Statistics
| Branch: | Revision:

root / hw / intel-hda.c @ af93485c

History | View | Annotate | Download (38 kB)

1
/*
2
 * Copyright (C) 2010 Red Hat, Inc.
3
 *
4
 * written by Gerd Hoffmann <kraxel@redhat.com>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 or
9
 * (at your option) version 3 of the License.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include "hw.h"
21
#include "pci.h"
22
#include "qemu-timer.h"
23
#include "audiodev.h"
24
#include "intel-hda.h"
25
#include "intel-hda-defs.h"
26

    
27
/* --------------------------------------------------------------------- */
28
/* hda bus                                                               */
29

    
30
static struct BusInfo hda_codec_bus_info = {
31
    .name      = "HDA",
32
    .size      = sizeof(HDACodecBus),
33
    .props     = (Property[]) {
34
        DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
35
        DEFINE_PROP_END_OF_LIST()
36
    }
37
};
38

    
39
void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
40
                        hda_codec_response_func response,
41
                        hda_codec_xfer_func xfer)
42
{
43
    qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
44
    bus->response = response;
45
    bus->xfer = xfer;
46
}
47

    
48
static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
49
{
50
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
51
    HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
52
    HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
53

    
54
    dev->info = info;
55
    if (dev->cad == -1) {
56
        dev->cad = bus->next_cad;
57
    }
58
    if (dev->cad > 15)
59
        return -1;
60
    bus->next_cad = dev->cad + 1;
61
    return info->init(dev);
62
}
63

    
64
static int hda_codec_dev_exit(DeviceState *qdev)
65
{
66
    HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
67

    
68
    if (dev->info->exit) {
69
        dev->info->exit(dev);
70
    }
71
    return 0;
72
}
73

    
74
void hda_codec_register(HDACodecDeviceInfo *info)
75
{
76
    info->qdev.init = hda_codec_dev_init;
77
    info->qdev.exit = hda_codec_dev_exit;
78
    info->qdev.bus_info = &hda_codec_bus_info;
79
    qdev_register(&info->qdev);
80
}
81

    
82
HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
83
{
84
    DeviceState *qdev;
85
    HDACodecDevice *cdev;
86

    
87
    QLIST_FOREACH(qdev, &bus->qbus.children, sibling) {
88
        cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
89
        if (cdev->cad == cad) {
90
            return cdev;
91
        }
92
    }
93
    return NULL;
94
}
95

    
96
void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
97
{
98
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
99
    bus->response(dev, solicited, response);
100
}
101

    
102
bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
103
                    uint8_t *buf, uint32_t len)
104
{
105
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
106
    return bus->xfer(dev, stnr, output, buf, len);
107
}
108

    
109
/* --------------------------------------------------------------------- */
110
/* intel hda emulation                                                   */
111

    
112
typedef struct IntelHDAStream IntelHDAStream;
113
typedef struct IntelHDAState IntelHDAState;
114
typedef struct IntelHDAReg IntelHDAReg;
115

    
116
typedef struct bpl {
117
    uint64_t addr;
118
    uint32_t len;
119
    uint32_t flags;
120
} bpl;
121

    
122
struct IntelHDAStream {
123
    /* registers */
124
    uint32_t ctl;
125
    uint32_t lpib;
126
    uint32_t cbl;
127
    uint32_t lvi;
128
    uint32_t fmt;
129
    uint32_t bdlp_lbase;
130
    uint32_t bdlp_ubase;
131

    
132
    /* state */
133
    bpl      *bpl;
134
    uint32_t bentries;
135
    uint32_t bsize, be, bp;
136
};
137

    
138
struct IntelHDAState {
139
    PCIDevice pci;
140
    const char *name;
141
    HDACodecBus codecs;
142

    
143
    /* registers */
144
    uint32_t g_ctl;
145
    uint32_t wake_en;
146
    uint32_t state_sts;
147
    uint32_t int_ctl;
148
    uint32_t int_sts;
149
    uint32_t wall_clk;
150

    
151
    uint32_t corb_lbase;
152
    uint32_t corb_ubase;
153
    uint32_t corb_rp;
154
    uint32_t corb_wp;
155
    uint32_t corb_ctl;
156
    uint32_t corb_sts;
157
    uint32_t corb_size;
158

    
159
    uint32_t rirb_lbase;
160
    uint32_t rirb_ubase;
161
    uint32_t rirb_wp;
162
    uint32_t rirb_cnt;
163
    uint32_t rirb_ctl;
164
    uint32_t rirb_sts;
165
    uint32_t rirb_size;
166

    
167
    uint32_t dp_lbase;
168
    uint32_t dp_ubase;
169

    
170
    uint32_t icw;
171
    uint32_t irr;
172
    uint32_t ics;
173

    
174
    /* streams */
175
    IntelHDAStream st[8];
176

    
177
    /* state */
178
    int mmio_addr;
179
    uint32_t rirb_count;
180
    int64_t wall_base_ns;
181

    
182
    /* debug logging */
183
    const IntelHDAReg *last_reg;
184
    uint32_t last_val;
185
    uint32_t last_write;
186
    uint32_t last_sec;
187
    uint32_t repeat_count;
188

    
189
    /* properties */
190
    uint32_t debug;
191
};
192

    
193
struct IntelHDAReg {
194
    const char *name;      /* register name */
195
    uint32_t   size;       /* size in bytes */
196
    uint32_t   reset;      /* reset value */
197
    uint32_t   wmask;      /* write mask */
198
    uint32_t   wclear;     /* write 1 to clear bits */
199
    uint32_t   offset;     /* location in IntelHDAState */
200
    uint32_t   shift;      /* byte access entries for dwords */
201
    uint32_t   stream;
202
    void       (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
203
    void       (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
204
};
205

    
206
static void intel_hda_reset(DeviceState *dev);
207

    
208
/* --------------------------------------------------------------------- */
209

    
210
static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
211
{
212
    target_phys_addr_t addr;
213

    
214
#if TARGET_PHYS_ADDR_BITS == 32
215
    addr = lbase;
216
#else
217
    addr = ubase;
218
    addr <<= 32;
219
    addr |= lbase;
220
#endif
221
    return addr;
222
}
223

    
224
static void stl_phys_le(target_phys_addr_t addr, uint32_t value)
225
{
226
    uint32_t value_le = cpu_to_le32(value);
227
    cpu_physical_memory_write(addr, (uint8_t*)(&value_le), sizeof(value_le));
228
}
229

    
230
static uint32_t ldl_phys_le(target_phys_addr_t addr)
231
{
232
    uint32_t value_le;
233
    cpu_physical_memory_read(addr, (uint8_t*)(&value_le), sizeof(value_le));
234
    return le32_to_cpu(value_le);
235
}
236

    
237
static void intel_hda_update_int_sts(IntelHDAState *d)
238
{
239
    uint32_t sts = 0;
240
    uint32_t i;
241

    
242
    /* update controller status */
243
    if (d->rirb_sts & ICH6_RBSTS_IRQ) {
244
        sts |= (1 << 30);
245
    }
246
    if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
247
        sts |= (1 << 30);
248
    }
249
    if (d->state_sts & d->wake_en) {
250
        sts |= (1 << 30);
251
    }
252

    
253
    /* update stream status */
254
    for (i = 0; i < 8; i++) {
255
        /* buffer completion interrupt */
256
        if (d->st[i].ctl & (1 << 26)) {
257
            sts |= (1 << i);
258
        }
259
    }
260

    
261
    /* update global status */
262
    if (sts & d->int_ctl) {
263
        sts |= (1 << 31);
264
    }
265

    
266
    d->int_sts = sts;
267
}
268

    
269
static void intel_hda_update_irq(IntelHDAState *d)
270
{
271
    int level;
272

    
273
    intel_hda_update_int_sts(d);
274
    if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
275
        level = 1;
276
    } else {
277
        level = 0;
278
    }
279
    dprint(d, 2, "%s: level %d\n", __FUNCTION__, level);
280
    qemu_set_irq(d->pci.irq[0], level);
281
}
282

    
283
static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
284
{
285
    uint32_t cad, nid, data;
286
    HDACodecDevice *codec;
287

    
288
    cad = (verb >> 28) & 0x0f;
289
    if (verb & (1 << 27)) {
290
        /* indirect node addressing, not specified in HDA 1.0 */
291
        dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
292
        return -1;
293
    }
294
    nid = (verb >> 20) & 0x7f;
295
    data = verb & 0xfffff;
296

    
297
    codec = hda_codec_find(&d->codecs, cad);
298
    if (codec == NULL) {
299
        dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
300
        return -1;
301
    }
302
    codec->info->command(codec, nid, data);
303
    return 0;
304
}
305

    
306
static void intel_hda_corb_run(IntelHDAState *d)
307
{
308
    target_phys_addr_t addr;
309
    uint32_t rp, verb;
310

    
311
    if (d->ics & ICH6_IRS_BUSY) {
312
        dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
313
        intel_hda_send_command(d, d->icw);
314
        return;
315
    }
316

    
317
    for (;;) {
318
        if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
319
            dprint(d, 2, "%s: !run\n", __FUNCTION__);
320
            return;
321
        }
322
        if ((d->corb_rp & 0xff) == d->corb_wp) {
323
            dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
324
            return;
325
        }
326
        if (d->rirb_count == d->rirb_cnt) {
327
            dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
328
            return;
329
        }
330

    
331
        rp = (d->corb_rp + 1) & 0xff;
332
        addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
333
        verb = ldl_phys_le(addr + 4*rp);
334
        d->corb_rp = rp;
335

    
336
        dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
337
        intel_hda_send_command(d, verb);
338
    }
339
}
340

    
341
static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
342
{
343
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
344
    IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
345
    target_phys_addr_t addr;
346
    uint32_t wp, ex;
347

    
348
    if (d->ics & ICH6_IRS_BUSY) {
349
        dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
350
               __FUNCTION__, response, dev->cad);
351
        d->irr = response;
352
        d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
353
        d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
354
        return;
355
    }
356

    
357
    if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
358
        dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
359
        return;
360
    }
361

    
362
    ex = (solicited ? 0 : (1 << 4)) | dev->cad;
363
    wp = (d->rirb_wp + 1) & 0xff;
364
    addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
365
    stl_phys_le(addr + 8*wp, response);
366
    stl_phys_le(addr + 8*wp + 4, ex);
367
    d->rirb_wp = wp;
368

    
369
    dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
370
           __FUNCTION__, wp, response, ex);
371

    
372
    d->rirb_count++;
373
    if (d->rirb_count == d->rirb_cnt) {
374
        dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
375
        if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
376
            d->rirb_sts |= ICH6_RBSTS_IRQ;
377
            intel_hda_update_irq(d);
378
        }
379
    } else if ((d->corb_rp & 0xff) == d->corb_wp) {
380
        dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
381
               d->rirb_count, d->rirb_cnt);
382
        if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
383
            d->rirb_sts |= ICH6_RBSTS_IRQ;
384
            intel_hda_update_irq(d);
385
        }
386
    }
387
}
388

    
389
static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
390
                           uint8_t *buf, uint32_t len)
391
{
392
    HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
393
    IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
394
    IntelHDAStream *st = NULL;
395
    target_phys_addr_t addr;
396
    uint32_t s, copy, left;
397
    bool irq = false;
398

    
399
    for (s = 0; s < ARRAY_SIZE(d->st); s++) {
400
        if (stnr == ((d->st[s].ctl >> 20) & 0x0f)) {
401
            st = d->st + s;
402
            break;
403
        }
404
    }
405
    if (st == NULL) {
406
        return false;
407
    }
408
    if (st->bpl == NULL) {
409
        return false;
410
    }
411
    if (st->ctl & (1 << 26)) {
412
        /*
413
         * Wait with the next DMA xfer until the guest
414
         * has acked the buffer completion interrupt
415
         */
416
        return false;
417
    }
418

    
419
    left = len;
420
    while (left > 0) {
421
        copy = left;
422
        if (copy > st->bsize - st->lpib)
423
            copy = st->bsize - st->lpib;
424
        if (copy > st->bpl[st->be].len - st->bp)
425
            copy = st->bpl[st->be].len - st->bp;
426

    
427
        dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
428
               st->be, st->bp, st->bpl[st->be].len, copy);
429

    
430
        cpu_physical_memory_rw(st->bpl[st->be].addr + st->bp,
431
                               buf, copy, !output);
432
        st->lpib += copy;
433
        st->bp += copy;
434
        buf += copy;
435
        left -= copy;
436

    
437
        if (st->bpl[st->be].len == st->bp) {
438
            /* bpl entry filled */
439
            if (st->bpl[st->be].flags & 0x01) {
440
                irq = true;
441
            }
442
            st->bp = 0;
443
            st->be++;
444
            if (st->be == st->bentries) {
445
                /* bpl wrap around */
446
                st->be = 0;
447
                st->lpib = 0;
448
            }
449
        }
450
    }
451
    if (d->dp_lbase & 0x01) {
452
        addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
453
        stl_phys_le(addr + 8*s, st->lpib);
454
    }
455
    dprint(d, 3, "dma: --\n");
456

    
457
    if (irq) {
458
        st->ctl |= (1 << 26); /* buffer completion interrupt */
459
        intel_hda_update_irq(d);
460
    }
461
    return true;
462
}
463

    
464
static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
465
{
466
    target_phys_addr_t addr;
467
    uint8_t buf[16];
468
    uint32_t i;
469

    
470
    addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
471
    st->bentries = st->lvi +1;
472
    qemu_free(st->bpl);
473
    st->bpl = qemu_malloc(sizeof(bpl) * st->bentries);
474
    for (i = 0; i < st->bentries; i++, addr += 16) {
475
        cpu_physical_memory_read(addr, buf, 16);
476
        st->bpl[i].addr  = le64_to_cpu(*(uint64_t *)buf);
477
        st->bpl[i].len   = le32_to_cpu(*(uint32_t *)(buf + 8));
478
        st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
479
        dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
480
               i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
481
    }
482

    
483
    st->bsize = st->cbl;
484
    st->lpib  = 0;
485
    st->be    = 0;
486
    st->bp    = 0;
487
}
488

    
489
static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running)
490
{
491
    DeviceState *qdev;
492
    HDACodecDevice *cdev;
493

    
494
    QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
495
        cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
496
        if (cdev->info->stream) {
497
            cdev->info->stream(cdev, stream, running);
498
        }
499
    }
500
}
501

    
502
/* --------------------------------------------------------------------- */
503

    
504
static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
505
{
506
    if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
507
        intel_hda_reset(&d->pci.qdev);
508
    }
509
}
510

    
511
static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
512
{
513
    intel_hda_update_irq(d);
514
}
515

    
516
static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
517
{
518
    intel_hda_update_irq(d);
519
}
520

    
521
static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
522
{
523
    int64_t ns;
524

    
525
    ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
526
    d->wall_clk = (uint32_t)(ns * 24 / 1000);  /* 24 MHz */
527
}
528

    
529
static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
530
{
531
    intel_hda_corb_run(d);
532
}
533

    
534
static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
535
{
536
    intel_hda_corb_run(d);
537
}
538

    
539
static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
540
{
541
    if (d->rirb_wp & ICH6_RIRBWP_RST) {
542
        d->rirb_wp = 0;
543
    }
544
}
545

    
546
static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
547
{
548
    intel_hda_update_irq(d);
549

    
550
    if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
551
        /* cleared ICH6_RBSTS_IRQ */
552
        d->rirb_count = 0;
553
        intel_hda_corb_run(d);
554
    }
555
}
556

    
557
static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
558
{
559
    if (d->ics & ICH6_IRS_BUSY) {
560
        intel_hda_corb_run(d);
561
    }
562
}
563

    
564
static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
565
{
566
    IntelHDAStream *st = d->st + reg->stream;
567

    
568
    if (st->ctl & 0x01) {
569
        /* reset */
570
        dprint(d, 1, "st #%d: reset\n", reg->stream);
571
        st->ctl = 0;
572
    }
573
    if ((st->ctl & 0x02) != (old & 0x02)) {
574
        uint32_t stnr = (st->ctl >> 20) & 0x0f;
575
        /* run bit flipped */
576
        if (st->ctl & 0x02) {
577
            /* start */
578
            dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
579
                   reg->stream, stnr, st->cbl);
580
            intel_hda_parse_bdl(d, st);
581
            intel_hda_notify_codecs(d, stnr, true);
582
        } else {
583
            /* stop */
584
            dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
585
            intel_hda_notify_codecs(d, stnr, false);
586
        }
587
    }
588
    intel_hda_update_irq(d);
589
}
590

    
591
/* --------------------------------------------------------------------- */
592

    
593
#define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
594

    
595
static const struct IntelHDAReg regtab[] = {
596
    /* global */
597
    [ ICH6_REG_GCAP ] = {
598
        .name     = "GCAP",
599
        .size     = 2,
600
        .reset    = 0x4401,
601
    },
602
    [ ICH6_REG_VMIN ] = {
603
        .name     = "VMIN",
604
        .size     = 1,
605
    },
606
    [ ICH6_REG_VMAJ ] = {
607
        .name     = "VMAJ",
608
        .size     = 1,
609
        .reset    = 1,
610
    },
611
    [ ICH6_REG_OUTPAY ] = {
612
        .name     = "OUTPAY",
613
        .size     = 2,
614
        .reset    = 0x3c,
615
    },
616
    [ ICH6_REG_INPAY ] = {
617
        .name     = "INPAY",
618
        .size     = 2,
619
        .reset    = 0x1d,
620
    },
621
    [ ICH6_REG_GCTL ] = {
622
        .name     = "GCTL",
623
        .size     = 4,
624
        .wmask    = 0x0103,
625
        .offset   = offsetof(IntelHDAState, g_ctl),
626
        .whandler = intel_hda_set_g_ctl,
627
    },
628
    [ ICH6_REG_WAKEEN ] = {
629
        .name     = "WAKEEN",
630
        .size     = 2,
631
        .wmask    = 0x3fff,
632
        .offset   = offsetof(IntelHDAState, wake_en),
633
    },
634
    [ ICH6_REG_STATESTS ] = {
635
        .name     = "STATESTS",
636
        .size     = 2,
637
        .wmask    = 0x3fff,
638
        .wclear   = 0x3fff,
639
        .offset   = offsetof(IntelHDAState, state_sts),
640
        .whandler = intel_hda_set_state_sts,
641
    },
642

    
643
    /* interrupts */
644
    [ ICH6_REG_INTCTL ] = {
645
        .name     = "INTCTL",
646
        .size     = 4,
647
        .wmask    = 0xc00000ff,
648
        .offset   = offsetof(IntelHDAState, int_ctl),
649
        .whandler = intel_hda_set_int_ctl,
650
    },
651
    [ ICH6_REG_INTSTS ] = {
652
        .name     = "INTSTS",
653
        .size     = 4,
654
        .wmask    = 0xc00000ff,
655
        .wclear   = 0xc00000ff,
656
        .offset   = offsetof(IntelHDAState, int_sts),
657
    },
658

    
659
    /* misc */
660
    [ ICH6_REG_WALLCLK ] = {
661
        .name     = "WALLCLK",
662
        .size     = 4,
663
        .offset   = offsetof(IntelHDAState, wall_clk),
664
        .rhandler = intel_hda_get_wall_clk,
665
    },
666
    [ ICH6_REG_WALLCLK + 0x2000 ] = {
667
        .name     = "WALLCLK(alias)",
668
        .size     = 4,
669
        .offset   = offsetof(IntelHDAState, wall_clk),
670
        .rhandler = intel_hda_get_wall_clk,
671
    },
672

    
673
    /* dma engine */
674
    [ ICH6_REG_CORBLBASE ] = {
675
        .name     = "CORBLBASE",
676
        .size     = 4,
677
        .wmask    = 0xffffff80,
678
        .offset   = offsetof(IntelHDAState, corb_lbase),
679
    },
680
    [ ICH6_REG_CORBUBASE ] = {
681
        .name     = "CORBUBASE",
682
        .size     = 4,
683
        .wmask    = 0xffffffff,
684
        .offset   = offsetof(IntelHDAState, corb_ubase),
685
    },
686
    [ ICH6_REG_CORBWP ] = {
687
        .name     = "CORBWP",
688
        .size     = 2,
689
        .wmask    = 0xff,
690
        .offset   = offsetof(IntelHDAState, corb_wp),
691
        .whandler = intel_hda_set_corb_wp,
692
    },
693
    [ ICH6_REG_CORBRP ] = {
694
        .name     = "CORBRP",
695
        .size     = 2,
696
        .wmask    = 0x80ff,
697
        .offset   = offsetof(IntelHDAState, corb_rp),
698
    },
699
    [ ICH6_REG_CORBCTL ] = {
700
        .name     = "CORBCTL",
701
        .size     = 1,
702
        .wmask    = 0x03,
703
        .offset   = offsetof(IntelHDAState, corb_ctl),
704
        .whandler = intel_hda_set_corb_ctl,
705
    },
706
    [ ICH6_REG_CORBSTS ] = {
707
        .name     = "CORBSTS",
708
        .size     = 1,
709
        .wmask    = 0x01,
710
        .wclear   = 0x01,
711
        .offset   = offsetof(IntelHDAState, corb_sts),
712
    },
713
    [ ICH6_REG_CORBSIZE ] = {
714
        .name     = "CORBSIZE",
715
        .size     = 1,
716
        .reset    = 0x42,
717
        .offset   = offsetof(IntelHDAState, corb_size),
718
    },
719
    [ ICH6_REG_RIRBLBASE ] = {
720
        .name     = "RIRBLBASE",
721
        .size     = 4,
722
        .wmask    = 0xffffff80,
723
        .offset   = offsetof(IntelHDAState, rirb_lbase),
724
    },
725
    [ ICH6_REG_RIRBUBASE ] = {
726
        .name     = "RIRBUBASE",
727
        .size     = 4,
728
        .wmask    = 0xffffffff,
729
        .offset   = offsetof(IntelHDAState, rirb_ubase),
730
    },
731
    [ ICH6_REG_RIRBWP ] = {
732
        .name     = "RIRBWP",
733
        .size     = 2,
734
        .wmask    = 0x8000,
735
        .offset   = offsetof(IntelHDAState, rirb_wp),
736
        .whandler = intel_hda_set_rirb_wp,
737
    },
738
    [ ICH6_REG_RINTCNT ] = {
739
        .name     = "RINTCNT",
740
        .size     = 2,
741
        .wmask    = 0xff,
742
        .offset   = offsetof(IntelHDAState, rirb_cnt),
743
    },
744
    [ ICH6_REG_RIRBCTL ] = {
745
        .name     = "RIRBCTL",
746
        .size     = 1,
747
        .wmask    = 0x07,
748
        .offset   = offsetof(IntelHDAState, rirb_ctl),
749
    },
750
    [ ICH6_REG_RIRBSTS ] = {
751
        .name     = "RIRBSTS",
752
        .size     = 1,
753
        .wmask    = 0x05,
754
        .wclear   = 0x05,
755
        .offset   = offsetof(IntelHDAState, rirb_sts),
756
        .whandler = intel_hda_set_rirb_sts,
757
    },
758
    [ ICH6_REG_RIRBSIZE ] = {
759
        .name     = "RIRBSIZE",
760
        .size     = 1,
761
        .reset    = 0x42,
762
        .offset   = offsetof(IntelHDAState, rirb_size),
763
    },
764

    
765
    [ ICH6_REG_DPLBASE ] = {
766
        .name     = "DPLBASE",
767
        .size     = 4,
768
        .wmask    = 0xffffff81,
769
        .offset   = offsetof(IntelHDAState, dp_lbase),
770
    },
771
    [ ICH6_REG_DPUBASE ] = {
772
        .name     = "DPUBASE",
773
        .size     = 4,
774
        .wmask    = 0xffffffff,
775
        .offset   = offsetof(IntelHDAState, dp_ubase),
776
    },
777

    
778
    [ ICH6_REG_IC ] = {
779
        .name     = "ICW",
780
        .size     = 4,
781
        .wmask    = 0xffffffff,
782
        .offset   = offsetof(IntelHDAState, icw),
783
    },
784
    [ ICH6_REG_IR ] = {
785
        .name     = "IRR",
786
        .size     = 4,
787
        .offset   = offsetof(IntelHDAState, irr),
788
    },
789
    [ ICH6_REG_IRS ] = {
790
        .name     = "ICS",
791
        .size     = 2,
792
        .wmask    = 0x0003,
793
        .wclear   = 0x0002,
794
        .offset   = offsetof(IntelHDAState, ics),
795
        .whandler = intel_hda_set_ics,
796
    },
797

    
798
#define HDA_STREAM(_t, _i)                                            \
799
    [ ST_REG(_i, ICH6_REG_SD_CTL) ] = {                               \
800
        .stream   = _i,                                               \
801
        .name     = _t stringify(_i) " CTL",                          \
802
        .size     = 4,                                                \
803
        .wmask    = 0x1cff001f,                                       \
804
        .offset   = offsetof(IntelHDAState, st[_i].ctl),              \
805
        .whandler = intel_hda_set_st_ctl,                             \
806
    },                                                                \
807
    [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = {                            \
808
        .stream   = _i,                                               \
809
        .name     = _t stringify(_i) " CTL(stnr)",                    \
810
        .size     = 1,                                                \
811
        .shift    = 16,                                               \
812
        .wmask    = 0x00ff0000,                                       \
813
        .offset   = offsetof(IntelHDAState, st[_i].ctl),              \
814
        .whandler = intel_hda_set_st_ctl,                             \
815
    },                                                                \
816
    [ ST_REG(_i, ICH6_REG_SD_STS)] = {                                \
817
        .stream   = _i,                                               \
818
        .name     = _t stringify(_i) " CTL(sts)",                     \
819
        .size     = 1,                                                \
820
        .shift    = 24,                                               \
821
        .wmask    = 0x1c000000,                                       \
822
        .wclear   = 0x1c000000,                                       \
823
        .offset   = offsetof(IntelHDAState, st[_i].ctl),              \
824
        .whandler = intel_hda_set_st_ctl,                             \
825
    },                                                                \
826
    [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = {                              \
827
        .stream   = _i,                                               \
828
        .name     = _t stringify(_i) " LPIB",                         \
829
        .size     = 4,                                                \
830
        .offset   = offsetof(IntelHDAState, st[_i].lpib),             \
831
    },                                                                \
832
    [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = {                     \
833
        .stream   = _i,                                               \
834
        .name     = _t stringify(_i) " LPIB(alias)",                  \
835
        .size     = 4,                                                \
836
        .offset   = offsetof(IntelHDAState, st[_i].lpib),             \
837
    },                                                                \
838
    [ ST_REG(_i, ICH6_REG_SD_CBL) ] = {                               \
839
        .stream   = _i,                                               \
840
        .name     = _t stringify(_i) " CBL",                          \
841
        .size     = 4,                                                \
842
        .wmask    = 0xffffffff,                                       \
843
        .offset   = offsetof(IntelHDAState, st[_i].cbl),              \
844
    },                                                                \
845
    [ ST_REG(_i, ICH6_REG_SD_LVI) ] = {                               \
846
        .stream   = _i,                                               \
847
        .name     = _t stringify(_i) " LVI",                          \
848
        .size     = 2,                                                \
849
        .wmask    = 0x00ff,                                           \
850
        .offset   = offsetof(IntelHDAState, st[_i].lvi),              \
851
    },                                                                \
852
    [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = {                          \
853
        .stream   = _i,                                               \
854
        .name     = _t stringify(_i) " FIFOS",                        \
855
        .size     = 2,                                                \
856
        .reset    = HDA_BUFFER_SIZE,                                  \
857
    },                                                                \
858
    [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = {                            \
859
        .stream   = _i,                                               \
860
        .name     = _t stringify(_i) " FMT",                          \
861
        .size     = 2,                                                \
862
        .wmask    = 0x7f7f,                                           \
863
        .offset   = offsetof(IntelHDAState, st[_i].fmt),              \
864
    },                                                                \
865
    [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = {                             \
866
        .stream   = _i,                                               \
867
        .name     = _t stringify(_i) " BDLPL",                        \
868
        .size     = 4,                                                \
869
        .wmask    = 0xffffff80,                                       \
870
        .offset   = offsetof(IntelHDAState, st[_i].bdlp_lbase),       \
871
    },                                                                \
872
    [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = {                             \
873
        .stream   = _i,                                               \
874
        .name     = _t stringify(_i) " BDLPU",                        \
875
        .size     = 4,                                                \
876
        .wmask    = 0xffffffff,                                       \
877
        .offset   = offsetof(IntelHDAState, st[_i].bdlp_ubase),       \
878
    },                                                                \
879

    
880
    HDA_STREAM("IN", 0)
881
    HDA_STREAM("IN", 1)
882
    HDA_STREAM("IN", 2)
883
    HDA_STREAM("IN", 3)
884

    
885
    HDA_STREAM("OUT", 4)
886
    HDA_STREAM("OUT", 5)
887
    HDA_STREAM("OUT", 6)
888
    HDA_STREAM("OUT", 7)
889

    
890
};
891

    
892
static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
893
{
894
    const IntelHDAReg *reg;
895

    
896
    if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
897
        goto noreg;
898
    }
899
    reg = regtab+addr;
900
    if (reg->name == NULL) {
901
        goto noreg;
902
    }
903
    return reg;
904

    
905
noreg:
906
    dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
907
    return NULL;
908
}
909

    
910
static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
911
{
912
    uint8_t *addr = (void*)d;
913

    
914
    addr += reg->offset;
915
    return (uint32_t*)addr;
916
}
917

    
918
static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
919
                                uint32_t wmask)
920
{
921
    uint32_t *addr;
922
    uint32_t old;
923

    
924
    if (!reg) {
925
        return;
926
    }
927

    
928
    if (d->debug) {
929
        time_t now = time(NULL);
930
        if (d->last_write && d->last_reg == reg && d->last_val == val) {
931
            d->repeat_count++;
932
            if (d->last_sec != now) {
933
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
934
                d->last_sec = now;
935
                d->repeat_count = 0;
936
            }
937
        } else {
938
            if (d->repeat_count) {
939
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
940
            }
941
            dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
942
            d->last_write = 1;
943
            d->last_reg   = reg;
944
            d->last_val   = val;
945
            d->last_sec   = now;
946
            d->repeat_count = 0;
947
        }
948
    }
949
    assert(reg->offset != 0);
950

    
951
    addr = intel_hda_reg_addr(d, reg);
952
    old = *addr;
953

    
954
    if (reg->shift) {
955
        val <<= reg->shift;
956
        wmask <<= reg->shift;
957
    }
958
    wmask &= reg->wmask;
959
    *addr &= ~wmask;
960
    *addr |= wmask & val;
961
    *addr &= ~(val & reg->wclear);
962

    
963
    if (reg->whandler) {
964
        reg->whandler(d, reg, old);
965
    }
966
}
967

    
968
static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
969
                                   uint32_t rmask)
970
{
971
    uint32_t *addr, ret;
972

    
973
    if (!reg) {
974
        return 0;
975
    }
976

    
977
    if (reg->rhandler) {
978
        reg->rhandler(d, reg);
979
    }
980

    
981
    if (reg->offset == 0) {
982
        /* constant read-only register */
983
        ret = reg->reset;
984
    } else {
985
        addr = intel_hda_reg_addr(d, reg);
986
        ret = *addr;
987
        if (reg->shift) {
988
            ret >>= reg->shift;
989
        }
990
        ret &= rmask;
991
    }
992
    if (d->debug) {
993
        time_t now = time(NULL);
994
        if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
995
            d->repeat_count++;
996
            if (d->last_sec != now) {
997
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
998
                d->last_sec = now;
999
                d->repeat_count = 0;
1000
            }
1001
        } else {
1002
            if (d->repeat_count) {
1003
                dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1004
            }
1005
            dprint(d, 2, "read  %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
1006
            d->last_write = 0;
1007
            d->last_reg   = reg;
1008
            d->last_val   = ret;
1009
            d->last_sec   = now;
1010
            d->repeat_count = 0;
1011
        }
1012
    }
1013
    return ret;
1014
}
1015

    
1016
static void intel_hda_regs_reset(IntelHDAState *d)
1017
{
1018
    uint32_t *addr;
1019
    int i;
1020

    
1021
    for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
1022
        if (regtab[i].name == NULL) {
1023
            continue;
1024
        }
1025
        if (regtab[i].offset == 0) {
1026
            continue;
1027
        }
1028
        addr = intel_hda_reg_addr(d, regtab + i);
1029
        *addr = regtab[i].reset;
1030
    }
1031
}
1032

    
1033
/* --------------------------------------------------------------------- */
1034

    
1035
static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1036
{
1037
    IntelHDAState *d = opaque;
1038
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1039

    
1040
    intel_hda_reg_write(d, reg, val, 0xff);
1041
}
1042

    
1043
static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1044
{
1045
    IntelHDAState *d = opaque;
1046
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1047

    
1048
    intel_hda_reg_write(d, reg, val, 0xffff);
1049
}
1050

    
1051
static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1052
{
1053
    IntelHDAState *d = opaque;
1054
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1055

    
1056
    intel_hda_reg_write(d, reg, val, 0xffffffff);
1057
}
1058

    
1059
static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
1060
{
1061
    IntelHDAState *d = opaque;
1062
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1063

    
1064
    return intel_hda_reg_read(d, reg, 0xff);
1065
}
1066

    
1067
static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
1068
{
1069
    IntelHDAState *d = opaque;
1070
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1071

    
1072
    return intel_hda_reg_read(d, reg, 0xffff);
1073
}
1074

    
1075
static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
1076
{
1077
    IntelHDAState *d = opaque;
1078
    const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1079

    
1080
    return intel_hda_reg_read(d, reg, 0xffffffff);
1081
}
1082

    
1083
static CPUReadMemoryFunc * const intel_hda_mmio_read[3] = {
1084
    intel_hda_mmio_readb,
1085
    intel_hda_mmio_readw,
1086
    intel_hda_mmio_readl,
1087
};
1088

    
1089
static CPUWriteMemoryFunc * const intel_hda_mmio_write[3] = {
1090
    intel_hda_mmio_writeb,
1091
    intel_hda_mmio_writew,
1092
    intel_hda_mmio_writel,
1093
};
1094

    
1095
static void intel_hda_map(PCIDevice *pci, int region_num,
1096
                          pcibus_t addr, pcibus_t size, int type)
1097
{
1098
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1099

    
1100
    cpu_register_physical_memory(addr, 0x4000, d->mmio_addr);
1101
}
1102

    
1103
/* --------------------------------------------------------------------- */
1104

    
1105
static void intel_hda_reset(DeviceState *dev)
1106
{
1107
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
1108
    DeviceState *qdev;
1109
    HDACodecDevice *cdev;
1110

    
1111
    intel_hda_regs_reset(d);
1112
    d->wall_base_ns = qemu_get_clock(vm_clock);
1113

    
1114
    /* reset codecs */
1115
    QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
1116
        cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
1117
        if (qdev->info->reset) {
1118
            qdev->info->reset(qdev);
1119
        }
1120
        d->state_sts |= (1 << cdev->cad);
1121
    }
1122
    intel_hda_update_irq(d);
1123
}
1124

    
1125
static int intel_hda_init(PCIDevice *pci)
1126
{
1127
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1128
    uint8_t *conf = d->pci.config;
1129

    
1130
    d->name = d->pci.qdev.info->name;
1131

    
1132
    pci_config_set_vendor_id(conf, PCI_VENDOR_ID_INTEL);
1133
    pci_config_set_device_id(conf, 0x2668);
1134
    pci_config_set_revision(conf, 1);
1135
    pci_config_set_class(conf, PCI_CLASS_MULTIMEDIA_HD_AUDIO);
1136
    pci_config_set_interrupt_pin(conf, 1);
1137

    
1138
    /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1139
    conf[0x40] = 0x01;
1140

    
1141
    d->mmio_addr = cpu_register_io_memory(intel_hda_mmio_read,
1142
                                          intel_hda_mmio_write, d);
1143
    pci_register_bar(&d->pci, 0, 0x4000, PCI_BASE_ADDRESS_SPACE_MEMORY,
1144
                     intel_hda_map);
1145

    
1146
    hda_codec_bus_init(&d->pci.qdev, &d->codecs,
1147
                       intel_hda_response, intel_hda_xfer);
1148

    
1149
    return 0;
1150
}
1151

    
1152
static int intel_hda_exit(PCIDevice *pci)
1153
{
1154
    IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1155

    
1156
    cpu_unregister_io_memory(d->mmio_addr);
1157
    return 0;
1158
}
1159

    
1160
static int intel_hda_post_load(void *opaque, int version)
1161
{
1162
    IntelHDAState* d = opaque;
1163
    int i;
1164

    
1165
    dprint(d, 1, "%s\n", __FUNCTION__);
1166
    for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1167
        if (d->st[i].ctl & 0x02) {
1168
            intel_hda_parse_bdl(d, &d->st[i]);
1169
        }
1170
    }
1171
    intel_hda_update_irq(d);
1172
    return 0;
1173
}
1174

    
1175
static const VMStateDescription vmstate_intel_hda_stream = {
1176
    .name = "intel-hda-stream",
1177
    .version_id = 1,
1178
    .fields = (VMStateField []) {
1179
        VMSTATE_UINT32(ctl, IntelHDAStream),
1180
        VMSTATE_UINT32(lpib, IntelHDAStream),
1181
        VMSTATE_UINT32(cbl, IntelHDAStream),
1182
        VMSTATE_UINT32(lvi, IntelHDAStream),
1183
        VMSTATE_UINT32(fmt, IntelHDAStream),
1184
        VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1185
        VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1186
        VMSTATE_END_OF_LIST()
1187
    }
1188
};
1189

    
1190
static const VMStateDescription vmstate_intel_hda = {
1191
    .name = "intel-hda",
1192
    .version_id = 1,
1193
    .post_load = intel_hda_post_load,
1194
    .fields = (VMStateField []) {
1195
        VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1196

    
1197
        /* registers */
1198
        VMSTATE_UINT32(g_ctl, IntelHDAState),
1199
        VMSTATE_UINT32(wake_en, IntelHDAState),
1200
        VMSTATE_UINT32(state_sts, IntelHDAState),
1201
        VMSTATE_UINT32(int_ctl, IntelHDAState),
1202
        VMSTATE_UINT32(int_sts, IntelHDAState),
1203
        VMSTATE_UINT32(wall_clk, IntelHDAState),
1204
        VMSTATE_UINT32(corb_lbase, IntelHDAState),
1205
        VMSTATE_UINT32(corb_ubase, IntelHDAState),
1206
        VMSTATE_UINT32(corb_rp, IntelHDAState),
1207
        VMSTATE_UINT32(corb_wp, IntelHDAState),
1208
        VMSTATE_UINT32(corb_ctl, IntelHDAState),
1209
        VMSTATE_UINT32(corb_sts, IntelHDAState),
1210
        VMSTATE_UINT32(corb_size, IntelHDAState),
1211
        VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1212
        VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1213
        VMSTATE_UINT32(rirb_wp, IntelHDAState),
1214
        VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1215
        VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1216
        VMSTATE_UINT32(rirb_sts, IntelHDAState),
1217
        VMSTATE_UINT32(rirb_size, IntelHDAState),
1218
        VMSTATE_UINT32(dp_lbase, IntelHDAState),
1219
        VMSTATE_UINT32(dp_ubase, IntelHDAState),
1220
        VMSTATE_UINT32(icw, IntelHDAState),
1221
        VMSTATE_UINT32(irr, IntelHDAState),
1222
        VMSTATE_UINT32(ics, IntelHDAState),
1223
        VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1224
                             vmstate_intel_hda_stream,
1225
                             IntelHDAStream),
1226

    
1227
        /* additional state info */
1228
        VMSTATE_UINT32(rirb_count, IntelHDAState),
1229
        VMSTATE_INT64(wall_base_ns, IntelHDAState),
1230

    
1231
        VMSTATE_END_OF_LIST()
1232
    }
1233
};
1234

    
1235
static PCIDeviceInfo intel_hda_info = {
1236
    .qdev.name    = "intel-hda",
1237
    .qdev.desc    = "Intel HD Audio Controller",
1238
    .qdev.size    = sizeof(IntelHDAState),
1239
    .qdev.vmsd    = &vmstate_intel_hda,
1240
    .qdev.reset   = intel_hda_reset,
1241
    .init         = intel_hda_init,
1242
    .exit         = intel_hda_exit,
1243
    .qdev.props   = (Property[]) {
1244
        DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1245
        DEFINE_PROP_END_OF_LIST(),
1246
    }
1247
};
1248

    
1249
static void intel_hda_register(void)
1250
{
1251
    pci_qdev_register(&intel_hda_info);
1252
}
1253
device_init(intel_hda_register);
1254

    
1255
/*
1256
 * create intel hda controller with codec attached to it,
1257
 * so '-soundhw hda' works.
1258
 */
1259
int intel_hda_and_codec_init(PCIBus *bus)
1260
{
1261
    PCIDevice *controller;
1262
    BusState *hdabus;
1263
    DeviceState *codec;
1264

    
1265
    controller = pci_create_simple(bus, -1, "intel-hda");
1266
    hdabus = QLIST_FIRST(&controller->qdev.child_bus);
1267
    codec = qdev_create(hdabus, "hda-duplex");
1268
    qdev_init_nofail(codec);
1269
    return 0;
1270
}
1271