Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ ab443475

History | View | Annotate | Download (54.8 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67
static bool has_msr_async_pf_en;
68
#endif
69
static int lm_capable_kernel;
70

    
71
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72
{
73
    struct kvm_cpuid2 *cpuid;
74
    int r, size;
75

    
76
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78
    cpuid->nent = max;
79
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80
    if (r == 0 && cpuid->nent >= max) {
81
        r = -E2BIG;
82
    }
83
    if (r < 0) {
84
        if (r == -E2BIG) {
85
            qemu_free(cpuid);
86
            return NULL;
87
        } else {
88
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89
                    strerror(-r));
90
            exit(1);
91
        }
92
    }
93
    return cpuid;
94
}
95

    
96
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97
                                      uint32_t index, int reg)
98
{
99
    struct kvm_cpuid2 *cpuid;
100
    int i, max;
101
    uint32_t ret = 0;
102
    uint32_t cpuid_1_edx;
103

    
104
    max = 1;
105
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106
        max *= 2;
107
    }
108

    
109
    for (i = 0; i < cpuid->nent; ++i) {
110
        if (cpuid->entries[i].function == function &&
111
            cpuid->entries[i].index == index) {
112
            switch (reg) {
113
            case R_EAX:
114
                ret = cpuid->entries[i].eax;
115
                break;
116
            case R_EBX:
117
                ret = cpuid->entries[i].ebx;
118
                break;
119
            case R_ECX:
120
                ret = cpuid->entries[i].ecx;
121
                break;
122
            case R_EDX:
123
                ret = cpuid->entries[i].edx;
124
                switch (function) {
125
                case 1:
126
                    /* KVM before 2.6.30 misreports the following features */
127
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128
                    break;
129
                case 0x80000001:
130
                    /* On Intel, kvm returns cpuid according to the Intel spec,
131
                     * so add missing bits according to the AMD spec:
132
                     */
133
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134
                    ret |= cpuid_1_edx & 0x183f7ff;
135
                    break;
136
                }
137
                break;
138
            }
139
        }
140
    }
141

    
142
    qemu_free(cpuid);
143

    
144
    return ret;
145
}
146

    
147
#ifdef CONFIG_KVM_PARA
148
struct kvm_para_features {
149
    int cap;
150
    int feature;
151
} para_features[] = {
152
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155
#ifdef KVM_CAP_ASYNC_PF
156
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157
#endif
158
    { -1, -1 }
159
};
160

    
161
static int get_para_features(CPUState *env)
162
{
163
    int i, features = 0;
164

    
165
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167
            features |= (1 << para_features[i].feature);
168
        }
169
    }
170
#ifdef KVM_CAP_ASYNC_PF
171
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172
#endif
173
    return features;
174
}
175
#endif /* CONFIG_KVM_PARA */
176

    
177
#ifdef KVM_CAP_MCE
178
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179
                                     int *max_banks)
180
{
181
    int r;
182

    
183
    r = kvm_check_extension(s, KVM_CAP_MCE);
184
    if (r > 0) {
185
        *max_banks = r;
186
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187
    }
188
    return -ENOSYS;
189
}
190

    
191
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192
{
193
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194
}
195

    
196
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197
{
198
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199
}
200

    
201
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202
{
203
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204
    int r;
205

    
206
    kmsrs->nmsrs = n;
207
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210
    free(kmsrs);
211
    return r;
212
}
213

    
214
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215
static int kvm_mce_in_progress(CPUState *env)
216
{
217
    struct kvm_msr_entry msr_mcg_status = {
218
        .index = MSR_MCG_STATUS,
219
    };
220
    int r;
221

    
222
    r = kvm_get_msr(env, &msr_mcg_status, 1);
223
    if (r == -1 || r == 0) {
224
        fprintf(stderr, "Failed to get MCE status\n");
225
        return 0;
226
    }
227
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228
}
229

    
230
struct kvm_x86_mce_data
231
{
232
    CPUState *env;
233
    struct kvm_x86_mce *mce;
234
    int abort_on_error;
235
};
236

    
237
static void kvm_do_inject_x86_mce(void *_data)
238
{
239
    struct kvm_x86_mce_data *data = _data;
240
    int r;
241

    
242
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
243
    if ((data->env->mcg_cap & MCG_SER_P) &&
244
        !(data->mce->status & MCI_STATUS_AR)) {
245
        if (kvm_mce_in_progress(data->env)) {
246
            return;
247
        }
248
    }
249

    
250
    r = kvm_set_mce(data->env, data->mce);
251
    if (r < 0) {
252
        perror("kvm_set_mce FAILED");
253
        if (data->abort_on_error) {
254
            abort();
255
        }
256
    }
257
}
258

    
259
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260
                                  int flag)
261
{
262
    struct kvm_x86_mce_data data = {
263
        .env = env,
264
        .mce = mce,
265
        .abort_on_error = (flag & ABORT_ON_ERROR),
266
    };
267

    
268
    if (!env->mcg_cap) {
269
        fprintf(stderr, "MCE support is not enabled!\n");
270
        return;
271
    }
272

    
273
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274
}
275

    
276
static void kvm_mce_broadcast_rest(CPUState *env)
277
{
278
    struct kvm_x86_mce mce = {
279
        .bank = 1,
280
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
281
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
282
        .addr = 0,
283
        .misc = 0,
284
    };
285
    CPUState *cenv;
286

    
287
    /* Broadcast MCA signal for processor version 06H_EH and above */
288
    if (cpu_x86_support_mca_broadcast(env)) {
289
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
290
            if (cenv == env) {
291
                continue;
292
            }
293
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
294
        }
295
    }
296
}
297

    
298
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
299
{
300
    struct kvm_x86_mce mce = {
301
        .bank = 9,
302
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
303
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
304
                  | MCI_STATUS_AR | 0x134,
305
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
306
        .addr = paddr,
307
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
308
    };
309
    int r;
310

    
311
    r = kvm_set_mce(env, &mce);
312
    if (r < 0) {
313
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
314
        abort();
315
    }
316
    kvm_mce_broadcast_rest(env);
317
}
318

    
319
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
320
{
321
    struct kvm_x86_mce mce = {
322
        .bank = 9,
323
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
324
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
325
                  | 0xc0,
326
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
327
        .addr = paddr,
328
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
329
    };
330
    int r;
331

    
332
    r = kvm_set_mce(env, &mce);
333
    if (r < 0) {
334
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
335
        abort();
336
    }
337
    kvm_mce_broadcast_rest(env);
338
}
339

    
340
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
341
{
342
    struct kvm_x86_mce mce = {
343
        .bank = 9,
344
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
345
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
346
                  | 0xc0,
347
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
348
        .addr = paddr,
349
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
350
    };
351

    
352
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
353
    kvm_mce_broadcast_rest(env);
354
}
355
#endif /* KVM_CAP_MCE */
356

    
357
static void hardware_memory_error(void)
358
{
359
    fprintf(stderr, "Hardware memory error!\n");
360
    exit(1);
361
}
362

    
363
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
364
{
365
#ifdef KVM_CAP_MCE
366
    void *vaddr;
367
    ram_addr_t ram_addr;
368
    target_phys_addr_t paddr;
369

    
370
    if ((env->mcg_cap & MCG_SER_P) && addr
371
        && (code == BUS_MCEERR_AR
372
            || code == BUS_MCEERR_AO)) {
373
        vaddr = (void *)addr;
374
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
375
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
376
            fprintf(stderr, "Hardware memory error for memory used by "
377
                    "QEMU itself instead of guest system!\n");
378
            /* Hope we are lucky for AO MCE */
379
            if (code == BUS_MCEERR_AO) {
380
                return 0;
381
            } else {
382
                hardware_memory_error();
383
            }
384
        }
385

    
386
        if (code == BUS_MCEERR_AR) {
387
            /* Fake an Intel architectural Data Load SRAR UCR */
388
            kvm_mce_inj_srar_dataload(env, paddr);
389
        } else {
390
            /*
391
             * If there is an MCE excpetion being processed, ignore
392
             * this SRAO MCE
393
             */
394
            if (!kvm_mce_in_progress(env)) {
395
                /* Fake an Intel architectural Memory scrubbing UCR */
396
                kvm_mce_inj_srao_memscrub(env, paddr);
397
            }
398
        }
399
    } else
400
#endif /* KVM_CAP_MCE */
401
    {
402
        if (code == BUS_MCEERR_AO) {
403
            return 0;
404
        } else if (code == BUS_MCEERR_AR) {
405
            hardware_memory_error();
406
        } else {
407
            return 1;
408
        }
409
    }
410
    return 0;
411
}
412

    
413
int kvm_arch_on_sigbus(int code, void *addr)
414
{
415
#ifdef KVM_CAP_MCE
416
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
417
        void *vaddr;
418
        ram_addr_t ram_addr;
419
        target_phys_addr_t paddr;
420

    
421
        /* Hope we are lucky for AO MCE */
422
        vaddr = addr;
423
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
424
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
425
                                               &paddr)) {
426
            fprintf(stderr, "Hardware memory error for memory used by "
427
                    "QEMU itself instead of guest system!: %p\n", addr);
428
            return 0;
429
        }
430
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
431
    } else
432
#endif /* KVM_CAP_MCE */
433
    {
434
        if (code == BUS_MCEERR_AO) {
435
            return 0;
436
        } else if (code == BUS_MCEERR_AR) {
437
            hardware_memory_error();
438
        } else {
439
            return 1;
440
        }
441
    }
442
    return 0;
443
}
444

    
445
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
446
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
447
                        int flag)
448
{
449
#ifdef KVM_CAP_MCE
450
    struct kvm_x86_mce mce = {
451
        .bank = bank,
452
        .status = status,
453
        .mcg_status = mcg_status,
454
        .addr = addr,
455
        .misc = misc,
456
    };
457

    
458
    if (flag & MCE_BROADCAST) {
459
        kvm_mce_broadcast_rest(cenv);
460
    }
461

    
462
    kvm_inject_x86_mce_on(cenv, &mce, flag);
463
#else /* !KVM_CAP_MCE*/
464
    if (flag & ABORT_ON_ERROR) {
465
        abort();
466
    }
467
#endif /* !KVM_CAP_MCE*/
468
}
469

    
470
static int kvm_inject_mce_oldstyle(CPUState *env)
471
{
472
#ifdef KVM_CAP_MCE
473
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
474
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
475
        struct kvm_x86_mce mce;
476

    
477
        env->exception_injected = -1;
478

    
479
        /*
480
         * There must be at least one bank in use if an MCE is pending.
481
         * Find it and use its values for the event injection.
482
         */
483
        for (bank = 0; bank < bank_num; bank++) {
484
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
485
                break;
486
            }
487
        }
488
        assert(bank < bank_num);
489

    
490
        mce.bank = bank;
491
        mce.status = env->mce_banks[bank * 4 + 1];
492
        mce.mcg_status = env->mcg_status;
493
        mce.addr = env->mce_banks[bank * 4 + 2];
494
        mce.misc = env->mce_banks[bank * 4 + 3];
495

    
496
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
497
    }
498
#endif /* KVM_CAP_MCE */
499
    return 0;
500
}
501

    
502
static void cpu_update_state(void *opaque, int running, int reason)
503
{
504
    CPUState *env = opaque;
505

    
506
    if (running) {
507
        env->tsc_valid = false;
508
    }
509
}
510

    
511
int kvm_arch_init_vcpu(CPUState *env)
512
{
513
    struct {
514
        struct kvm_cpuid2 cpuid;
515
        struct kvm_cpuid_entry2 entries[100];
516
    } __attribute__((packed)) cpuid_data;
517
    uint32_t limit, i, j, cpuid_i;
518
    uint32_t unused;
519
    struct kvm_cpuid_entry2 *c;
520
#ifdef CONFIG_KVM_PARA
521
    uint32_t signature[3];
522
#endif
523

    
524
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
525

    
526
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
527
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
528
    env->cpuid_ext_features |= i;
529

    
530
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
531
                                                             0, R_EDX);
532
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
533
                                                             0, R_ECX);
534
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
535
                                                             0, R_EDX);
536

    
537

    
538
    cpuid_i = 0;
539

    
540
#ifdef CONFIG_KVM_PARA
541
    /* Paravirtualization CPUIDs */
542
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
543
    c = &cpuid_data.entries[cpuid_i++];
544
    memset(c, 0, sizeof(*c));
545
    c->function = KVM_CPUID_SIGNATURE;
546
    c->eax = 0;
547
    c->ebx = signature[0];
548
    c->ecx = signature[1];
549
    c->edx = signature[2];
550

    
551
    c = &cpuid_data.entries[cpuid_i++];
552
    memset(c, 0, sizeof(*c));
553
    c->function = KVM_CPUID_FEATURES;
554
    c->eax = env->cpuid_kvm_features & get_para_features(env);
555
#endif
556

    
557
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
558

    
559
    for (i = 0; i <= limit; i++) {
560
        c = &cpuid_data.entries[cpuid_i++];
561

    
562
        switch (i) {
563
        case 2: {
564
            /* Keep reading function 2 till all the input is received */
565
            int times;
566

    
567
            c->function = i;
568
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
569
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
570
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571
            times = c->eax & 0xff;
572

    
573
            for (j = 1; j < times; ++j) {
574
                c = &cpuid_data.entries[cpuid_i++];
575
                c->function = i;
576
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
577
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
578
            }
579
            break;
580
        }
581
        case 4:
582
        case 0xb:
583
        case 0xd:
584
            for (j = 0; ; j++) {
585
                c->function = i;
586
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
587
                c->index = j;
588
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
589

    
590
                if (i == 4 && c->eax == 0) {
591
                    break;
592
                }
593
                if (i == 0xb && !(c->ecx & 0xff00)) {
594
                    break;
595
                }
596
                if (i == 0xd && c->eax == 0) {
597
                    break;
598
                }
599
                c = &cpuid_data.entries[cpuid_i++];
600
            }
601
            break;
602
        default:
603
            c->function = i;
604
            c->flags = 0;
605
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
606
            break;
607
        }
608
    }
609
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
610

    
611
    for (i = 0x80000000; i <= limit; i++) {
612
        c = &cpuid_data.entries[cpuid_i++];
613

    
614
        c->function = i;
615
        c->flags = 0;
616
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
617
    }
618

    
619
    cpuid_data.cpuid.nent = cpuid_i;
620

    
621
#ifdef KVM_CAP_MCE
622
    if (((env->cpuid_version >> 8)&0xF) >= 6
623
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
624
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
625
        uint64_t mcg_cap;
626
        int banks;
627

    
628
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
629
            perror("kvm_get_mce_cap_supported FAILED");
630
        } else {
631
            if (banks > MCE_BANKS_DEF)
632
                banks = MCE_BANKS_DEF;
633
            mcg_cap &= MCE_CAP_DEF;
634
            mcg_cap |= banks;
635
            if (kvm_setup_mce(env, &mcg_cap)) {
636
                perror("kvm_setup_mce FAILED");
637
            } else {
638
                env->mcg_cap = mcg_cap;
639
            }
640
        }
641
    }
642
#endif
643

    
644
    qemu_add_vm_change_state_handler(cpu_update_state, env);
645

    
646
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
647
}
648

    
649
void kvm_arch_reset_vcpu(CPUState *env)
650
{
651
    env->exception_injected = -1;
652
    env->interrupt_injected = -1;
653
    env->xcr0 = 1;
654
    if (kvm_irqchip_in_kernel()) {
655
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
656
                                          KVM_MP_STATE_UNINITIALIZED;
657
    } else {
658
        env->mp_state = KVM_MP_STATE_RUNNABLE;
659
    }
660
}
661

    
662
static int kvm_get_supported_msrs(KVMState *s)
663
{
664
    static int kvm_supported_msrs;
665
    int ret = 0;
666

    
667
    /* first time */
668
    if (kvm_supported_msrs == 0) {
669
        struct kvm_msr_list msr_list, *kvm_msr_list;
670

    
671
        kvm_supported_msrs = -1;
672

    
673
        /* Obtain MSR list from KVM.  These are the MSRs that we must
674
         * save/restore */
675
        msr_list.nmsrs = 0;
676
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
677
        if (ret < 0 && ret != -E2BIG) {
678
            return ret;
679
        }
680
        /* Old kernel modules had a bug and could write beyond the provided
681
           memory. Allocate at least a safe amount of 1K. */
682
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
683
                                              msr_list.nmsrs *
684
                                              sizeof(msr_list.indices[0])));
685

    
686
        kvm_msr_list->nmsrs = msr_list.nmsrs;
687
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
688
        if (ret >= 0) {
689
            int i;
690

    
691
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
692
                if (kvm_msr_list->indices[i] == MSR_STAR) {
693
                    has_msr_star = true;
694
                    continue;
695
                }
696
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
697
                    has_msr_hsave_pa = true;
698
                    continue;
699
                }
700
            }
701
        }
702

    
703
        free(kvm_msr_list);
704
    }
705

    
706
    return ret;
707
}
708

    
709
int kvm_arch_init(KVMState *s)
710
{
711
    uint64_t identity_base = 0xfffbc000;
712
    int ret;
713
    struct utsname utsname;
714

    
715
    ret = kvm_get_supported_msrs(s);
716
    if (ret < 0) {
717
        return ret;
718
    }
719

    
720
    uname(&utsname);
721
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
722

    
723
    /*
724
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
725
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
726
     * Since these must be part of guest physical memory, we need to allocate
727
     * them, both by setting their start addresses in the kernel and by
728
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
729
     *
730
     * Older KVM versions may not support setting the identity map base. In
731
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
732
     * size.
733
     */
734
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
735
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
736
        /* Allows up to 16M BIOSes. */
737
        identity_base = 0xfeffc000;
738

    
739
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
740
        if (ret < 0) {
741
            return ret;
742
        }
743
    }
744
#endif
745
    /* Set TSS base one page after EPT identity map. */
746
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
747
    if (ret < 0) {
748
        return ret;
749
    }
750

    
751
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
752
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
753
    if (ret < 0) {
754
        fprintf(stderr, "e820_add_entry() table is full\n");
755
        return ret;
756
    }
757

    
758
    return 0;
759
}
760

    
761
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
762
{
763
    lhs->selector = rhs->selector;
764
    lhs->base = rhs->base;
765
    lhs->limit = rhs->limit;
766
    lhs->type = 3;
767
    lhs->present = 1;
768
    lhs->dpl = 3;
769
    lhs->db = 0;
770
    lhs->s = 1;
771
    lhs->l = 0;
772
    lhs->g = 0;
773
    lhs->avl = 0;
774
    lhs->unusable = 0;
775
}
776

    
777
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
778
{
779
    unsigned flags = rhs->flags;
780
    lhs->selector = rhs->selector;
781
    lhs->base = rhs->base;
782
    lhs->limit = rhs->limit;
783
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
784
    lhs->present = (flags & DESC_P_MASK) != 0;
785
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
786
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
787
    lhs->s = (flags & DESC_S_MASK) != 0;
788
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
789
    lhs->g = (flags & DESC_G_MASK) != 0;
790
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
791
    lhs->unusable = 0;
792
}
793

    
794
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
795
{
796
    lhs->selector = rhs->selector;
797
    lhs->base = rhs->base;
798
    lhs->limit = rhs->limit;
799
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
800
                 (rhs->present * DESC_P_MASK) |
801
                 (rhs->dpl << DESC_DPL_SHIFT) |
802
                 (rhs->db << DESC_B_SHIFT) |
803
                 (rhs->s * DESC_S_MASK) |
804
                 (rhs->l << DESC_L_SHIFT) |
805
                 (rhs->g * DESC_G_MASK) |
806
                 (rhs->avl * DESC_AVL_MASK);
807
}
808

    
809
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
810
{
811
    if (set) {
812
        *kvm_reg = *qemu_reg;
813
    } else {
814
        *qemu_reg = *kvm_reg;
815
    }
816
}
817

    
818
static int kvm_getput_regs(CPUState *env, int set)
819
{
820
    struct kvm_regs regs;
821
    int ret = 0;
822

    
823
    if (!set) {
824
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
825
        if (ret < 0) {
826
            return ret;
827
        }
828
    }
829

    
830
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
831
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
832
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
833
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
834
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
835
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
836
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
837
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
838
#ifdef TARGET_X86_64
839
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
840
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
841
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
842
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
843
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
844
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
845
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
846
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
847
#endif
848

    
849
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
850
    kvm_getput_reg(&regs.rip, &env->eip, set);
851

    
852
    if (set) {
853
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
854
    }
855

    
856
    return ret;
857
}
858

    
859
static int kvm_put_fpu(CPUState *env)
860
{
861
    struct kvm_fpu fpu;
862
    int i;
863

    
864
    memset(&fpu, 0, sizeof fpu);
865
    fpu.fsw = env->fpus & ~(7 << 11);
866
    fpu.fsw |= (env->fpstt & 7) << 11;
867
    fpu.fcw = env->fpuc;
868
    for (i = 0; i < 8; ++i) {
869
        fpu.ftwx |= (!env->fptags[i]) << i;
870
    }
871
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
872
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
873
    fpu.mxcsr = env->mxcsr;
874

    
875
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
876
}
877

    
878
#ifdef KVM_CAP_XSAVE
879
#define XSAVE_CWD_RIP     2
880
#define XSAVE_CWD_RDP     4
881
#define XSAVE_MXCSR       6
882
#define XSAVE_ST_SPACE    8
883
#define XSAVE_XMM_SPACE   40
884
#define XSAVE_XSTATE_BV   128
885
#define XSAVE_YMMH_SPACE  144
886
#endif
887

    
888
static int kvm_put_xsave(CPUState *env)
889
{
890
#ifdef KVM_CAP_XSAVE
891
    int i, r;
892
    struct kvm_xsave* xsave;
893
    uint16_t cwd, swd, twd, fop;
894

    
895
    if (!kvm_has_xsave()) {
896
        return kvm_put_fpu(env);
897
    }
898

    
899
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
900
    memset(xsave, 0, sizeof(struct kvm_xsave));
901
    cwd = swd = twd = fop = 0;
902
    swd = env->fpus & ~(7 << 11);
903
    swd |= (env->fpstt & 7) << 11;
904
    cwd = env->fpuc;
905
    for (i = 0; i < 8; ++i) {
906
        twd |= (!env->fptags[i]) << i;
907
    }
908
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
909
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
910
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
911
            sizeof env->fpregs);
912
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
913
            sizeof env->xmm_regs);
914
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
915
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
916
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
917
            sizeof env->ymmh_regs);
918
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
919
    qemu_free(xsave);
920
    return r;
921
#else
922
    return kvm_put_fpu(env);
923
#endif
924
}
925

    
926
static int kvm_put_xcrs(CPUState *env)
927
{
928
#ifdef KVM_CAP_XCRS
929
    struct kvm_xcrs xcrs;
930

    
931
    if (!kvm_has_xcrs()) {
932
        return 0;
933
    }
934

    
935
    xcrs.nr_xcrs = 1;
936
    xcrs.flags = 0;
937
    xcrs.xcrs[0].xcr = 0;
938
    xcrs.xcrs[0].value = env->xcr0;
939
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
940
#else
941
    return 0;
942
#endif
943
}
944

    
945
static int kvm_put_sregs(CPUState *env)
946
{
947
    struct kvm_sregs sregs;
948

    
949
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
950
    if (env->interrupt_injected >= 0) {
951
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
952
                (uint64_t)1 << (env->interrupt_injected % 64);
953
    }
954

    
955
    if ((env->eflags & VM_MASK)) {
956
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
957
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
958
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
959
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
960
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
961
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
962
    } else {
963
        set_seg(&sregs.cs, &env->segs[R_CS]);
964
        set_seg(&sregs.ds, &env->segs[R_DS]);
965
        set_seg(&sregs.es, &env->segs[R_ES]);
966
        set_seg(&sregs.fs, &env->segs[R_FS]);
967
        set_seg(&sregs.gs, &env->segs[R_GS]);
968
        set_seg(&sregs.ss, &env->segs[R_SS]);
969
    }
970

    
971
    set_seg(&sregs.tr, &env->tr);
972
    set_seg(&sregs.ldt, &env->ldt);
973

    
974
    sregs.idt.limit = env->idt.limit;
975
    sregs.idt.base = env->idt.base;
976
    sregs.gdt.limit = env->gdt.limit;
977
    sregs.gdt.base = env->gdt.base;
978

    
979
    sregs.cr0 = env->cr[0];
980
    sregs.cr2 = env->cr[2];
981
    sregs.cr3 = env->cr[3];
982
    sregs.cr4 = env->cr[4];
983

    
984
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
985
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
986

    
987
    sregs.efer = env->efer;
988

    
989
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
990
}
991

    
992
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
993
                              uint32_t index, uint64_t value)
994
{
995
    entry->index = index;
996
    entry->data = value;
997
}
998

    
999
static int kvm_put_msrs(CPUState *env, int level)
1000
{
1001
    struct {
1002
        struct kvm_msrs info;
1003
        struct kvm_msr_entry entries[100];
1004
    } msr_data;
1005
    struct kvm_msr_entry *msrs = msr_data.entries;
1006
    int n = 0;
1007

    
1008
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1009
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1010
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1011
    if (has_msr_star) {
1012
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1013
    }
1014
    if (has_msr_hsave_pa) {
1015
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1016
    }
1017
#ifdef TARGET_X86_64
1018
    if (lm_capable_kernel) {
1019
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1020
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1021
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1022
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1023
    }
1024
#endif
1025
    if (level == KVM_PUT_FULL_STATE) {
1026
        /*
1027
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1028
         * writeback. Until this is fixed, we only write the offset to SMP
1029
         * guests after migration, desynchronizing the VCPUs, but avoiding
1030
         * huge jump-backs that would occur without any writeback at all.
1031
         */
1032
        if (smp_cpus == 1 || env->tsc != 0) {
1033
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1034
        }
1035
    }
1036
    /*
1037
     * The following paravirtual MSRs have side effects on the guest or are
1038
     * too heavy for normal writeback. Limit them to reset or full state
1039
     * updates.
1040
     */
1041
    if (level >= KVM_PUT_RESET_STATE) {
1042
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1043
                          env->system_time_msr);
1044
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1045
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1046
        if (has_msr_async_pf_en) {
1047
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1048
                              env->async_pf_en_msr);
1049
        }
1050
#endif
1051
    }
1052
#ifdef KVM_CAP_MCE
1053
    if (env->mcg_cap) {
1054
        int i;
1055

    
1056
        if (level == KVM_PUT_RESET_STATE) {
1057
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1058
        } else if (level == KVM_PUT_FULL_STATE) {
1059
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1060
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1061
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1062
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1063
            }
1064
        }
1065
    }
1066
#endif
1067

    
1068
    msr_data.info.nmsrs = n;
1069

    
1070
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1071

    
1072
}
1073

    
1074

    
1075
static int kvm_get_fpu(CPUState *env)
1076
{
1077
    struct kvm_fpu fpu;
1078
    int i, ret;
1079

    
1080
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1081
    if (ret < 0) {
1082
        return ret;
1083
    }
1084

    
1085
    env->fpstt = (fpu.fsw >> 11) & 7;
1086
    env->fpus = fpu.fsw;
1087
    env->fpuc = fpu.fcw;
1088
    for (i = 0; i < 8; ++i) {
1089
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1090
    }
1091
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1092
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1093
    env->mxcsr = fpu.mxcsr;
1094

    
1095
    return 0;
1096
}
1097

    
1098
static int kvm_get_xsave(CPUState *env)
1099
{
1100
#ifdef KVM_CAP_XSAVE
1101
    struct kvm_xsave* xsave;
1102
    int ret, i;
1103
    uint16_t cwd, swd, twd, fop;
1104

    
1105
    if (!kvm_has_xsave()) {
1106
        return kvm_get_fpu(env);
1107
    }
1108

    
1109
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
1110
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1111
    if (ret < 0) {
1112
        qemu_free(xsave);
1113
        return ret;
1114
    }
1115

    
1116
    cwd = (uint16_t)xsave->region[0];
1117
    swd = (uint16_t)(xsave->region[0] >> 16);
1118
    twd = (uint16_t)xsave->region[1];
1119
    fop = (uint16_t)(xsave->region[1] >> 16);
1120
    env->fpstt = (swd >> 11) & 7;
1121
    env->fpus = swd;
1122
    env->fpuc = cwd;
1123
    for (i = 0; i < 8; ++i) {
1124
        env->fptags[i] = !((twd >> i) & 1);
1125
    }
1126
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1127
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1128
            sizeof env->fpregs);
1129
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1130
            sizeof env->xmm_regs);
1131
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1132
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1133
            sizeof env->ymmh_regs);
1134
    qemu_free(xsave);
1135
    return 0;
1136
#else
1137
    return kvm_get_fpu(env);
1138
#endif
1139
}
1140

    
1141
static int kvm_get_xcrs(CPUState *env)
1142
{
1143
#ifdef KVM_CAP_XCRS
1144
    int i, ret;
1145
    struct kvm_xcrs xcrs;
1146

    
1147
    if (!kvm_has_xcrs()) {
1148
        return 0;
1149
    }
1150

    
1151
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1152
    if (ret < 0) {
1153
        return ret;
1154
    }
1155

    
1156
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1157
        /* Only support xcr0 now */
1158
        if (xcrs.xcrs[0].xcr == 0) {
1159
            env->xcr0 = xcrs.xcrs[0].value;
1160
            break;
1161
        }
1162
    }
1163
    return 0;
1164
#else
1165
    return 0;
1166
#endif
1167
}
1168

    
1169
static int kvm_get_sregs(CPUState *env)
1170
{
1171
    struct kvm_sregs sregs;
1172
    uint32_t hflags;
1173
    int bit, i, ret;
1174

    
1175
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1176
    if (ret < 0) {
1177
        return ret;
1178
    }
1179

    
1180
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1181
       to find it and save its number instead (-1 for none). */
1182
    env->interrupt_injected = -1;
1183
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1184
        if (sregs.interrupt_bitmap[i]) {
1185
            bit = ctz64(sregs.interrupt_bitmap[i]);
1186
            env->interrupt_injected = i * 64 + bit;
1187
            break;
1188
        }
1189
    }
1190

    
1191
    get_seg(&env->segs[R_CS], &sregs.cs);
1192
    get_seg(&env->segs[R_DS], &sregs.ds);
1193
    get_seg(&env->segs[R_ES], &sregs.es);
1194
    get_seg(&env->segs[R_FS], &sregs.fs);
1195
    get_seg(&env->segs[R_GS], &sregs.gs);
1196
    get_seg(&env->segs[R_SS], &sregs.ss);
1197

    
1198
    get_seg(&env->tr, &sregs.tr);
1199
    get_seg(&env->ldt, &sregs.ldt);
1200

    
1201
    env->idt.limit = sregs.idt.limit;
1202
    env->idt.base = sregs.idt.base;
1203
    env->gdt.limit = sregs.gdt.limit;
1204
    env->gdt.base = sregs.gdt.base;
1205

    
1206
    env->cr[0] = sregs.cr0;
1207
    env->cr[2] = sregs.cr2;
1208
    env->cr[3] = sregs.cr3;
1209
    env->cr[4] = sregs.cr4;
1210

    
1211
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1212

    
1213
    env->efer = sregs.efer;
1214
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1215

    
1216
#define HFLAG_COPY_MASK \
1217
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1218
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1219
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1220
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1221

    
1222
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1223
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1224
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1225
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1226
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1227
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1228
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1229

    
1230
    if (env->efer & MSR_EFER_LMA) {
1231
        hflags |= HF_LMA_MASK;
1232
    }
1233

    
1234
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1235
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1236
    } else {
1237
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1238
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1239
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1240
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1241
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1242
            !(hflags & HF_CS32_MASK)) {
1243
            hflags |= HF_ADDSEG_MASK;
1244
        } else {
1245
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1246
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1247
        }
1248
    }
1249
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1250

    
1251
    return 0;
1252
}
1253

    
1254
static int kvm_get_msrs(CPUState *env)
1255
{
1256
    struct {
1257
        struct kvm_msrs info;
1258
        struct kvm_msr_entry entries[100];
1259
    } msr_data;
1260
    struct kvm_msr_entry *msrs = msr_data.entries;
1261
    int ret, i, n;
1262

    
1263
    n = 0;
1264
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1265
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1266
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1267
    if (has_msr_star) {
1268
        msrs[n++].index = MSR_STAR;
1269
    }
1270
    if (has_msr_hsave_pa) {
1271
        msrs[n++].index = MSR_VM_HSAVE_PA;
1272
    }
1273

    
1274
    if (!env->tsc_valid) {
1275
        msrs[n++].index = MSR_IA32_TSC;
1276
        env->tsc_valid = !vm_running;
1277
    }
1278

    
1279
#ifdef TARGET_X86_64
1280
    if (lm_capable_kernel) {
1281
        msrs[n++].index = MSR_CSTAR;
1282
        msrs[n++].index = MSR_KERNELGSBASE;
1283
        msrs[n++].index = MSR_FMASK;
1284
        msrs[n++].index = MSR_LSTAR;
1285
    }
1286
#endif
1287
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1288
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1289
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1290
    if (has_msr_async_pf_en) {
1291
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1292
    }
1293
#endif
1294

    
1295
#ifdef KVM_CAP_MCE
1296
    if (env->mcg_cap) {
1297
        msrs[n++].index = MSR_MCG_STATUS;
1298
        msrs[n++].index = MSR_MCG_CTL;
1299
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1300
            msrs[n++].index = MSR_MC0_CTL + i;
1301
        }
1302
    }
1303
#endif
1304

    
1305
    msr_data.info.nmsrs = n;
1306
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1307
    if (ret < 0) {
1308
        return ret;
1309
    }
1310

    
1311
    for (i = 0; i < ret; i++) {
1312
        switch (msrs[i].index) {
1313
        case MSR_IA32_SYSENTER_CS:
1314
            env->sysenter_cs = msrs[i].data;
1315
            break;
1316
        case MSR_IA32_SYSENTER_ESP:
1317
            env->sysenter_esp = msrs[i].data;
1318
            break;
1319
        case MSR_IA32_SYSENTER_EIP:
1320
            env->sysenter_eip = msrs[i].data;
1321
            break;
1322
        case MSR_STAR:
1323
            env->star = msrs[i].data;
1324
            break;
1325
#ifdef TARGET_X86_64
1326
        case MSR_CSTAR:
1327
            env->cstar = msrs[i].data;
1328
            break;
1329
        case MSR_KERNELGSBASE:
1330
            env->kernelgsbase = msrs[i].data;
1331
            break;
1332
        case MSR_FMASK:
1333
            env->fmask = msrs[i].data;
1334
            break;
1335
        case MSR_LSTAR:
1336
            env->lstar = msrs[i].data;
1337
            break;
1338
#endif
1339
        case MSR_IA32_TSC:
1340
            env->tsc = msrs[i].data;
1341
            break;
1342
        case MSR_VM_HSAVE_PA:
1343
            env->vm_hsave = msrs[i].data;
1344
            break;
1345
        case MSR_KVM_SYSTEM_TIME:
1346
            env->system_time_msr = msrs[i].data;
1347
            break;
1348
        case MSR_KVM_WALL_CLOCK:
1349
            env->wall_clock_msr = msrs[i].data;
1350
            break;
1351
#ifdef KVM_CAP_MCE
1352
        case MSR_MCG_STATUS:
1353
            env->mcg_status = msrs[i].data;
1354
            break;
1355
        case MSR_MCG_CTL:
1356
            env->mcg_ctl = msrs[i].data;
1357
            break;
1358
#endif
1359
        default:
1360
#ifdef KVM_CAP_MCE
1361
            if (msrs[i].index >= MSR_MC0_CTL &&
1362
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1363
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1364
            }
1365
#endif
1366
            break;
1367
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1368
        case MSR_KVM_ASYNC_PF_EN:
1369
            env->async_pf_en_msr = msrs[i].data;
1370
            break;
1371
#endif
1372
        }
1373
    }
1374

    
1375
    return 0;
1376
}
1377

    
1378
static int kvm_put_mp_state(CPUState *env)
1379
{
1380
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1381

    
1382
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1383
}
1384

    
1385
static int kvm_get_mp_state(CPUState *env)
1386
{
1387
    struct kvm_mp_state mp_state;
1388
    int ret;
1389

    
1390
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1391
    if (ret < 0) {
1392
        return ret;
1393
    }
1394
    env->mp_state = mp_state.mp_state;
1395
    if (kvm_irqchip_in_kernel()) {
1396
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1397
    }
1398
    return 0;
1399
}
1400

    
1401
static int kvm_put_vcpu_events(CPUState *env, int level)
1402
{
1403
#ifdef KVM_CAP_VCPU_EVENTS
1404
    struct kvm_vcpu_events events;
1405

    
1406
    if (!kvm_has_vcpu_events()) {
1407
        return 0;
1408
    }
1409

    
1410
    events.exception.injected = (env->exception_injected >= 0);
1411
    events.exception.nr = env->exception_injected;
1412
    events.exception.has_error_code = env->has_error_code;
1413
    events.exception.error_code = env->error_code;
1414

    
1415
    events.interrupt.injected = (env->interrupt_injected >= 0);
1416
    events.interrupt.nr = env->interrupt_injected;
1417
    events.interrupt.soft = env->soft_interrupt;
1418

    
1419
    events.nmi.injected = env->nmi_injected;
1420
    events.nmi.pending = env->nmi_pending;
1421
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1422

    
1423
    events.sipi_vector = env->sipi_vector;
1424

    
1425
    events.flags = 0;
1426
    if (level >= KVM_PUT_RESET_STATE) {
1427
        events.flags |=
1428
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1429
    }
1430

    
1431
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1432
#else
1433
    return 0;
1434
#endif
1435
}
1436

    
1437
static int kvm_get_vcpu_events(CPUState *env)
1438
{
1439
#ifdef KVM_CAP_VCPU_EVENTS
1440
    struct kvm_vcpu_events events;
1441
    int ret;
1442

    
1443
    if (!kvm_has_vcpu_events()) {
1444
        return 0;
1445
    }
1446

    
1447
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1448
    if (ret < 0) {
1449
       return ret;
1450
    }
1451
    env->exception_injected =
1452
       events.exception.injected ? events.exception.nr : -1;
1453
    env->has_error_code = events.exception.has_error_code;
1454
    env->error_code = events.exception.error_code;
1455

    
1456
    env->interrupt_injected =
1457
        events.interrupt.injected ? events.interrupt.nr : -1;
1458
    env->soft_interrupt = events.interrupt.soft;
1459

    
1460
    env->nmi_injected = events.nmi.injected;
1461
    env->nmi_pending = events.nmi.pending;
1462
    if (events.nmi.masked) {
1463
        env->hflags2 |= HF2_NMI_MASK;
1464
    } else {
1465
        env->hflags2 &= ~HF2_NMI_MASK;
1466
    }
1467

    
1468
    env->sipi_vector = events.sipi_vector;
1469
#endif
1470

    
1471
    return 0;
1472
}
1473

    
1474
static int kvm_guest_debug_workarounds(CPUState *env)
1475
{
1476
    int ret = 0;
1477
#ifdef KVM_CAP_SET_GUEST_DEBUG
1478
    unsigned long reinject_trap = 0;
1479

    
1480
    if (!kvm_has_vcpu_events()) {
1481
        if (env->exception_injected == 1) {
1482
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1483
        } else if (env->exception_injected == 3) {
1484
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1485
        }
1486
        env->exception_injected = -1;
1487
    }
1488

    
1489
    /*
1490
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1491
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1492
     * by updating the debug state once again if single-stepping is on.
1493
     * Another reason to call kvm_update_guest_debug here is a pending debug
1494
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1495
     * reinject them via SET_GUEST_DEBUG.
1496
     */
1497
    if (reinject_trap ||
1498
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1499
        ret = kvm_update_guest_debug(env, reinject_trap);
1500
    }
1501
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1502
    return ret;
1503
}
1504

    
1505
static int kvm_put_debugregs(CPUState *env)
1506
{
1507
#ifdef KVM_CAP_DEBUGREGS
1508
    struct kvm_debugregs dbgregs;
1509
    int i;
1510

    
1511
    if (!kvm_has_debugregs()) {
1512
        return 0;
1513
    }
1514

    
1515
    for (i = 0; i < 4; i++) {
1516
        dbgregs.db[i] = env->dr[i];
1517
    }
1518
    dbgregs.dr6 = env->dr[6];
1519
    dbgregs.dr7 = env->dr[7];
1520
    dbgregs.flags = 0;
1521

    
1522
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1523
#else
1524
    return 0;
1525
#endif
1526
}
1527

    
1528
static int kvm_get_debugregs(CPUState *env)
1529
{
1530
#ifdef KVM_CAP_DEBUGREGS
1531
    struct kvm_debugregs dbgregs;
1532
    int i, ret;
1533

    
1534
    if (!kvm_has_debugregs()) {
1535
        return 0;
1536
    }
1537

    
1538
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1539
    if (ret < 0) {
1540
        return ret;
1541
    }
1542
    for (i = 0; i < 4; i++) {
1543
        env->dr[i] = dbgregs.db[i];
1544
    }
1545
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1546
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1547
#endif
1548

    
1549
    return 0;
1550
}
1551

    
1552
int kvm_arch_put_registers(CPUState *env, int level)
1553
{
1554
    int ret;
1555

    
1556
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1557

    
1558
    ret = kvm_getput_regs(env, 1);
1559
    if (ret < 0) {
1560
        return ret;
1561
    }
1562
    ret = kvm_put_xsave(env);
1563
    if (ret < 0) {
1564
        return ret;
1565
    }
1566
    ret = kvm_put_xcrs(env);
1567
    if (ret < 0) {
1568
        return ret;
1569
    }
1570
    ret = kvm_put_sregs(env);
1571
    if (ret < 0) {
1572
        return ret;
1573
    }
1574
    /* must be before kvm_put_msrs */
1575
    ret = kvm_inject_mce_oldstyle(env);
1576
    if (ret < 0) {
1577
        return ret;
1578
    }
1579
    ret = kvm_put_msrs(env, level);
1580
    if (ret < 0) {
1581
        return ret;
1582
    }
1583
    if (level >= KVM_PUT_RESET_STATE) {
1584
        ret = kvm_put_mp_state(env);
1585
        if (ret < 0) {
1586
            return ret;
1587
        }
1588
    }
1589
    ret = kvm_put_vcpu_events(env, level);
1590
    if (ret < 0) {
1591
        return ret;
1592
    }
1593
    ret = kvm_put_debugregs(env);
1594
    if (ret < 0) {
1595
        return ret;
1596
    }
1597
    /* must be last */
1598
    ret = kvm_guest_debug_workarounds(env);
1599
    if (ret < 0) {
1600
        return ret;
1601
    }
1602
    return 0;
1603
}
1604

    
1605
int kvm_arch_get_registers(CPUState *env)
1606
{
1607
    int ret;
1608

    
1609
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1610

    
1611
    ret = kvm_getput_regs(env, 0);
1612
    if (ret < 0) {
1613
        return ret;
1614
    }
1615
    ret = kvm_get_xsave(env);
1616
    if (ret < 0) {
1617
        return ret;
1618
    }
1619
    ret = kvm_get_xcrs(env);
1620
    if (ret < 0) {
1621
        return ret;
1622
    }
1623
    ret = kvm_get_sregs(env);
1624
    if (ret < 0) {
1625
        return ret;
1626
    }
1627
    ret = kvm_get_msrs(env);
1628
    if (ret < 0) {
1629
        return ret;
1630
    }
1631
    ret = kvm_get_mp_state(env);
1632
    if (ret < 0) {
1633
        return ret;
1634
    }
1635
    ret = kvm_get_vcpu_events(env);
1636
    if (ret < 0) {
1637
        return ret;
1638
    }
1639
    ret = kvm_get_debugregs(env);
1640
    if (ret < 0) {
1641
        return ret;
1642
    }
1643
    return 0;
1644
}
1645

    
1646
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1647
{
1648
    int ret;
1649

    
1650
    /* Inject NMI */
1651
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1652
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1653
        DPRINTF("injected NMI\n");
1654
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1655
        if (ret < 0) {
1656
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1657
                    strerror(-ret));
1658
        }
1659
    }
1660

    
1661
    if (!kvm_irqchip_in_kernel()) {
1662
        /* Force the VCPU out of its inner loop to process the INIT request */
1663
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1664
            env->exit_request = 1;
1665
        }
1666

    
1667
        /* Try to inject an interrupt if the guest can accept it */
1668
        if (run->ready_for_interrupt_injection &&
1669
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1670
            (env->eflags & IF_MASK)) {
1671
            int irq;
1672

    
1673
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1674
            irq = cpu_get_pic_interrupt(env);
1675
            if (irq >= 0) {
1676
                struct kvm_interrupt intr;
1677

    
1678
                intr.irq = irq;
1679
                DPRINTF("injected interrupt %d\n", irq);
1680
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1681
                if (ret < 0) {
1682
                    fprintf(stderr,
1683
                            "KVM: injection failed, interrupt lost (%s)\n",
1684
                            strerror(-ret));
1685
                }
1686
            }
1687
        }
1688

    
1689
        /* If we have an interrupt but the guest is not ready to receive an
1690
         * interrupt, request an interrupt window exit.  This will
1691
         * cause a return to userspace as soon as the guest is ready to
1692
         * receive interrupts. */
1693
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1694
            run->request_interrupt_window = 1;
1695
        } else {
1696
            run->request_interrupt_window = 0;
1697
        }
1698

    
1699
        DPRINTF("setting tpr\n");
1700
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1701
    }
1702
}
1703

    
1704
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1705
{
1706
    if (run->if_flag) {
1707
        env->eflags |= IF_MASK;
1708
    } else {
1709
        env->eflags &= ~IF_MASK;
1710
    }
1711
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1712
    cpu_set_apic_base(env->apic_state, run->apic_base);
1713
}
1714

    
1715
int kvm_arch_process_async_events(CPUState *env)
1716
{
1717
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1718
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1719
        assert(env->mcg_cap);
1720

    
1721
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1722

    
1723
        kvm_cpu_synchronize_state(env);
1724

    
1725
        if (env->exception_injected == EXCP08_DBLE) {
1726
            /* this means triple fault */
1727
            qemu_system_reset_request();
1728
            env->exit_request = 1;
1729
            return 0;
1730
        }
1731
        env->exception_injected = EXCP12_MCHK;
1732
        env->has_error_code = 0;
1733

    
1734
        env->halted = 0;
1735
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1736
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1737
        }
1738
    }
1739

    
1740
    if (kvm_irqchip_in_kernel()) {
1741
        return 0;
1742
    }
1743

    
1744
    if (env->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_NMI)) {
1745
        env->halted = 0;
1746
    }
1747
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1748
        kvm_cpu_synchronize_state(env);
1749
        do_cpu_init(env);
1750
    }
1751
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1752
        kvm_cpu_synchronize_state(env);
1753
        do_cpu_sipi(env);
1754
    }
1755

    
1756
    return env->halted;
1757
}
1758

    
1759
static int kvm_handle_halt(CPUState *env)
1760
{
1761
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1762
          (env->eflags & IF_MASK)) &&
1763
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1764
        env->halted = 1;
1765
        return 0;
1766
    }
1767

    
1768
    return 1;
1769
}
1770

    
1771
static bool host_supports_vmx(void)
1772
{
1773
    uint32_t ecx, unused;
1774

    
1775
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1776
    return ecx & CPUID_EXT_VMX;
1777
}
1778

    
1779
#define VMX_INVALID_GUEST_STATE 0x80000021
1780

    
1781
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1782
{
1783
    uint64_t code;
1784
    int ret = 0;
1785

    
1786
    switch (run->exit_reason) {
1787
    case KVM_EXIT_HLT:
1788
        DPRINTF("handle_hlt\n");
1789
        ret = kvm_handle_halt(env);
1790
        break;
1791
    case KVM_EXIT_SET_TPR:
1792
        ret = 1;
1793
        break;
1794
    case KVM_EXIT_FAIL_ENTRY:
1795
        code = run->fail_entry.hardware_entry_failure_reason;
1796
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1797
                code);
1798
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1799
            fprintf(stderr,
1800
                    "\nIf you're runnning a guest on an Intel machine without "
1801
                        "unrestricted mode\n"
1802
                    "support, the failure can be most likely due to the guest "
1803
                        "entering an invalid\n"
1804
                    "state for Intel VT. For example, the guest maybe running "
1805
                        "in big real mode\n"
1806
                    "which is not supported on less recent Intel processors."
1807
                        "\n\n");
1808
        }
1809
        ret = -1;
1810
        break;
1811
    case KVM_EXIT_EXCEPTION:
1812
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1813
                run->ex.exception, run->ex.error_code);
1814
        ret = -1;
1815
        break;
1816
    default:
1817
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1818
        ret = -1;
1819
        break;
1820
    }
1821

    
1822
    return ret;
1823
}
1824

    
1825
#ifdef KVM_CAP_SET_GUEST_DEBUG
1826
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1827
{
1828
    static const uint8_t int3 = 0xcc;
1829

    
1830
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1831
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1832
        return -EINVAL;
1833
    }
1834
    return 0;
1835
}
1836

    
1837
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1838
{
1839
    uint8_t int3;
1840

    
1841
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1842
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1843
        return -EINVAL;
1844
    }
1845
    return 0;
1846
}
1847

    
1848
static struct {
1849
    target_ulong addr;
1850
    int len;
1851
    int type;
1852
} hw_breakpoint[4];
1853

    
1854
static int nb_hw_breakpoint;
1855

    
1856
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1857
{
1858
    int n;
1859

    
1860
    for (n = 0; n < nb_hw_breakpoint; n++) {
1861
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1862
            (hw_breakpoint[n].len == len || len == -1)) {
1863
            return n;
1864
        }
1865
    }
1866
    return -1;
1867
}
1868

    
1869
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1870
                                  target_ulong len, int type)
1871
{
1872
    switch (type) {
1873
    case GDB_BREAKPOINT_HW:
1874
        len = 1;
1875
        break;
1876
    case GDB_WATCHPOINT_WRITE:
1877
    case GDB_WATCHPOINT_ACCESS:
1878
        switch (len) {
1879
        case 1:
1880
            break;
1881
        case 2:
1882
        case 4:
1883
        case 8:
1884
            if (addr & (len - 1)) {
1885
                return -EINVAL;
1886
            }
1887
            break;
1888
        default:
1889
            return -EINVAL;
1890
        }
1891
        break;
1892
    default:
1893
        return -ENOSYS;
1894
    }
1895

    
1896
    if (nb_hw_breakpoint == 4) {
1897
        return -ENOBUFS;
1898
    }
1899
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1900
        return -EEXIST;
1901
    }
1902
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1903
    hw_breakpoint[nb_hw_breakpoint].len = len;
1904
    hw_breakpoint[nb_hw_breakpoint].type = type;
1905
    nb_hw_breakpoint++;
1906

    
1907
    return 0;
1908
}
1909

    
1910
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1911
                                  target_ulong len, int type)
1912
{
1913
    int n;
1914

    
1915
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1916
    if (n < 0) {
1917
        return -ENOENT;
1918
    }
1919
    nb_hw_breakpoint--;
1920
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1921

    
1922
    return 0;
1923
}
1924

    
1925
void kvm_arch_remove_all_hw_breakpoints(void)
1926
{
1927
    nb_hw_breakpoint = 0;
1928
}
1929

    
1930
static CPUWatchpoint hw_watchpoint;
1931

    
1932
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1933
{
1934
    int handle = 0;
1935
    int n;
1936

    
1937
    if (arch_info->exception == 1) {
1938
        if (arch_info->dr6 & (1 << 14)) {
1939
            if (cpu_single_env->singlestep_enabled) {
1940
                handle = 1;
1941
            }
1942
        } else {
1943
            for (n = 0; n < 4; n++) {
1944
                if (arch_info->dr6 & (1 << n)) {
1945
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1946
                    case 0x0:
1947
                        handle = 1;
1948
                        break;
1949
                    case 0x1:
1950
                        handle = 1;
1951
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1952
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1953
                        hw_watchpoint.flags = BP_MEM_WRITE;
1954
                        break;
1955
                    case 0x3:
1956
                        handle = 1;
1957
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1958
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1959
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1960
                        break;
1961
                    }
1962
                }
1963
            }
1964
        }
1965
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1966
        handle = 1;
1967
    }
1968
    if (!handle) {
1969
        cpu_synchronize_state(cpu_single_env);
1970
        assert(cpu_single_env->exception_injected == -1);
1971

    
1972
        cpu_single_env->exception_injected = arch_info->exception;
1973
        cpu_single_env->has_error_code = 0;
1974
    }
1975

    
1976
    return handle;
1977
}
1978

    
1979
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1980
{
1981
    const uint8_t type_code[] = {
1982
        [GDB_BREAKPOINT_HW] = 0x0,
1983
        [GDB_WATCHPOINT_WRITE] = 0x1,
1984
        [GDB_WATCHPOINT_ACCESS] = 0x3
1985
    };
1986
    const uint8_t len_code[] = {
1987
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1988
    };
1989
    int n;
1990

    
1991
    if (kvm_sw_breakpoints_active(env)) {
1992
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1993
    }
1994
    if (nb_hw_breakpoint > 0) {
1995
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1996
        dbg->arch.debugreg[7] = 0x0600;
1997
        for (n = 0; n < nb_hw_breakpoint; n++) {
1998
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1999
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2000
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2001
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2002
        }
2003
    }
2004
}
2005
#endif /* KVM_CAP_SET_GUEST_DEBUG */
2006

    
2007
bool kvm_arch_stop_on_emulation_error(CPUState *env)
2008
{
2009
    return !(env->cr[0] & CR0_PE_MASK) ||
2010
           ((env->segs[R_CS].selector  & 3) != 3);
2011
}