Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ ac72472b

History | View | Annotate | Download (9.2 kB)

1 2c0262af bellard
/*
2 5fafdf24 ths
 *  i386 execution defines
3 2c0262af bellard
 *
4 2c0262af bellard
 *  Copyright (c) 2003 Fabrice Bellard
5 2c0262af bellard
 *
6 2c0262af bellard
 * This library is free software; you can redistribute it and/or
7 2c0262af bellard
 * modify it under the terms of the GNU Lesser General Public
8 2c0262af bellard
 * License as published by the Free Software Foundation; either
9 2c0262af bellard
 * version 2 of the License, or (at your option) any later version.
10 2c0262af bellard
 *
11 2c0262af bellard
 * This library is distributed in the hope that it will be useful,
12 2c0262af bellard
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 2c0262af bellard
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 2c0262af bellard
 * Lesser General Public License for more details.
15 2c0262af bellard
 *
16 2c0262af bellard
 * You should have received a copy of the GNU Lesser General Public
17 8167ee88 Blue Swirl
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 2c0262af bellard
 */
19 7d3505c5 bellard
#include "config.h"
20 2c0262af bellard
#include "dyngen-exec.h"
21 2c0262af bellard
22 14ce26e7 bellard
/* XXX: factorize this mess */
23 14ce26e7 bellard
#ifdef TARGET_X86_64
24 14ce26e7 bellard
#define TARGET_LONG_BITS 64
25 14ce26e7 bellard
#else
26 14ce26e7 bellard
#define TARGET_LONG_BITS 32
27 14ce26e7 bellard
#endif
28 14ce26e7 bellard
29 d785e6be bellard
#include "cpu-defs.h"
30 d785e6be bellard
31 2c0262af bellard
register struct CPUX86State *env asm(AREG0);
32 14ce26e7 bellard
33 7d99a001 blueswir1
#include "qemu-common.h"
34 79383c9c blueswir1
#include "qemu-log.h"
35 2c0262af bellard
36 2c0262af bellard
#define EAX (env->regs[R_EAX])
37 2c0262af bellard
#define ECX (env->regs[R_ECX])
38 2c0262af bellard
#define EDX (env->regs[R_EDX])
39 2c0262af bellard
#define EBX (env->regs[R_EBX])
40 2c0262af bellard
#define ESP (env->regs[R_ESP])
41 2c0262af bellard
#define EBP (env->regs[R_EBP])
42 2c0262af bellard
#define ESI (env->regs[R_ESI])
43 2c0262af bellard
#define EDI (env->regs[R_EDI])
44 1e4840bf bellard
#define EIP (env->eip)
45 2c0262af bellard
#define DF  (env->df)
46 2c0262af bellard
47 2c0262af bellard
#define CC_SRC (env->cc_src)
48 2c0262af bellard
#define CC_DST (env->cc_dst)
49 2c0262af bellard
#define CC_OP  (env->cc_op)
50 2c0262af bellard
51 2c0262af bellard
/* float macros */
52 2c0262af bellard
#define FT0    (env->ft0)
53 664e0f19 bellard
#define ST0    (env->fpregs[env->fpstt].d)
54 664e0f19 bellard
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
55 2c0262af bellard
#define ST1    ST(1)
56 2c0262af bellard
57 2c0262af bellard
#include "cpu.h"
58 2c0262af bellard
#include "exec-all.h"
59 2c0262af bellard
60 d9957a8b blueswir1
/* op_helper.c */
61 5fafdf24 ths
void do_interrupt(int intno, int is_int, int error_code,
62 14ce26e7 bellard
                  target_ulong next_eip, int is_hw);
63 5fafdf24 ths
void do_interrupt_user(int intno, int is_int, int error_code,
64 14ce26e7 bellard
                       target_ulong next_eip);
65 a5e50b26 malc
void QEMU_NORETURN raise_exception_err(int exception_index, int error_code);
66 a5e50b26 malc
void QEMU_NORETURN raise_exception(int exception_index);
67 3b21e03e bellard
void do_smm_enter(void);
68 2c0262af bellard
69 b6abf97d bellard
/* n must be a constant to be efficient */
70 b6abf97d bellard
static inline target_long lshift(target_long x, int n)
71 b6abf97d bellard
{
72 b6abf97d bellard
    if (n >= 0)
73 b6abf97d bellard
        return x << n;
74 b6abf97d bellard
    else
75 b6abf97d bellard
        return x >> (-n);
76 b6abf97d bellard
}
77 b6abf97d bellard
78 57fec1fe bellard
#include "helper.h"
79 57fec1fe bellard
80 b8b6a50b bellard
static inline void svm_check_intercept(uint32_t type)
81 b8b6a50b bellard
{
82 b8b6a50b bellard
    helper_svm_check_intercept_param(type, 0);
83 b8b6a50b bellard
}
84 3e25f951 bellard
85 9951bf39 bellard
#if !defined(CONFIG_USER_ONLY)
86 9951bf39 bellard
87 a9049a07 bellard
#include "softmmu_exec.h"
88 9951bf39 bellard
89 9951bf39 bellard
#endif /* !defined(CONFIG_USER_ONLY) */
90 9951bf39 bellard
91 2c0262af bellard
#ifdef USE_X86LDOUBLE
92 2c0262af bellard
/* use long double functions */
93 7a0e1f41 bellard
#define floatx_to_int32 floatx80_to_int32
94 7a0e1f41 bellard
#define floatx_to_int64 floatx80_to_int64
95 465e9838 bellard
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
96 465e9838 bellard
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
97 19e6c4b8 bellard
#define int32_to_floatx int32_to_floatx80
98 19e6c4b8 bellard
#define int64_to_floatx int64_to_floatx80
99 19e6c4b8 bellard
#define float32_to_floatx float32_to_floatx80
100 19e6c4b8 bellard
#define float64_to_floatx float64_to_floatx80
101 19e6c4b8 bellard
#define floatx_to_float32 floatx80_to_float32
102 19e6c4b8 bellard
#define floatx_to_float64 floatx80_to_float64
103 7a0e1f41 bellard
#define floatx_abs floatx80_abs
104 7a0e1f41 bellard
#define floatx_chs floatx80_chs
105 7a0e1f41 bellard
#define floatx_round_to_int floatx80_round_to_int
106 8422b113 bellard
#define floatx_compare floatx80_compare
107 8422b113 bellard
#define floatx_compare_quiet floatx80_compare_quiet
108 7d3505c5 bellard
#else
109 7a0e1f41 bellard
#define floatx_to_int32 float64_to_int32
110 7a0e1f41 bellard
#define floatx_to_int64 float64_to_int64
111 465e9838 bellard
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
112 465e9838 bellard
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
113 19e6c4b8 bellard
#define int32_to_floatx int32_to_float64
114 19e6c4b8 bellard
#define int64_to_floatx int64_to_float64
115 19e6c4b8 bellard
#define float32_to_floatx float32_to_float64
116 19e6c4b8 bellard
#define float64_to_floatx(x, e) (x)
117 19e6c4b8 bellard
#define floatx_to_float32 float64_to_float32
118 19e6c4b8 bellard
#define floatx_to_float64(x, e) (x)
119 7a0e1f41 bellard
#define floatx_abs float64_abs
120 7a0e1f41 bellard
#define floatx_chs float64_chs
121 7a0e1f41 bellard
#define floatx_round_to_int float64_round_to_int
122 8422b113 bellard
#define floatx_compare float64_compare
123 8422b113 bellard
#define floatx_compare_quiet float64_compare_quiet
124 7d3505c5 bellard
#endif
125 7a0e1f41 bellard
126 2c0262af bellard
#define RC_MASK         0xc00
127 2c0262af bellard
#define RC_NEAR                0x000
128 2c0262af bellard
#define RC_DOWN                0x400
129 2c0262af bellard
#define RC_UP                0x800
130 2c0262af bellard
#define RC_CHOP                0xc00
131 2c0262af bellard
132 2c0262af bellard
#define MAXTAN 9223372036854775808.0
133 2c0262af bellard
134 2c0262af bellard
#ifdef USE_X86LDOUBLE
135 2c0262af bellard
136 2c0262af bellard
/* only for x86 */
137 2c0262af bellard
typedef union {
138 2c0262af bellard
    long double d;
139 2c0262af bellard
    struct {
140 2c0262af bellard
        unsigned long long lower;
141 2c0262af bellard
        unsigned short upper;
142 2c0262af bellard
    } l;
143 2c0262af bellard
} CPU86_LDoubleU;
144 2c0262af bellard
145 2c0262af bellard
/* the following deal with x86 long double-precision numbers */
146 2c0262af bellard
#define MAXEXPD 0x7fff
147 2c0262af bellard
#define EXPBIAS 16383
148 2c0262af bellard
#define EXPD(fp)        (fp.l.upper & 0x7fff)
149 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
150 2c0262af bellard
#define MANTD(fp)       (fp.l.lower)
151 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
152 2c0262af bellard
153 2c0262af bellard
#else
154 2c0262af bellard
155 2c0262af bellard
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
156 2c0262af bellard
typedef union {
157 2c0262af bellard
    double d;
158 e2542fe2 Juan Quintela
#if !defined(HOST_WORDS_BIGENDIAN) && !defined(__arm__)
159 2c0262af bellard
    struct {
160 2c0262af bellard
        uint32_t lower;
161 2c0262af bellard
        int32_t upper;
162 2c0262af bellard
    } l;
163 2c0262af bellard
#else
164 2c0262af bellard
    struct {
165 2c0262af bellard
        int32_t upper;
166 2c0262af bellard
        uint32_t lower;
167 2c0262af bellard
    } l;
168 2c0262af bellard
#endif
169 2c0262af bellard
#ifndef __arm__
170 2c0262af bellard
    int64_t ll;
171 2c0262af bellard
#endif
172 2c0262af bellard
} CPU86_LDoubleU;
173 2c0262af bellard
174 2c0262af bellard
/* the following deal with IEEE double-precision numbers */
175 2c0262af bellard
#define MAXEXPD 0x7ff
176 2c0262af bellard
#define EXPBIAS 1023
177 2c0262af bellard
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
178 2c0262af bellard
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
179 2c0262af bellard
#ifdef __arm__
180 2c0262af bellard
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
181 2c0262af bellard
#else
182 2c0262af bellard
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
183 2c0262af bellard
#endif
184 2c0262af bellard
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
185 2c0262af bellard
#endif
186 2c0262af bellard
187 2c0262af bellard
static inline void fpush(void)
188 2c0262af bellard
{
189 2c0262af bellard
    env->fpstt = (env->fpstt - 1) & 7;
190 2c0262af bellard
    env->fptags[env->fpstt] = 0; /* validate stack entry */
191 2c0262af bellard
}
192 2c0262af bellard
193 2c0262af bellard
static inline void fpop(void)
194 2c0262af bellard
{
195 2c0262af bellard
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
196 2c0262af bellard
    env->fpstt = (env->fpstt + 1) & 7;
197 2c0262af bellard
}
198 2c0262af bellard
199 2c0262af bellard
#ifndef USE_X86LDOUBLE
200 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
201 2c0262af bellard
{
202 2c0262af bellard
    CPU86_LDoubleU temp;
203 2c0262af bellard
    int upper, e;
204 2c0262af bellard
    uint64_t ll;
205 2c0262af bellard
206 2c0262af bellard
    /* mantissa */
207 2c0262af bellard
    upper = lduw(ptr + 8);
208 2c0262af bellard
    /* XXX: handle overflow ? */
209 2c0262af bellard
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
210 2c0262af bellard
    e |= (upper >> 4) & 0x800; /* sign */
211 2c0262af bellard
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
212 2c0262af bellard
#ifdef __arm__
213 2c0262af bellard
    temp.l.upper = (e << 20) | (ll >> 32);
214 2c0262af bellard
    temp.l.lower = ll;
215 2c0262af bellard
#else
216 2c0262af bellard
    temp.ll = ll | ((uint64_t)e << 52);
217 2c0262af bellard
#endif
218 2c0262af bellard
    return temp.d;
219 2c0262af bellard
}
220 2c0262af bellard
221 664e0f19 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
222 2c0262af bellard
{
223 2c0262af bellard
    CPU86_LDoubleU temp;
224 2c0262af bellard
    int e;
225 2c0262af bellard
226 2c0262af bellard
    temp.d = f;
227 2c0262af bellard
    /* mantissa */
228 2c0262af bellard
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
229 2c0262af bellard
    /* exponent + sign */
230 2c0262af bellard
    e = EXPD(temp) - EXPBIAS + 16383;
231 2c0262af bellard
    e |= SIGND(temp) >> 16;
232 2c0262af bellard
    stw(ptr + 8, e);
233 2c0262af bellard
}
234 9951bf39 bellard
#else
235 9951bf39 bellard
236 9951bf39 bellard
/* we use memory access macros */
237 9951bf39 bellard
238 14ce26e7 bellard
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
239 9951bf39 bellard
{
240 9951bf39 bellard
    CPU86_LDoubleU temp;
241 9951bf39 bellard
242 9951bf39 bellard
    temp.l.lower = ldq(ptr);
243 9951bf39 bellard
    temp.l.upper = lduw(ptr + 8);
244 9951bf39 bellard
    return temp.d;
245 9951bf39 bellard
}
246 9951bf39 bellard
247 14ce26e7 bellard
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
248 9951bf39 bellard
{
249 9951bf39 bellard
    CPU86_LDoubleU temp;
250 3b46e624 ths
251 9951bf39 bellard
    temp.d = f;
252 9951bf39 bellard
    stq(ptr, temp.l.lower);
253 9951bf39 bellard
    stw(ptr + 8, temp.l.upper);
254 9951bf39 bellard
}
255 9951bf39 bellard
256 9951bf39 bellard
#endif /* USE_X86LDOUBLE */
257 2c0262af bellard
258 2ee73ac3 bellard
#define FPUS_IE (1 << 0)
259 2ee73ac3 bellard
#define FPUS_DE (1 << 1)
260 2ee73ac3 bellard
#define FPUS_ZE (1 << 2)
261 2ee73ac3 bellard
#define FPUS_OE (1 << 3)
262 2ee73ac3 bellard
#define FPUS_UE (1 << 4)
263 2ee73ac3 bellard
#define FPUS_PE (1 << 5)
264 2ee73ac3 bellard
#define FPUS_SF (1 << 6)
265 2ee73ac3 bellard
#define FPUS_SE (1 << 7)
266 2ee73ac3 bellard
#define FPUS_B  (1 << 15)
267 2ee73ac3 bellard
268 2ee73ac3 bellard
#define FPUC_EM 0x3f
269 2ee73ac3 bellard
270 2c0262af bellard
static inline uint32_t compute_eflags(void)
271 2c0262af bellard
{
272 a7812ae4 pbrook
    return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
273 2c0262af bellard
}
274 2c0262af bellard
275 2c0262af bellard
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
276 2c0262af bellard
static inline void load_eflags(int eflags, int update_mask)
277 2c0262af bellard
{
278 2c0262af bellard
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
279 2c0262af bellard
    DF = 1 - (2 * ((eflags >> 10) & 1));
280 5fafdf24 ths
    env->eflags = (env->eflags & ~update_mask) |
281 093f8f06 bellard
        (eflags & update_mask) | 0x2;
282 2c0262af bellard
}
283 2c0262af bellard
284 0d1a29f9 bellard
static inline void env_to_regs(void)
285 0d1a29f9 bellard
{
286 0d1a29f9 bellard
#ifdef reg_EAX
287 0d1a29f9 bellard
    EAX = env->regs[R_EAX];
288 0d1a29f9 bellard
#endif
289 0d1a29f9 bellard
#ifdef reg_ECX
290 0d1a29f9 bellard
    ECX = env->regs[R_ECX];
291 0d1a29f9 bellard
#endif
292 0d1a29f9 bellard
#ifdef reg_EDX
293 0d1a29f9 bellard
    EDX = env->regs[R_EDX];
294 0d1a29f9 bellard
#endif
295 0d1a29f9 bellard
#ifdef reg_EBX
296 0d1a29f9 bellard
    EBX = env->regs[R_EBX];
297 0d1a29f9 bellard
#endif
298 0d1a29f9 bellard
#ifdef reg_ESP
299 0d1a29f9 bellard
    ESP = env->regs[R_ESP];
300 0d1a29f9 bellard
#endif
301 0d1a29f9 bellard
#ifdef reg_EBP
302 0d1a29f9 bellard
    EBP = env->regs[R_EBP];
303 0d1a29f9 bellard
#endif
304 0d1a29f9 bellard
#ifdef reg_ESI
305 0d1a29f9 bellard
    ESI = env->regs[R_ESI];
306 0d1a29f9 bellard
#endif
307 0d1a29f9 bellard
#ifdef reg_EDI
308 0d1a29f9 bellard
    EDI = env->regs[R_EDI];
309 0d1a29f9 bellard
#endif
310 0d1a29f9 bellard
}
311 0d1a29f9 bellard
312 0d1a29f9 bellard
static inline void regs_to_env(void)
313 0d1a29f9 bellard
{
314 0d1a29f9 bellard
#ifdef reg_EAX
315 0d1a29f9 bellard
    env->regs[R_EAX] = EAX;
316 0d1a29f9 bellard
#endif
317 0d1a29f9 bellard
#ifdef reg_ECX
318 0d1a29f9 bellard
    env->regs[R_ECX] = ECX;
319 0d1a29f9 bellard
#endif
320 0d1a29f9 bellard
#ifdef reg_EDX
321 0d1a29f9 bellard
    env->regs[R_EDX] = EDX;
322 0d1a29f9 bellard
#endif
323 0d1a29f9 bellard
#ifdef reg_EBX
324 0d1a29f9 bellard
    env->regs[R_EBX] = EBX;
325 0d1a29f9 bellard
#endif
326 0d1a29f9 bellard
#ifdef reg_ESP
327 0d1a29f9 bellard
    env->regs[R_ESP] = ESP;
328 0d1a29f9 bellard
#endif
329 0d1a29f9 bellard
#ifdef reg_EBP
330 0d1a29f9 bellard
    env->regs[R_EBP] = EBP;
331 0d1a29f9 bellard
#endif
332 0d1a29f9 bellard
#ifdef reg_ESI
333 0d1a29f9 bellard
    env->regs[R_ESI] = ESI;
334 0d1a29f9 bellard
#endif
335 0d1a29f9 bellard
#ifdef reg_EDI
336 0d1a29f9 bellard
    env->regs[R_EDI] = EDI;
337 0d1a29f9 bellard
#endif
338 0d1a29f9 bellard
}
339 bfed01fc ths
340 6a4955a8 aliguori
static inline int cpu_has_work(CPUState *env)
341 6a4955a8 aliguori
{
342 6a4955a8 aliguori
    int work;
343 6a4955a8 aliguori
344 6a4955a8 aliguori
    work = (env->interrupt_request & CPU_INTERRUPT_HARD) &&
345 6a4955a8 aliguori
           (env->eflags & IF_MASK);
346 6a4955a8 aliguori
    work |= env->interrupt_request & CPU_INTERRUPT_NMI;
347 b09ea7d5 Gleb Natapov
    work |= env->interrupt_request & CPU_INTERRUPT_INIT;
348 b09ea7d5 Gleb Natapov
    work |= env->interrupt_request & CPU_INTERRUPT_SIPI;
349 6a4955a8 aliguori
350 6a4955a8 aliguori
    return work;
351 6a4955a8 aliguori
}
352 6a4955a8 aliguori
353 bfed01fc ths
static inline int cpu_halted(CPUState *env) {
354 bfed01fc ths
    /* handle exit of HALTED state */
355 ce5232c5 bellard
    if (!env->halted)
356 bfed01fc ths
        return 0;
357 bfed01fc ths
    /* disable halt condition */
358 6a4955a8 aliguori
    if (cpu_has_work(env)) {
359 ce5232c5 bellard
        env->halted = 0;
360 bfed01fc ths
        return 0;
361 bfed01fc ths
    }
362 bfed01fc ths
    return EXCP_HALTED;
363 bfed01fc ths
}
364 0573fbfc ths
365 5efc27bb bellard
/* load efer and update the corresponding hflags. XXX: do consistency
366 5efc27bb bellard
   checks with cpuid bits ? */
367 5efc27bb bellard
static inline void cpu_load_efer(CPUState *env, uint64_t val)
368 5efc27bb bellard
{
369 5efc27bb bellard
    env->efer = val;
370 5efc27bb bellard
    env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
371 5efc27bb bellard
    if (env->efer & MSR_EFER_LMA)
372 5efc27bb bellard
        env->hflags |= HF_LMA_MASK;
373 5efc27bb bellard
    if (env->efer & MSR_EFER_SVME)
374 5efc27bb bellard
        env->hflags |= HF_SVME_MASK;
375 5efc27bb bellard
}