thread(CPUState *env)
846
{
847
#ifndef _WIN32
848
    int err;
849

    
850
    err = pthread_kill(env->thread->thread, SIG_IPI);
851
    if (err) {
852
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
853
        exit(1);
854
    }
855
#else /* _WIN32 */
856
    if (!qemu_cpu_is_self(env)) {
857
        SuspendThread(env->thread->thread);
858
        cpu_signal(0);
859
        ResumeThread(env->thread->thread);
860
    }
861
#endif
862
}
863

    
864
void qemu_cpu_kick(void *_env)
865
{
866
    CPUState *env = _env;
867

    
868
    qemu_cond_broadcast(env->halt_cond);
869
    if (!env->thread_kicked) {
870
        qemu_cpu_kick_thread(env);
871
        env->thread_kicked = true;
872
    }
873
}
874

    
875
void qemu_cpu_kick_self(void)
876
{
877
#ifndef _WIN32
878
    assert(cpu_single_env);
879

    
880
    if (!cpu_single_env->thread_kicked) {
881
        qemu_cpu_kick_thread(cpu_single_env);
882
        cpu_single_env->thread_kicked = true;
883
    }
884
#else
885
    abort();
886
#endif
887
}
888

    
889
int qemu_cpu_is_self(void *_env)
890
{
891
    CPUState *env = _env;
892

    
893
    return qemu_thread_is_self(env->thread);
894
}
895

    
896
void qemu_mutex_lock_iothread(void)
897
{
898
    if (kvm_enabled()) {
899
        qemu_mutex_lock(&qemu_global_mutex);
900
    } else {
901
        qemu_mutex_lock(&qemu_fair_mutex);
902
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
903
            qemu_cpu_kick_thread(first_cpu);
904
            qemu_mutex_lock(&qemu_global_mutex);
905
        }
906
        qemu_mutex_unlock(&qemu_fair_mutex);
907
    }
908
}
909

    
910
void qemu_mutex_unlock_iothread(void)
911
{
912
    qemu_mutex_unlock(&qemu_global_mutex);
913
}
914

    
915
static int all_vcpus_paused(void)
916
{
917
    CPUState *penv = first_cpu;
918

    
919
    while (penv) {
920
        if (!penv->stopped) {
921
            return 0;
922
        }
923
        penv = (CPUState *)penv->next_cpu;
924
    }
925

    
926
    return 1;
927
}
928

    
929
void pause_all_vcpus(void)
930
{
931
    CPUState *penv = first_cpu;
932

    
933
    while (penv) {
934
        penv->stop = 1;
935
        qemu_cpu_kick(penv);
936
        penv = (CPUState *)penv->next_cpu;
937
    }
938

    
939
    while (!all_vcpus_paused()) {
940
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
941
        penv = first_cpu;
942
        while (penv) {
943
            qemu_cpu_kick(penv);
944
            penv = (CPUState *)penv->next_cpu;
945
        }
946
    }
947
}
948

    
949
void resume_all_vcpus(void)
950
{
951
    CPUState *penv = first_cpu;
952

    
953
    while (penv) {
954
        penv->stop = 0;
955
        penv->stopped = 0;
956
        qemu_cpu_kick(penv);
957
        penv = (CPUState *)penv->next_cpu;
958
    }
959
}
960

    
961
static void qemu_tcg_init_vcpu(void *_env)
962
{
963
    CPUState *env = _env;
964

    
965
    /* share a single thread for all cpus with TCG */
966
    if (!tcg_cpu_thread) {
967
        env->thread = qemu_mallocz(sizeof(QemuThread));
968
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
969
        qemu_cond_init(env->halt_cond);
970
        qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
971
        while (env->created == 0) {
972
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
973
        }
974
        tcg_cpu_thread = env->thread;
975
        tcg_halt_cond = env->halt_cond;
976
    } else {
977
        env->thread = tcg_cpu_thread;
978
        env->halt_cond = tcg_halt_cond;
979
    }
980
}
981

    
982
static void qemu_kvm_start_vcpu(CPUState *env)
983
{
984
    env->thread = qemu_mallocz(sizeof(QemuThread));
985
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
986
    qemu_cond_init(env->halt_cond);
987
    qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
988
    while (env->created == 0) {
989
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
990
    }
991
}
992

    
993
void qemu_init_vcpu(void *_env)
994
{
995
    CPUState *env = _env;
996

    
997
    env->nr_cores = smp_cores;
998
    env->nr_threads = smp_threads;
999
    if (kvm_enabled()) {
1000
        qemu_kvm_start_vcpu(env);
1001
    } else {
1002
        qemu_tcg_init_vcpu(env);
1003
    }
1004
}
1005

    
1006
void qemu_notify_event(void)
1007
{
1008
    qemu_event_increment();
1009
}
1010

    
1011
void cpu_stop_current(void)
1012
{
1013
    if (cpu_single_env) {
1014
        cpu_single_env->stop = 0;
1015
        cpu_single_env->stopped = 1;
1016
        cpu_exit(cpu_single_env);
1017
        qemu_cond_signal(&qemu_pause_cond);
1018
    }
1019
}
1020

    
1021
void vm_stop(int reason)
1022
{
1023
    if (!qemu_thread_is_self(&io_thread)) {
1024
        qemu_system_vmstop_request(reason);
1025
        /*
1026
         * FIXME: should not return to device code in case
1027
         * vm_stop() has been requested.
1028
         */
1029
        cpu_stop_current();
1030
        return;
1031
    }
1032
    do_vm_stop(reason);
1033
}
1034

    
1035
#endif
1036

    
1037
static int tcg_cpu_exec(CPUState *env)
1038
{
1039
    int ret;
1040
#ifdef CONFIG_PROFILER
1041
    int64_t ti;
1042
#endif
1043

    
1044
#ifdef CONFIG_PROFILER
1045
    ti = profile_getclock();
1046
#endif
1047
    if (use_icount) {
1048
        int64_t count;
1049
        int decr;
1050
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1051
        env->icount_decr.u16.low = 0;
1052
        env->icount_extra = 0;
1053
        count = qemu_icount_round (qemu_next_deadline());
1054
        qemu_icount += count;
1055
        decr = (count > 0xffff) ? 0xffff : count;
1056
        count -= decr;
1057
        env->icount_decr.u16.low = decr;
1058
        env->icount_extra = count;
1059
    }
1060
    ret = cpu_exec(env);
1061
#ifdef CONFIG_PROFILER
1062
    qemu_time += profile_getclock() - ti;
1063
#endif
1064
    if (use_icount) {
1065
        /* Fold pending instructions back into the
1066
           instruction counter, and clear the interrupt flag.  */
1067
        qemu_icount -= (env->icount_decr.u16.low
1068
                        + env->icount_extra);
1069
        env->icount_decr.u32 = 0;
1070
        env->icount_extra = 0;
1071
    }
1072
    return ret;
1073
}
1074

    
1075
bool cpu_exec_all(void)
1076
{
1077
    int r;
1078

    
1079
    /* Account partial waits to the vm_clock.  */
1080
    qemu_clock_warp(vm_clock);
1081

    
1082
    if (next_cpu == NULL) {
1083
        next_cpu = first_cpu;
1084
    }
1085
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1086
        CPUState *env = next_cpu;
1087

    
1088
        qemu_clock_enable(vm_clock,
1089
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1090

    
1091
#ifndef CONFIG_IOTHREAD
1092
        if (qemu_alarm_pending()) {
1093
            break;
1094
        }
1095
#endif
1096
        if (cpu_can_run(env)) {
1097
            if (kvm_enabled()) {
1098
                r = kvm_cpu_exec(env);
1099
                qemu_kvm_eat_signals(env);
1100
            } else {
1101
                r = tcg_cpu_exec(env);
1102
            }
1103
            if (r == EXCP_DEBUG) {
1104
                cpu_handle_guest_debug(env);
1105
                break;
1106
            }
1107
        } else if (env->stop || env->stopped) {
1108
            break;
1109
        }
1110
    }
1111
    exit_request = 0;
1112
    return !all_cpu_threads_idle();
1113
}
1114

    
1115
void set_numa_modes(void)
1116
{
1117
    CPUState *env;
1118
    int i;
1119

    
1120
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1121
        for (i = 0; i < nb_numa_nodes; i++) {
1122
            if (node_cpumask[i] & (1 << env->cpu_index)) {
1123
                env->numa_node = i;
1124
            }
1125
        }
1126
    }
1127
}
1128

    
1129
void set_cpu_log(const char *optarg)
1130
{
1131
    int mask;
1132
    const CPULogItem *item;
1133

    
1134
    mask = cpu_str_to_log_mask(optarg);
1135
    if (!mask) {
1136
        printf("Log items (comma separated):\n");
1137
        for (item = cpu_log_items; item->mask != 0; item++) {
1138
            printf("%-10s %s\n", item->name, item->help);
1139
        }
1140
        exit(1);
1141
    }
1142
    cpu_set_log(mask);
1143
}
1144

    
1145
/* Return the virtual CPU time, based on the instruction counter.  */
1146
int64_t cpu_get_icount(void)
1147
{
1148
    int64_t icount;
1149
    CPUState *env = cpu_single_env;;
1150

    
1151
    icount = qemu_icount;
1152
    if (env) {
1153
        if (!can_do_io(env)) {
1154
            fprintf(stderr, "Bad clock read\n");
1155
        }
1156
        icount -= (env->icount_decr.u16.low + env->icount_extra);
1157
    }
1158
    return qemu_icount_bias + (icount << icount_time_shift);
1159
}
1160

    
1161
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1162
{
1163
    /* XXX: implement xxx_cpu_list for targets that still miss it */
1164
#if defined(cpu_list_id)
1165
    cpu_list_id(f, cpu_fprintf, optarg);
1166
#elif defined(cpu_list)
1167
    cpu_list(f, cpu_fprintf); /* deprecated */
1168
#endif
1169
}