Statistics
| Branch: | Revision:

root / vl.c @ b1503cda

History | View | Annotate | Download (146.9 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "cache-utils.h"
40
#include "block.h"
41
#include "audio/audio.h"
42
#include "migration.h"
43
#include "kvm.h"
44
#include "balloon.h"
45

    
46
#include <unistd.h>
47
#include <fcntl.h>
48
#include <signal.h>
49
#include <time.h>
50
#include <errno.h>
51
#include <sys/time.h>
52
#include <zlib.h>
53

    
54
#ifndef _WIN32
55
#include <sys/times.h>
56
#include <sys/wait.h>
57
#include <termios.h>
58
#include <sys/mman.h>
59
#include <sys/ioctl.h>
60
#include <sys/resource.h>
61
#include <sys/socket.h>
62
#include <netinet/in.h>
63
#include <net/if.h>
64
#if defined(__NetBSD__)
65
#include <net/if_tap.h>
66
#endif
67
#ifdef __linux__
68
#include <linux/if_tun.h>
69
#endif
70
#include <arpa/inet.h>
71
#include <dirent.h>
72
#include <netdb.h>
73
#include <sys/select.h>
74
#ifdef _BSD
75
#include <sys/stat.h>
76
#ifdef __FreeBSD__
77
#include <libutil.h>
78
#else
79
#include <util.h>
80
#endif
81
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82
#include <freebsd/stdlib.h>
83
#else
84
#ifdef __linux__
85
#include <pty.h>
86
#include <malloc.h>
87
#include <linux/rtc.h>
88

    
89
/* For the benefit of older linux systems which don't supply it,
90
   we use a local copy of hpet.h. */
91
/* #include <linux/hpet.h> */
92
#include "hpet.h"
93

    
94
#include <linux/ppdev.h>
95
#include <linux/parport.h>
96
#endif
97
#ifdef __sun__
98
#include <sys/stat.h>
99
#include <sys/ethernet.h>
100
#include <sys/sockio.h>
101
#include <netinet/arp.h>
102
#include <netinet/in.h>
103
#include <netinet/in_systm.h>
104
#include <netinet/ip.h>
105
#include <netinet/ip_icmp.h> // must come after ip.h
106
#include <netinet/udp.h>
107
#include <netinet/tcp.h>
108
#include <net/if.h>
109
#include <syslog.h>
110
#include <stropts.h>
111
#endif
112
#endif
113
#endif
114

    
115
#include "qemu_socket.h"
116

    
117
#if defined(CONFIG_SLIRP)
118
#include "libslirp.h"
119
#endif
120

    
121
#if defined(__OpenBSD__)
122
#include <util.h>
123
#endif
124

    
125
#if defined(CONFIG_VDE)
126
#include <libvdeplug.h>
127
#endif
128

    
129
#ifdef _WIN32
130
#include <malloc.h>
131
#include <sys/timeb.h>
132
#include <mmsystem.h>
133
#define getopt_long_only getopt_long
134
#define memalign(align, size) malloc(size)
135
#endif
136

    
137
#ifdef CONFIG_SDL
138
#ifdef __APPLE__
139
#include <SDL/SDL.h>
140
#endif
141
#endif /* CONFIG_SDL */
142

    
143
#ifdef CONFIG_COCOA
144
#undef main
145
#define main qemu_main
146
#endif /* CONFIG_COCOA */
147

    
148
#include "disas.h"
149

    
150
#include "exec-all.h"
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157
#ifdef TARGET_PPC
158
#define DEFAULT_RAM_SIZE 144
159
#else
160
#define DEFAULT_RAM_SIZE 128
161
#endif
162

    
163
/* Max number of USB devices that can be specified on the commandline.  */
164
#define MAX_USB_CMDLINE 8
165

    
166
/* Max number of bluetooth switches on the commandline.  */
167
#define MAX_BT_CMDLINE 10
168

    
169
/* XXX: use a two level table to limit memory usage */
170
#define MAX_IOPORTS 65536
171

    
172
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
173
const char *bios_name = NULL;
174
static void *ioport_opaque[MAX_IOPORTS];
175
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
176
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
177
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
178
   to store the VM snapshots */
179
DriveInfo drives_table[MAX_DRIVES+1];
180
int nb_drives;
181
static int vga_ram_size;
182
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
183
DisplayState display_state;
184
int nographic;
185
static int curses;
186
const char* keyboard_layout = NULL;
187
int64_t ticks_per_sec;
188
ram_addr_t ram_size;
189
int nb_nics;
190
NICInfo nd_table[MAX_NICS];
191
int vm_running;
192
static int rtc_utc = 1;
193
static int rtc_date_offset = -1; /* -1 means no change */
194
int cirrus_vga_enabled = 1;
195
int vmsvga_enabled = 0;
196
#ifdef TARGET_SPARC
197
int graphic_width = 1024;
198
int graphic_height = 768;
199
int graphic_depth = 8;
200
#else
201
int graphic_width = 800;
202
int graphic_height = 600;
203
int graphic_depth = 15;
204
#endif
205
static int full_screen = 0;
206
#ifdef CONFIG_SDL
207
static int no_frame = 0;
208
#endif
209
int no_quit = 0;
210
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
211
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
212
#ifdef TARGET_I386
213
int win2k_install_hack = 0;
214
#endif
215
int usb_enabled = 0;
216
int smp_cpus = 1;
217
const char *vnc_display;
218
int acpi_enabled = 1;
219
int no_hpet = 0;
220
int fd_bootchk = 1;
221
int no_reboot = 0;
222
int no_shutdown = 0;
223
int cursor_hide = 1;
224
int graphic_rotate = 0;
225
int daemonize = 0;
226
const char *option_rom[MAX_OPTION_ROMS];
227
int nb_option_roms;
228
int semihosting_enabled = 0;
229
#ifdef TARGET_ARM
230
int old_param = 0;
231
#endif
232
const char *qemu_name;
233
int alt_grab = 0;
234
#ifdef TARGET_SPARC
235
unsigned int nb_prom_envs = 0;
236
const char *prom_envs[MAX_PROM_ENVS];
237
#endif
238
static int nb_drives_opt;
239
static struct drive_opt {
240
    const char *file;
241
    char opt[1024];
242
} drives_opt[MAX_DRIVES];
243

    
244
static CPUState *cur_cpu;
245
static CPUState *next_cpu;
246
static int event_pending = 1;
247
/* Conversion factor from emulated instructions to virtual clock ticks.  */
248
static int icount_time_shift;
249
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
250
#define MAX_ICOUNT_SHIFT 10
251
/* Compensate for varying guest execution speed.  */
252
static int64_t qemu_icount_bias;
253
static QEMUTimer *icount_rt_timer;
254
static QEMUTimer *icount_vm_timer;
255

    
256
uint8_t qemu_uuid[16];
257

    
258
/***********************************************************/
259
/* x86 ISA bus support */
260

    
261
target_phys_addr_t isa_mem_base = 0;
262
PicState2 *isa_pic;
263

    
264
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
265
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
266

    
267
static uint32_t ioport_read(int index, uint32_t address)
268
{
269
    static IOPortReadFunc *default_func[3] = {
270
        default_ioport_readb,
271
        default_ioport_readw,
272
        default_ioport_readl
273
    };
274
    IOPortReadFunc *func = ioport_read_table[index][address];
275
    if (!func)
276
        func = default_func[index];
277
    return func(ioport_opaque[address], address);
278
}
279

    
280
static void ioport_write(int index, uint32_t address, uint32_t data)
281
{
282
    static IOPortWriteFunc *default_func[3] = {
283
        default_ioport_writeb,
284
        default_ioport_writew,
285
        default_ioport_writel
286
    };
287
    IOPortWriteFunc *func = ioport_write_table[index][address];
288
    if (!func)
289
        func = default_func[index];
290
    func(ioport_opaque[address], address, data);
291
}
292

    
293
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
294
{
295
#ifdef DEBUG_UNUSED_IOPORT
296
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
297
#endif
298
    return 0xff;
299
}
300

    
301
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
302
{
303
#ifdef DEBUG_UNUSED_IOPORT
304
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
305
#endif
306
}
307

    
308
/* default is to make two byte accesses */
309
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
310
{
311
    uint32_t data;
312
    data = ioport_read(0, address);
313
    address = (address + 1) & (MAX_IOPORTS - 1);
314
    data |= ioport_read(0, address) << 8;
315
    return data;
316
}
317

    
318
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
319
{
320
    ioport_write(0, address, data & 0xff);
321
    address = (address + 1) & (MAX_IOPORTS - 1);
322
    ioport_write(0, address, (data >> 8) & 0xff);
323
}
324

    
325
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
326
{
327
#ifdef DEBUG_UNUSED_IOPORT
328
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
329
#endif
330
    return 0xffffffff;
331
}
332

    
333
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
334
{
335
#ifdef DEBUG_UNUSED_IOPORT
336
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
337
#endif
338
}
339

    
340
/* size is the word size in byte */
341
int register_ioport_read(int start, int length, int size,
342
                         IOPortReadFunc *func, void *opaque)
343
{
344
    int i, bsize;
345

    
346
    if (size == 1) {
347
        bsize = 0;
348
    } else if (size == 2) {
349
        bsize = 1;
350
    } else if (size == 4) {
351
        bsize = 2;
352
    } else {
353
        hw_error("register_ioport_read: invalid size");
354
        return -1;
355
    }
356
    for(i = start; i < start + length; i += size) {
357
        ioport_read_table[bsize][i] = func;
358
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
359
            hw_error("register_ioport_read: invalid opaque");
360
        ioport_opaque[i] = opaque;
361
    }
362
    return 0;
363
}
364

    
365
/* size is the word size in byte */
366
int register_ioport_write(int start, int length, int size,
367
                          IOPortWriteFunc *func, void *opaque)
368
{
369
    int i, bsize;
370

    
371
    if (size == 1) {
372
        bsize = 0;
373
    } else if (size == 2) {
374
        bsize = 1;
375
    } else if (size == 4) {
376
        bsize = 2;
377
    } else {
378
        hw_error("register_ioport_write: invalid size");
379
        return -1;
380
    }
381
    for(i = start; i < start + length; i += size) {
382
        ioport_write_table[bsize][i] = func;
383
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
384
            hw_error("register_ioport_write: invalid opaque");
385
        ioport_opaque[i] = opaque;
386
    }
387
    return 0;
388
}
389

    
390
void isa_unassign_ioport(int start, int length)
391
{
392
    int i;
393

    
394
    for(i = start; i < start + length; i++) {
395
        ioport_read_table[0][i] = default_ioport_readb;
396
        ioport_read_table[1][i] = default_ioport_readw;
397
        ioport_read_table[2][i] = default_ioport_readl;
398

    
399
        ioport_write_table[0][i] = default_ioport_writeb;
400
        ioport_write_table[1][i] = default_ioport_writew;
401
        ioport_write_table[2][i] = default_ioport_writel;
402
    }
403
}
404

    
405
/***********************************************************/
406

    
407
void cpu_outb(CPUState *env, int addr, int val)
408
{
409
#ifdef DEBUG_IOPORT
410
    if (loglevel & CPU_LOG_IOPORT)
411
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
412
#endif
413
    ioport_write(0, addr, val);
414
#ifdef USE_KQEMU
415
    if (env)
416
        env->last_io_time = cpu_get_time_fast();
417
#endif
418
}
419

    
420
void cpu_outw(CPUState *env, int addr, int val)
421
{
422
#ifdef DEBUG_IOPORT
423
    if (loglevel & CPU_LOG_IOPORT)
424
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
425
#endif
426
    ioport_write(1, addr, val);
427
#ifdef USE_KQEMU
428
    if (env)
429
        env->last_io_time = cpu_get_time_fast();
430
#endif
431
}
432

    
433
void cpu_outl(CPUState *env, int addr, int val)
434
{
435
#ifdef DEBUG_IOPORT
436
    if (loglevel & CPU_LOG_IOPORT)
437
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
438
#endif
439
    ioport_write(2, addr, val);
440
#ifdef USE_KQEMU
441
    if (env)
442
        env->last_io_time = cpu_get_time_fast();
443
#endif
444
}
445

    
446
int cpu_inb(CPUState *env, int addr)
447
{
448
    int val;
449
    val = ioport_read(0, addr);
450
#ifdef DEBUG_IOPORT
451
    if (loglevel & CPU_LOG_IOPORT)
452
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
453
#endif
454
#ifdef USE_KQEMU
455
    if (env)
456
        env->last_io_time = cpu_get_time_fast();
457
#endif
458
    return val;
459
}
460

    
461
int cpu_inw(CPUState *env, int addr)
462
{
463
    int val;
464
    val = ioport_read(1, addr);
465
#ifdef DEBUG_IOPORT
466
    if (loglevel & CPU_LOG_IOPORT)
467
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
468
#endif
469
#ifdef USE_KQEMU
470
    if (env)
471
        env->last_io_time = cpu_get_time_fast();
472
#endif
473
    return val;
474
}
475

    
476
int cpu_inl(CPUState *env, int addr)
477
{
478
    int val;
479
    val = ioport_read(2, addr);
480
#ifdef DEBUG_IOPORT
481
    if (loglevel & CPU_LOG_IOPORT)
482
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
483
#endif
484
#ifdef USE_KQEMU
485
    if (env)
486
        env->last_io_time = cpu_get_time_fast();
487
#endif
488
    return val;
489
}
490

    
491
/***********************************************************/
492
void hw_error(const char *fmt, ...)
493
{
494
    va_list ap;
495
    CPUState *env;
496

    
497
    va_start(ap, fmt);
498
    fprintf(stderr, "qemu: hardware error: ");
499
    vfprintf(stderr, fmt, ap);
500
    fprintf(stderr, "\n");
501
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
502
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
503
#ifdef TARGET_I386
504
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
505
#else
506
        cpu_dump_state(env, stderr, fprintf, 0);
507
#endif
508
    }
509
    va_end(ap);
510
    abort();
511
}
512
 
513
/***************/
514
/* ballooning */
515

    
516
static QEMUBalloonEvent *qemu_balloon_event;
517
void *qemu_balloon_event_opaque;
518

    
519
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
520
{
521
    qemu_balloon_event = func;
522
    qemu_balloon_event_opaque = opaque;
523
}
524

    
525
void qemu_balloon(ram_addr_t target)
526
{
527
    if (qemu_balloon_event)
528
        qemu_balloon_event(qemu_balloon_event_opaque, target);
529
}
530

    
531
ram_addr_t qemu_balloon_status(void)
532
{
533
    if (qemu_balloon_event)
534
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
535
    return 0;
536
}
537

    
538
/***********************************************************/
539
/* keyboard/mouse */
540

    
541
static QEMUPutKBDEvent *qemu_put_kbd_event;
542
static void *qemu_put_kbd_event_opaque;
543
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
544
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
545

    
546
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
547
{
548
    qemu_put_kbd_event_opaque = opaque;
549
    qemu_put_kbd_event = func;
550
}
551

    
552
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
553
                                                void *opaque, int absolute,
554
                                                const char *name)
555
{
556
    QEMUPutMouseEntry *s, *cursor;
557

    
558
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
559
    if (!s)
560
        return NULL;
561

    
562
    s->qemu_put_mouse_event = func;
563
    s->qemu_put_mouse_event_opaque = opaque;
564
    s->qemu_put_mouse_event_absolute = absolute;
565
    s->qemu_put_mouse_event_name = qemu_strdup(name);
566
    s->next = NULL;
567

    
568
    if (!qemu_put_mouse_event_head) {
569
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
570
        return s;
571
    }
572

    
573
    cursor = qemu_put_mouse_event_head;
574
    while (cursor->next != NULL)
575
        cursor = cursor->next;
576

    
577
    cursor->next = s;
578
    qemu_put_mouse_event_current = s;
579

    
580
    return s;
581
}
582

    
583
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
584
{
585
    QEMUPutMouseEntry *prev = NULL, *cursor;
586

    
587
    if (!qemu_put_mouse_event_head || entry == NULL)
588
        return;
589

    
590
    cursor = qemu_put_mouse_event_head;
591
    while (cursor != NULL && cursor != entry) {
592
        prev = cursor;
593
        cursor = cursor->next;
594
    }
595

    
596
    if (cursor == NULL) // does not exist or list empty
597
        return;
598
    else if (prev == NULL) { // entry is head
599
        qemu_put_mouse_event_head = cursor->next;
600
        if (qemu_put_mouse_event_current == entry)
601
            qemu_put_mouse_event_current = cursor->next;
602
        qemu_free(entry->qemu_put_mouse_event_name);
603
        qemu_free(entry);
604
        return;
605
    }
606

    
607
    prev->next = entry->next;
608

    
609
    if (qemu_put_mouse_event_current == entry)
610
        qemu_put_mouse_event_current = prev;
611

    
612
    qemu_free(entry->qemu_put_mouse_event_name);
613
    qemu_free(entry);
614
}
615

    
616
void kbd_put_keycode(int keycode)
617
{
618
    if (qemu_put_kbd_event) {
619
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
620
    }
621
}
622

    
623
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
624
{
625
    QEMUPutMouseEvent *mouse_event;
626
    void *mouse_event_opaque;
627
    int width;
628

    
629
    if (!qemu_put_mouse_event_current) {
630
        return;
631
    }
632

    
633
    mouse_event =
634
        qemu_put_mouse_event_current->qemu_put_mouse_event;
635
    mouse_event_opaque =
636
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
637

    
638
    if (mouse_event) {
639
        if (graphic_rotate) {
640
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
641
                width = 0x7fff;
642
            else
643
                width = graphic_width - 1;
644
            mouse_event(mouse_event_opaque,
645
                                 width - dy, dx, dz, buttons_state);
646
        } else
647
            mouse_event(mouse_event_opaque,
648
                                 dx, dy, dz, buttons_state);
649
    }
650
}
651

    
652
int kbd_mouse_is_absolute(void)
653
{
654
    if (!qemu_put_mouse_event_current)
655
        return 0;
656

    
657
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
658
}
659

    
660
void do_info_mice(void)
661
{
662
    QEMUPutMouseEntry *cursor;
663
    int index = 0;
664

    
665
    if (!qemu_put_mouse_event_head) {
666
        term_printf("No mouse devices connected\n");
667
        return;
668
    }
669

    
670
    term_printf("Mouse devices available:\n");
671
    cursor = qemu_put_mouse_event_head;
672
    while (cursor != NULL) {
673
        term_printf("%c Mouse #%d: %s\n",
674
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
675
                    index, cursor->qemu_put_mouse_event_name);
676
        index++;
677
        cursor = cursor->next;
678
    }
679
}
680

    
681
void do_mouse_set(int index)
682
{
683
    QEMUPutMouseEntry *cursor;
684
    int i = 0;
685

    
686
    if (!qemu_put_mouse_event_head) {
687
        term_printf("No mouse devices connected\n");
688
        return;
689
    }
690

    
691
    cursor = qemu_put_mouse_event_head;
692
    while (cursor != NULL && index != i) {
693
        i++;
694
        cursor = cursor->next;
695
    }
696

    
697
    if (cursor != NULL)
698
        qemu_put_mouse_event_current = cursor;
699
    else
700
        term_printf("Mouse at given index not found\n");
701
}
702

    
703
/* compute with 96 bit intermediate result: (a*b)/c */
704
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
705
{
706
    union {
707
        uint64_t ll;
708
        struct {
709
#ifdef WORDS_BIGENDIAN
710
            uint32_t high, low;
711
#else
712
            uint32_t low, high;
713
#endif
714
        } l;
715
    } u, res;
716
    uint64_t rl, rh;
717

    
718
    u.ll = a;
719
    rl = (uint64_t)u.l.low * (uint64_t)b;
720
    rh = (uint64_t)u.l.high * (uint64_t)b;
721
    rh += (rl >> 32);
722
    res.l.high = rh / c;
723
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
724
    return res.ll;
725
}
726

    
727
/***********************************************************/
728
/* real time host monotonic timer */
729

    
730
#define QEMU_TIMER_BASE 1000000000LL
731

    
732
#ifdef WIN32
733

    
734
static int64_t clock_freq;
735

    
736
static void init_get_clock(void)
737
{
738
    LARGE_INTEGER freq;
739
    int ret;
740
    ret = QueryPerformanceFrequency(&freq);
741
    if (ret == 0) {
742
        fprintf(stderr, "Could not calibrate ticks\n");
743
        exit(1);
744
    }
745
    clock_freq = freq.QuadPart;
746
}
747

    
748
static int64_t get_clock(void)
749
{
750
    LARGE_INTEGER ti;
751
    QueryPerformanceCounter(&ti);
752
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
753
}
754

    
755
#else
756

    
757
static int use_rt_clock;
758

    
759
static void init_get_clock(void)
760
{
761
    use_rt_clock = 0;
762
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
763
    {
764
        struct timespec ts;
765
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
766
            use_rt_clock = 1;
767
        }
768
    }
769
#endif
770
}
771

    
772
static int64_t get_clock(void)
773
{
774
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
775
    if (use_rt_clock) {
776
        struct timespec ts;
777
        clock_gettime(CLOCK_MONOTONIC, &ts);
778
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
779
    } else
780
#endif
781
    {
782
        /* XXX: using gettimeofday leads to problems if the date
783
           changes, so it should be avoided. */
784
        struct timeval tv;
785
        gettimeofday(&tv, NULL);
786
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
787
    }
788
}
789
#endif
790

    
791
/* Return the virtual CPU time, based on the instruction counter.  */
792
static int64_t cpu_get_icount(void)
793
{
794
    int64_t icount;
795
    CPUState *env = cpu_single_env;;
796
    icount = qemu_icount;
797
    if (env) {
798
        if (!can_do_io(env))
799
            fprintf(stderr, "Bad clock read\n");
800
        icount -= (env->icount_decr.u16.low + env->icount_extra);
801
    }
802
    return qemu_icount_bias + (icount << icount_time_shift);
803
}
804

    
805
/***********************************************************/
806
/* guest cycle counter */
807

    
808
static int64_t cpu_ticks_prev;
809
static int64_t cpu_ticks_offset;
810
static int64_t cpu_clock_offset;
811
static int cpu_ticks_enabled;
812

    
813
/* return the host CPU cycle counter and handle stop/restart */
814
int64_t cpu_get_ticks(void)
815
{
816
    if (use_icount) {
817
        return cpu_get_icount();
818
    }
819
    if (!cpu_ticks_enabled) {
820
        return cpu_ticks_offset;
821
    } else {
822
        int64_t ticks;
823
        ticks = cpu_get_real_ticks();
824
        if (cpu_ticks_prev > ticks) {
825
            /* Note: non increasing ticks may happen if the host uses
826
               software suspend */
827
            cpu_ticks_offset += cpu_ticks_prev - ticks;
828
        }
829
        cpu_ticks_prev = ticks;
830
        return ticks + cpu_ticks_offset;
831
    }
832
}
833

    
834
/* return the host CPU monotonic timer and handle stop/restart */
835
static int64_t cpu_get_clock(void)
836
{
837
    int64_t ti;
838
    if (!cpu_ticks_enabled) {
839
        return cpu_clock_offset;
840
    } else {
841
        ti = get_clock();
842
        return ti + cpu_clock_offset;
843
    }
844
}
845

    
846
/* enable cpu_get_ticks() */
847
void cpu_enable_ticks(void)
848
{
849
    if (!cpu_ticks_enabled) {
850
        cpu_ticks_offset -= cpu_get_real_ticks();
851
        cpu_clock_offset -= get_clock();
852
        cpu_ticks_enabled = 1;
853
    }
854
}
855

    
856
/* disable cpu_get_ticks() : the clock is stopped. You must not call
857
   cpu_get_ticks() after that.  */
858
void cpu_disable_ticks(void)
859
{
860
    if (cpu_ticks_enabled) {
861
        cpu_ticks_offset = cpu_get_ticks();
862
        cpu_clock_offset = cpu_get_clock();
863
        cpu_ticks_enabled = 0;
864
    }
865
}
866

    
867
/***********************************************************/
868
/* timers */
869

    
870
#define QEMU_TIMER_REALTIME 0
871
#define QEMU_TIMER_VIRTUAL  1
872

    
873
struct QEMUClock {
874
    int type;
875
    /* XXX: add frequency */
876
};
877

    
878
struct QEMUTimer {
879
    QEMUClock *clock;
880
    int64_t expire_time;
881
    QEMUTimerCB *cb;
882
    void *opaque;
883
    struct QEMUTimer *next;
884
};
885

    
886
struct qemu_alarm_timer {
887
    char const *name;
888
    unsigned int flags;
889

    
890
    int (*start)(struct qemu_alarm_timer *t);
891
    void (*stop)(struct qemu_alarm_timer *t);
892
    void (*rearm)(struct qemu_alarm_timer *t);
893
    void *priv;
894
};
895

    
896
#define ALARM_FLAG_DYNTICKS  0x1
897
#define ALARM_FLAG_EXPIRED   0x2
898

    
899
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
900
{
901
    return t->flags & ALARM_FLAG_DYNTICKS;
902
}
903

    
904
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
905
{
906
    if (!alarm_has_dynticks(t))
907
        return;
908

    
909
    t->rearm(t);
910
}
911

    
912
/* TODO: MIN_TIMER_REARM_US should be optimized */
913
#define MIN_TIMER_REARM_US 250
914

    
915
static struct qemu_alarm_timer *alarm_timer;
916
#ifndef _WIN32
917
static int alarm_timer_rfd, alarm_timer_wfd;
918
#endif
919

    
920
#ifdef _WIN32
921

    
922
struct qemu_alarm_win32 {
923
    MMRESULT timerId;
924
    HANDLE host_alarm;
925
    unsigned int period;
926
} alarm_win32_data = {0, NULL, -1};
927

    
928
static int win32_start_timer(struct qemu_alarm_timer *t);
929
static void win32_stop_timer(struct qemu_alarm_timer *t);
930
static void win32_rearm_timer(struct qemu_alarm_timer *t);
931

    
932
#else
933

    
934
static int unix_start_timer(struct qemu_alarm_timer *t);
935
static void unix_stop_timer(struct qemu_alarm_timer *t);
936

    
937
#ifdef __linux__
938

    
939
static int dynticks_start_timer(struct qemu_alarm_timer *t);
940
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
941
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
942

    
943
static int hpet_start_timer(struct qemu_alarm_timer *t);
944
static void hpet_stop_timer(struct qemu_alarm_timer *t);
945

    
946
static int rtc_start_timer(struct qemu_alarm_timer *t);
947
static void rtc_stop_timer(struct qemu_alarm_timer *t);
948

    
949
#endif /* __linux__ */
950

    
951
#endif /* _WIN32 */
952

    
953
/* Correlation between real and virtual time is always going to be
954
   fairly approximate, so ignore small variation.
955
   When the guest is idle real and virtual time will be aligned in
956
   the IO wait loop.  */
957
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
958

    
959
static void icount_adjust(void)
960
{
961
    int64_t cur_time;
962
    int64_t cur_icount;
963
    int64_t delta;
964
    static int64_t last_delta;
965
    /* If the VM is not running, then do nothing.  */
966
    if (!vm_running)
967
        return;
968

    
969
    cur_time = cpu_get_clock();
970
    cur_icount = qemu_get_clock(vm_clock);
971
    delta = cur_icount - cur_time;
972
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
973
    if (delta > 0
974
        && last_delta + ICOUNT_WOBBLE < delta * 2
975
        && icount_time_shift > 0) {
976
        /* The guest is getting too far ahead.  Slow time down.  */
977
        icount_time_shift--;
978
    }
979
    if (delta < 0
980
        && last_delta - ICOUNT_WOBBLE > delta * 2
981
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
982
        /* The guest is getting too far behind.  Speed time up.  */
983
        icount_time_shift++;
984
    }
985
    last_delta = delta;
986
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
987
}
988

    
989
static void icount_adjust_rt(void * opaque)
990
{
991
    qemu_mod_timer(icount_rt_timer,
992
                   qemu_get_clock(rt_clock) + 1000);
993
    icount_adjust();
994
}
995

    
996
static void icount_adjust_vm(void * opaque)
997
{
998
    qemu_mod_timer(icount_vm_timer,
999
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1000
    icount_adjust();
1001
}
1002

    
1003
static void init_icount_adjust(void)
1004
{
1005
    /* Have both realtime and virtual time triggers for speed adjustment.
1006
       The realtime trigger catches emulated time passing too slowly,
1007
       the virtual time trigger catches emulated time passing too fast.
1008
       Realtime triggers occur even when idle, so use them less frequently
1009
       than VM triggers.  */
1010
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1011
    qemu_mod_timer(icount_rt_timer,
1012
                   qemu_get_clock(rt_clock) + 1000);
1013
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1014
    qemu_mod_timer(icount_vm_timer,
1015
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1016
}
1017

    
1018
static struct qemu_alarm_timer alarm_timers[] = {
1019
#ifndef _WIN32
1020
#ifdef __linux__
1021
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1022
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1023
    /* HPET - if available - is preferred */
1024
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1025
    /* ...otherwise try RTC */
1026
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1027
#endif
1028
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1029
#else
1030
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1031
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1032
    {"win32", 0, win32_start_timer,
1033
     win32_stop_timer, NULL, &alarm_win32_data},
1034
#endif
1035
    {NULL, }
1036
};
1037

    
1038
static void show_available_alarms(void)
1039
{
1040
    int i;
1041

    
1042
    printf("Available alarm timers, in order of precedence:\n");
1043
    for (i = 0; alarm_timers[i].name; i++)
1044
        printf("%s\n", alarm_timers[i].name);
1045
}
1046

    
1047
static void configure_alarms(char const *opt)
1048
{
1049
    int i;
1050
    int cur = 0;
1051
    int count = ARRAY_SIZE(alarm_timers) - 1;
1052
    char *arg;
1053
    char *name;
1054
    struct qemu_alarm_timer tmp;
1055

    
1056
    if (!strcmp(opt, "?")) {
1057
        show_available_alarms();
1058
        exit(0);
1059
    }
1060

    
1061
    arg = strdup(opt);
1062

    
1063
    /* Reorder the array */
1064
    name = strtok(arg, ",");
1065
    while (name) {
1066
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1067
            if (!strcmp(alarm_timers[i].name, name))
1068
                break;
1069
        }
1070

    
1071
        if (i == count) {
1072
            fprintf(stderr, "Unknown clock %s\n", name);
1073
            goto next;
1074
        }
1075

    
1076
        if (i < cur)
1077
            /* Ignore */
1078
            goto next;
1079

    
1080
        /* Swap */
1081
        tmp = alarm_timers[i];
1082
        alarm_timers[i] = alarm_timers[cur];
1083
        alarm_timers[cur] = tmp;
1084

    
1085
        cur++;
1086
next:
1087
        name = strtok(NULL, ",");
1088
    }
1089

    
1090
    free(arg);
1091

    
1092
    if (cur) {
1093
        /* Disable remaining timers */
1094
        for (i = cur; i < count; i++)
1095
            alarm_timers[i].name = NULL;
1096
    } else {
1097
        show_available_alarms();
1098
        exit(1);
1099
    }
1100
}
1101

    
1102
QEMUClock *rt_clock;
1103
QEMUClock *vm_clock;
1104

    
1105
static QEMUTimer *active_timers[2];
1106

    
1107
static QEMUClock *qemu_new_clock(int type)
1108
{
1109
    QEMUClock *clock;
1110
    clock = qemu_mallocz(sizeof(QEMUClock));
1111
    if (!clock)
1112
        return NULL;
1113
    clock->type = type;
1114
    return clock;
1115
}
1116

    
1117
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1118
{
1119
    QEMUTimer *ts;
1120

    
1121
    ts = qemu_mallocz(sizeof(QEMUTimer));
1122
    ts->clock = clock;
1123
    ts->cb = cb;
1124
    ts->opaque = opaque;
1125
    return ts;
1126
}
1127

    
1128
void qemu_free_timer(QEMUTimer *ts)
1129
{
1130
    qemu_free(ts);
1131
}
1132

    
1133
/* stop a timer, but do not dealloc it */
1134
void qemu_del_timer(QEMUTimer *ts)
1135
{
1136
    QEMUTimer **pt, *t;
1137

    
1138
    /* NOTE: this code must be signal safe because
1139
       qemu_timer_expired() can be called from a signal. */
1140
    pt = &active_timers[ts->clock->type];
1141
    for(;;) {
1142
        t = *pt;
1143
        if (!t)
1144
            break;
1145
        if (t == ts) {
1146
            *pt = t->next;
1147
            break;
1148
        }
1149
        pt = &t->next;
1150
    }
1151
}
1152

    
1153
/* modify the current timer so that it will be fired when current_time
1154
   >= expire_time. The corresponding callback will be called. */
1155
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1156
{
1157
    QEMUTimer **pt, *t;
1158

    
1159
    qemu_del_timer(ts);
1160

    
1161
    /* add the timer in the sorted list */
1162
    /* NOTE: this code must be signal safe because
1163
       qemu_timer_expired() can be called from a signal. */
1164
    pt = &active_timers[ts->clock->type];
1165
    for(;;) {
1166
        t = *pt;
1167
        if (!t)
1168
            break;
1169
        if (t->expire_time > expire_time)
1170
            break;
1171
        pt = &t->next;
1172
    }
1173
    ts->expire_time = expire_time;
1174
    ts->next = *pt;
1175
    *pt = ts;
1176

    
1177
    /* Rearm if necessary  */
1178
    if (pt == &active_timers[ts->clock->type]) {
1179
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1180
            qemu_rearm_alarm_timer(alarm_timer);
1181
        }
1182
        /* Interrupt execution to force deadline recalculation.  */
1183
        if (use_icount && cpu_single_env) {
1184
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1185
        }
1186
    }
1187
}
1188

    
1189
int qemu_timer_pending(QEMUTimer *ts)
1190
{
1191
    QEMUTimer *t;
1192
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1193
        if (t == ts)
1194
            return 1;
1195
    }
1196
    return 0;
1197
}
1198

    
1199
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1200
{
1201
    if (!timer_head)
1202
        return 0;
1203
    return (timer_head->expire_time <= current_time);
1204
}
1205

    
1206
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1207
{
1208
    QEMUTimer *ts;
1209

    
1210
    for(;;) {
1211
        ts = *ptimer_head;
1212
        if (!ts || ts->expire_time > current_time)
1213
            break;
1214
        /* remove timer from the list before calling the callback */
1215
        *ptimer_head = ts->next;
1216
        ts->next = NULL;
1217

    
1218
        /* run the callback (the timer list can be modified) */
1219
        ts->cb(ts->opaque);
1220
    }
1221
}
1222

    
1223
int64_t qemu_get_clock(QEMUClock *clock)
1224
{
1225
    switch(clock->type) {
1226
    case QEMU_TIMER_REALTIME:
1227
        return get_clock() / 1000000;
1228
    default:
1229
    case QEMU_TIMER_VIRTUAL:
1230
        if (use_icount) {
1231
            return cpu_get_icount();
1232
        } else {
1233
            return cpu_get_clock();
1234
        }
1235
    }
1236
}
1237

    
1238
static void init_timers(void)
1239
{
1240
    init_get_clock();
1241
    ticks_per_sec = QEMU_TIMER_BASE;
1242
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1243
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1244
}
1245

    
1246
/* save a timer */
1247
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1248
{
1249
    uint64_t expire_time;
1250

    
1251
    if (qemu_timer_pending(ts)) {
1252
        expire_time = ts->expire_time;
1253
    } else {
1254
        expire_time = -1;
1255
    }
1256
    qemu_put_be64(f, expire_time);
1257
}
1258

    
1259
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1260
{
1261
    uint64_t expire_time;
1262

    
1263
    expire_time = qemu_get_be64(f);
1264
    if (expire_time != -1) {
1265
        qemu_mod_timer(ts, expire_time);
1266
    } else {
1267
        qemu_del_timer(ts);
1268
    }
1269
}
1270

    
1271
static void timer_save(QEMUFile *f, void *opaque)
1272
{
1273
    if (cpu_ticks_enabled) {
1274
        hw_error("cannot save state if virtual timers are running");
1275
    }
1276
    qemu_put_be64(f, cpu_ticks_offset);
1277
    qemu_put_be64(f, ticks_per_sec);
1278
    qemu_put_be64(f, cpu_clock_offset);
1279
}
1280

    
1281
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1282
{
1283
    if (version_id != 1 && version_id != 2)
1284
        return -EINVAL;
1285
    if (cpu_ticks_enabled) {
1286
        return -EINVAL;
1287
    }
1288
    cpu_ticks_offset=qemu_get_be64(f);
1289
    ticks_per_sec=qemu_get_be64(f);
1290
    if (version_id == 2) {
1291
        cpu_clock_offset=qemu_get_be64(f);
1292
    }
1293
    return 0;
1294
}
1295

    
1296
#ifdef _WIN32
1297
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1298
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1299
#else
1300
static void host_alarm_handler(int host_signum)
1301
#endif
1302
{
1303
#if 0
1304
#define DISP_FREQ 1000
1305
    {
1306
        static int64_t delta_min = INT64_MAX;
1307
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1308
        static int count;
1309
        ti = qemu_get_clock(vm_clock);
1310
        if (last_clock != 0) {
1311
            delta = ti - last_clock;
1312
            if (delta < delta_min)
1313
                delta_min = delta;
1314
            if (delta > delta_max)
1315
                delta_max = delta;
1316
            delta_cum += delta;
1317
            if (++count == DISP_FREQ) {
1318
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1319
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1320
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1321
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1322
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1323
                count = 0;
1324
                delta_min = INT64_MAX;
1325
                delta_max = 0;
1326
                delta_cum = 0;
1327
            }
1328
        }
1329
        last_clock = ti;
1330
    }
1331
#endif
1332
    if (alarm_has_dynticks(alarm_timer) ||
1333
        (!use_icount &&
1334
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1335
                               qemu_get_clock(vm_clock))) ||
1336
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1337
                           qemu_get_clock(rt_clock))) {
1338
        CPUState *env = next_cpu;
1339

    
1340
#ifdef _WIN32
1341
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1342
        SetEvent(data->host_alarm);
1343
#else
1344
        static const char byte = 0;
1345
        write(alarm_timer_wfd, &byte, sizeof(byte));
1346
#endif
1347
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1348

    
1349
        if (env) {
1350
            /* stop the currently executing cpu because a timer occured */
1351
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1352
#ifdef USE_KQEMU
1353
            if (env->kqemu_enabled) {
1354
                kqemu_cpu_interrupt(env);
1355
            }
1356
#endif
1357
        }
1358
        event_pending = 1;
1359
    }
1360
}
1361

    
1362
static int64_t qemu_next_deadline(void)
1363
{
1364
    int64_t delta;
1365

    
1366
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1367
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1368
                     qemu_get_clock(vm_clock);
1369
    } else {
1370
        /* To avoid problems with overflow limit this to 2^32.  */
1371
        delta = INT32_MAX;
1372
    }
1373

    
1374
    if (delta < 0)
1375
        delta = 0;
1376

    
1377
    return delta;
1378
}
1379

    
1380
#if defined(__linux__) || defined(_WIN32)
1381
static uint64_t qemu_next_deadline_dyntick(void)
1382
{
1383
    int64_t delta;
1384
    int64_t rtdelta;
1385

    
1386
    if (use_icount)
1387
        delta = INT32_MAX;
1388
    else
1389
        delta = (qemu_next_deadline() + 999) / 1000;
1390

    
1391
    if (active_timers[QEMU_TIMER_REALTIME]) {
1392
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1393
                 qemu_get_clock(rt_clock))*1000;
1394
        if (rtdelta < delta)
1395
            delta = rtdelta;
1396
    }
1397

    
1398
    if (delta < MIN_TIMER_REARM_US)
1399
        delta = MIN_TIMER_REARM_US;
1400

    
1401
    return delta;
1402
}
1403
#endif
1404

    
1405
#ifndef _WIN32
1406

    
1407
/* Sets a specific flag */
1408
static int fcntl_setfl(int fd, int flag)
1409
{
1410
    int flags;
1411

    
1412
    flags = fcntl(fd, F_GETFL);
1413
    if (flags == -1)
1414
        return -errno;
1415

    
1416
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1417
        return -errno;
1418

    
1419
    return 0;
1420
}
1421

    
1422
#if defined(__linux__)
1423

    
1424
#define RTC_FREQ 1024
1425

    
1426
static void enable_sigio_timer(int fd)
1427
{
1428
    struct sigaction act;
1429

    
1430
    /* timer signal */
1431
    sigfillset(&act.sa_mask);
1432
    act.sa_flags = 0;
1433
    act.sa_handler = host_alarm_handler;
1434

    
1435
    sigaction(SIGIO, &act, NULL);
1436
    fcntl_setfl(fd, O_ASYNC);
1437
    fcntl(fd, F_SETOWN, getpid());
1438
}
1439

    
1440
static int hpet_start_timer(struct qemu_alarm_timer *t)
1441
{
1442
    struct hpet_info info;
1443
    int r, fd;
1444

    
1445
    fd = open("/dev/hpet", O_RDONLY);
1446
    if (fd < 0)
1447
        return -1;
1448

    
1449
    /* Set frequency */
1450
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1451
    if (r < 0) {
1452
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1453
                "error, but for better emulation accuracy type:\n"
1454
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1455
        goto fail;
1456
    }
1457

    
1458
    /* Check capabilities */
1459
    r = ioctl(fd, HPET_INFO, &info);
1460
    if (r < 0)
1461
        goto fail;
1462

    
1463
    /* Enable periodic mode */
1464
    r = ioctl(fd, HPET_EPI, 0);
1465
    if (info.hi_flags && (r < 0))
1466
        goto fail;
1467

    
1468
    /* Enable interrupt */
1469
    r = ioctl(fd, HPET_IE_ON, 0);
1470
    if (r < 0)
1471
        goto fail;
1472

    
1473
    enable_sigio_timer(fd);
1474
    t->priv = (void *)(long)fd;
1475

    
1476
    return 0;
1477
fail:
1478
    close(fd);
1479
    return -1;
1480
}
1481

    
1482
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1483
{
1484
    int fd = (long)t->priv;
1485

    
1486
    close(fd);
1487
}
1488

    
1489
static int rtc_start_timer(struct qemu_alarm_timer *t)
1490
{
1491
    int rtc_fd;
1492
    unsigned long current_rtc_freq = 0;
1493

    
1494
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1495
    if (rtc_fd < 0)
1496
        return -1;
1497
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1498
    if (current_rtc_freq != RTC_FREQ &&
1499
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1500
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1501
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1502
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1503
        goto fail;
1504
    }
1505
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1506
    fail:
1507
        close(rtc_fd);
1508
        return -1;
1509
    }
1510

    
1511
    enable_sigio_timer(rtc_fd);
1512

    
1513
    t->priv = (void *)(long)rtc_fd;
1514

    
1515
    return 0;
1516
}
1517

    
1518
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1519
{
1520
    int rtc_fd = (long)t->priv;
1521

    
1522
    close(rtc_fd);
1523
}
1524

    
1525
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1526
{
1527
    struct sigevent ev;
1528
    timer_t host_timer;
1529
    struct sigaction act;
1530

    
1531
    sigfillset(&act.sa_mask);
1532
    act.sa_flags = 0;
1533
    act.sa_handler = host_alarm_handler;
1534

    
1535
    sigaction(SIGALRM, &act, NULL);
1536

    
1537
    ev.sigev_value.sival_int = 0;
1538
    ev.sigev_notify = SIGEV_SIGNAL;
1539
    ev.sigev_signo = SIGALRM;
1540

    
1541
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1542
        perror("timer_create");
1543

    
1544
        /* disable dynticks */
1545
        fprintf(stderr, "Dynamic Ticks disabled\n");
1546

    
1547
        return -1;
1548
    }
1549

    
1550
    t->priv = (void *)(long)host_timer;
1551

    
1552
    return 0;
1553
}
1554

    
1555
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1556
{
1557
    timer_t host_timer = (timer_t)(long)t->priv;
1558

    
1559
    timer_delete(host_timer);
1560
}
1561

    
1562
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1563
{
1564
    timer_t host_timer = (timer_t)(long)t->priv;
1565
    struct itimerspec timeout;
1566
    int64_t nearest_delta_us = INT64_MAX;
1567
    int64_t current_us;
1568

    
1569
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1570
                !active_timers[QEMU_TIMER_VIRTUAL])
1571
        return;
1572

    
1573
    nearest_delta_us = qemu_next_deadline_dyntick();
1574

    
1575
    /* check whether a timer is already running */
1576
    if (timer_gettime(host_timer, &timeout)) {
1577
        perror("gettime");
1578
        fprintf(stderr, "Internal timer error: aborting\n");
1579
        exit(1);
1580
    }
1581
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1582
    if (current_us && current_us <= nearest_delta_us)
1583
        return;
1584

    
1585
    timeout.it_interval.tv_sec = 0;
1586
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1587
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1588
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1589
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1590
        perror("settime");
1591
        fprintf(stderr, "Internal timer error: aborting\n");
1592
        exit(1);
1593
    }
1594
}
1595

    
1596
#endif /* defined(__linux__) */
1597

    
1598
static int unix_start_timer(struct qemu_alarm_timer *t)
1599
{
1600
    struct sigaction act;
1601
    struct itimerval itv;
1602
    int err;
1603

    
1604
    /* timer signal */
1605
    sigfillset(&act.sa_mask);
1606
    act.sa_flags = 0;
1607
    act.sa_handler = host_alarm_handler;
1608

    
1609
    sigaction(SIGALRM, &act, NULL);
1610

    
1611
    itv.it_interval.tv_sec = 0;
1612
    /* for i386 kernel 2.6 to get 1 ms */
1613
    itv.it_interval.tv_usec = 999;
1614
    itv.it_value.tv_sec = 0;
1615
    itv.it_value.tv_usec = 10 * 1000;
1616

    
1617
    err = setitimer(ITIMER_REAL, &itv, NULL);
1618
    if (err)
1619
        return -1;
1620

    
1621
    return 0;
1622
}
1623

    
1624
static void unix_stop_timer(struct qemu_alarm_timer *t)
1625
{
1626
    struct itimerval itv;
1627

    
1628
    memset(&itv, 0, sizeof(itv));
1629
    setitimer(ITIMER_REAL, &itv, NULL);
1630
}
1631

    
1632
#endif /* !defined(_WIN32) */
1633

    
1634
static void try_to_rearm_timer(void *opaque)
1635
{
1636
    struct qemu_alarm_timer *t = opaque;
1637
#ifndef _WIN32
1638
    ssize_t len;
1639

    
1640
    /* Drain the notify pipe */
1641
    do {
1642
        char buffer[512];
1643
        len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1644
    } while ((len == -1 && errno == EINTR) || len > 0);
1645
#endif
1646

    
1647
    if (t->flags & ALARM_FLAG_EXPIRED) {
1648
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1649
        qemu_rearm_alarm_timer(alarm_timer);
1650
    }
1651
}
1652

    
1653
#ifdef _WIN32
1654

    
1655
static int win32_start_timer(struct qemu_alarm_timer *t)
1656
{
1657
    TIMECAPS tc;
1658
    struct qemu_alarm_win32 *data = t->priv;
1659
    UINT flags;
1660

    
1661
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1662
    if (!data->host_alarm) {
1663
        perror("Failed CreateEvent");
1664
        return -1;
1665
    }
1666

    
1667
    memset(&tc, 0, sizeof(tc));
1668
    timeGetDevCaps(&tc, sizeof(tc));
1669

    
1670
    if (data->period < tc.wPeriodMin)
1671
        data->period = tc.wPeriodMin;
1672

    
1673
    timeBeginPeriod(data->period);
1674

    
1675
    flags = TIME_CALLBACK_FUNCTION;
1676
    if (alarm_has_dynticks(t))
1677
        flags |= TIME_ONESHOT;
1678
    else
1679
        flags |= TIME_PERIODIC;
1680

    
1681
    data->timerId = timeSetEvent(1,         // interval (ms)
1682
                        data->period,       // resolution
1683
                        host_alarm_handler, // function
1684
                        (DWORD)t,           // parameter
1685
                        flags);
1686

    
1687
    if (!data->timerId) {
1688
        perror("Failed to initialize win32 alarm timer");
1689

    
1690
        timeEndPeriod(data->period);
1691
        CloseHandle(data->host_alarm);
1692
        return -1;
1693
    }
1694

    
1695
    qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1696

    
1697
    return 0;
1698
}
1699

    
1700
static void win32_stop_timer(struct qemu_alarm_timer *t)
1701
{
1702
    struct qemu_alarm_win32 *data = t->priv;
1703

    
1704
    timeKillEvent(data->timerId);
1705
    timeEndPeriod(data->period);
1706

    
1707
    CloseHandle(data->host_alarm);
1708
}
1709

    
1710
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1711
{
1712
    struct qemu_alarm_win32 *data = t->priv;
1713
    uint64_t nearest_delta_us;
1714

    
1715
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1716
                !active_timers[QEMU_TIMER_VIRTUAL])
1717
        return;
1718

    
1719
    nearest_delta_us = qemu_next_deadline_dyntick();
1720
    nearest_delta_us /= 1000;
1721

    
1722
    timeKillEvent(data->timerId);
1723

    
1724
    data->timerId = timeSetEvent(1,
1725
                        data->period,
1726
                        host_alarm_handler,
1727
                        (DWORD)t,
1728
                        TIME_ONESHOT | TIME_PERIODIC);
1729

    
1730
    if (!data->timerId) {
1731
        perror("Failed to re-arm win32 alarm timer");
1732

    
1733
        timeEndPeriod(data->period);
1734
        CloseHandle(data->host_alarm);
1735
        exit(1);
1736
    }
1737
}
1738

    
1739
#endif /* _WIN32 */
1740

    
1741
static int init_timer_alarm(void)
1742
{
1743
    struct qemu_alarm_timer *t = NULL;
1744
    int i, err = -1;
1745

    
1746
#ifndef _WIN32
1747
    int fds[2];
1748

    
1749
    err = pipe(fds);
1750
    if (err == -1)
1751
        return -errno;
1752

    
1753
    err = fcntl_setfl(fds[0], O_NONBLOCK);
1754
    if (err < 0)
1755
        goto fail;
1756

    
1757
    err = fcntl_setfl(fds[1], O_NONBLOCK);
1758
    if (err < 0)
1759
        goto fail;
1760

    
1761
    alarm_timer_rfd = fds[0];
1762
    alarm_timer_wfd = fds[1];
1763
#endif
1764

    
1765
    for (i = 0; alarm_timers[i].name; i++) {
1766
        t = &alarm_timers[i];
1767

    
1768
        err = t->start(t);
1769
        if (!err)
1770
            break;
1771
    }
1772

    
1773
    if (err) {
1774
        err = -ENOENT;
1775
        goto fail;
1776
    }
1777

    
1778
#ifndef _WIN32
1779
    qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1780
                         try_to_rearm_timer, NULL, t);
1781
#endif
1782

    
1783
    alarm_timer = t;
1784

    
1785
    return 0;
1786

    
1787
fail:
1788
#ifndef _WIN32
1789
    close(fds[0]);
1790
    close(fds[1]);
1791
#endif
1792
    return err;
1793
}
1794

    
1795
static void quit_timers(void)
1796
{
1797
    alarm_timer->stop(alarm_timer);
1798
    alarm_timer = NULL;
1799
}
1800

    
1801
/***********************************************************/
1802
/* host time/date access */
1803
void qemu_get_timedate(struct tm *tm, int offset)
1804
{
1805
    time_t ti;
1806
    struct tm *ret;
1807

    
1808
    time(&ti);
1809
    ti += offset;
1810
    if (rtc_date_offset == -1) {
1811
        if (rtc_utc)
1812
            ret = gmtime(&ti);
1813
        else
1814
            ret = localtime(&ti);
1815
    } else {
1816
        ti -= rtc_date_offset;
1817
        ret = gmtime(&ti);
1818
    }
1819

    
1820
    memcpy(tm, ret, sizeof(struct tm));
1821
}
1822

    
1823
int qemu_timedate_diff(struct tm *tm)
1824
{
1825
    time_t seconds;
1826

    
1827
    if (rtc_date_offset == -1)
1828
        if (rtc_utc)
1829
            seconds = mktimegm(tm);
1830
        else
1831
            seconds = mktime(tm);
1832
    else
1833
        seconds = mktimegm(tm) + rtc_date_offset;
1834

    
1835
    return seconds - time(NULL);
1836
}
1837

    
1838
#ifdef _WIN32
1839
static void socket_cleanup(void)
1840
{
1841
    WSACleanup();
1842
}
1843

    
1844
static int socket_init(void)
1845
{
1846
    WSADATA Data;
1847
    int ret, err;
1848

    
1849
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1850
    if (ret != 0) {
1851
        err = WSAGetLastError();
1852
        fprintf(stderr, "WSAStartup: %d\n", err);
1853
        return -1;
1854
    }
1855
    atexit(socket_cleanup);
1856
    return 0;
1857
}
1858
#endif
1859

    
1860
const char *get_opt_name(char *buf, int buf_size, const char *p)
1861
{
1862
    char *q;
1863

    
1864
    q = buf;
1865
    while (*p != '\0' && *p != '=') {
1866
        if (q && (q - buf) < buf_size - 1)
1867
            *q++ = *p;
1868
        p++;
1869
    }
1870
    if (q)
1871
        *q = '\0';
1872

    
1873
    return p;
1874
}
1875

    
1876
const char *get_opt_value(char *buf, int buf_size, const char *p)
1877
{
1878
    char *q;
1879

    
1880
    q = buf;
1881
    while (*p != '\0') {
1882
        if (*p == ',') {
1883
            if (*(p + 1) != ',')
1884
                break;
1885
            p++;
1886
        }
1887
        if (q && (q - buf) < buf_size - 1)
1888
            *q++ = *p;
1889
        p++;
1890
    }
1891
    if (q)
1892
        *q = '\0';
1893

    
1894
    return p;
1895
}
1896

    
1897
int get_param_value(char *buf, int buf_size,
1898
                    const char *tag, const char *str)
1899
{
1900
    const char *p;
1901
    char option[128];
1902

    
1903
    p = str;
1904
    for(;;) {
1905
        p = get_opt_name(option, sizeof(option), p);
1906
        if (*p != '=')
1907
            break;
1908
        p++;
1909
        if (!strcmp(tag, option)) {
1910
            (void)get_opt_value(buf, buf_size, p);
1911
            return strlen(buf);
1912
        } else {
1913
            p = get_opt_value(NULL, 0, p);
1914
        }
1915
        if (*p != ',')
1916
            break;
1917
        p++;
1918
    }
1919
    return 0;
1920
}
1921

    
1922
int check_params(char *buf, int buf_size,
1923
                 const char * const *params, const char *str)
1924
{
1925
    const char *p;
1926
    int i;
1927

    
1928
    p = str;
1929
    for(;;) {
1930
        p = get_opt_name(buf, buf_size, p);
1931
        if (*p != '=')
1932
            return -1;
1933
        p++;
1934
        for(i = 0; params[i] != NULL; i++)
1935
            if (!strcmp(params[i], buf))
1936
                break;
1937
        if (params[i] == NULL)
1938
            return -1;
1939
        p = get_opt_value(NULL, 0, p);
1940
        if (*p != ',')
1941
            break;
1942
        p++;
1943
    }
1944
    return 0;
1945
}
1946

    
1947
/***********************************************************/
1948
/* Bluetooth support */
1949
static int nb_hcis;
1950
static int cur_hci;
1951
static struct HCIInfo *hci_table[MAX_NICS];
1952

    
1953
static struct bt_vlan_s {
1954
    struct bt_scatternet_s net;
1955
    int id;
1956
    struct bt_vlan_s *next;
1957
} *first_bt_vlan;
1958

    
1959
/* find or alloc a new bluetooth "VLAN" */
1960
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1961
{
1962
    struct bt_vlan_s **pvlan, *vlan;
1963
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1964
        if (vlan->id == id)
1965
            return &vlan->net;
1966
    }
1967
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1968
    vlan->id = id;
1969
    pvlan = &first_bt_vlan;
1970
    while (*pvlan != NULL)
1971
        pvlan = &(*pvlan)->next;
1972
    *pvlan = vlan;
1973
    return &vlan->net;
1974
}
1975

    
1976
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1977
{
1978
}
1979

    
1980
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1981
{
1982
    return -ENOTSUP;
1983
}
1984

    
1985
static struct HCIInfo null_hci = {
1986
    .cmd_send = null_hci_send,
1987
    .sco_send = null_hci_send,
1988
    .acl_send = null_hci_send,
1989
    .bdaddr_set = null_hci_addr_set,
1990
};
1991

    
1992
struct HCIInfo *qemu_next_hci(void)
1993
{
1994
    if (cur_hci == nb_hcis)
1995
        return &null_hci;
1996

    
1997
    return hci_table[cur_hci++];
1998
}
1999

    
2000
static struct HCIInfo *hci_init(const char *str)
2001
{
2002
    char *endp;
2003
    struct bt_scatternet_s *vlan = 0;
2004

    
2005
    if (!strcmp(str, "null"))
2006
        /* null */
2007
        return &null_hci;
2008
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2009
        /* host[:hciN] */
2010
        return bt_host_hci(str[4] ? str + 5 : "hci0");
2011
    else if (!strncmp(str, "hci", 3)) {
2012
        /* hci[,vlan=n] */
2013
        if (str[3]) {
2014
            if (!strncmp(str + 3, ",vlan=", 6)) {
2015
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2016
                if (*endp)
2017
                    vlan = 0;
2018
            }
2019
        } else
2020
            vlan = qemu_find_bt_vlan(0);
2021
        if (vlan)
2022
           return bt_new_hci(vlan);
2023
    }
2024

    
2025
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2026

    
2027
    return 0;
2028
}
2029

    
2030
static int bt_hci_parse(const char *str)
2031
{
2032
    struct HCIInfo *hci;
2033
    bdaddr_t bdaddr;
2034

    
2035
    if (nb_hcis >= MAX_NICS) {
2036
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2037
        return -1;
2038
    }
2039

    
2040
    hci = hci_init(str);
2041
    if (!hci)
2042
        return -1;
2043

    
2044
    bdaddr.b[0] = 0x52;
2045
    bdaddr.b[1] = 0x54;
2046
    bdaddr.b[2] = 0x00;
2047
    bdaddr.b[3] = 0x12;
2048
    bdaddr.b[4] = 0x34;
2049
    bdaddr.b[5] = 0x56 + nb_hcis;
2050
    hci->bdaddr_set(hci, bdaddr.b);
2051

    
2052
    hci_table[nb_hcis++] = hci;
2053

    
2054
    return 0;
2055
}
2056

    
2057
static void bt_vhci_add(int vlan_id)
2058
{
2059
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2060

    
2061
    if (!vlan->slave)
2062
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2063
                        "an empty scatternet %i\n", vlan_id);
2064

    
2065
    bt_vhci_init(bt_new_hci(vlan));
2066
}
2067

    
2068
static struct bt_device_s *bt_device_add(const char *opt)
2069
{
2070
    struct bt_scatternet_s *vlan;
2071
    int vlan_id = 0;
2072
    char *endp = strstr(opt, ",vlan=");
2073
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2074
    char devname[10];
2075

    
2076
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2077

    
2078
    if (endp) {
2079
        vlan_id = strtol(endp + 6, &endp, 0);
2080
        if (*endp) {
2081
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2082
            return 0;
2083
        }
2084
    }
2085

    
2086
    vlan = qemu_find_bt_vlan(vlan_id);
2087

    
2088
    if (!vlan->slave)
2089
        fprintf(stderr, "qemu: warning: adding a slave device to "
2090
                        "an empty scatternet %i\n", vlan_id);
2091

    
2092
    if (!strcmp(devname, "keyboard"))
2093
        return bt_keyboard_init(vlan);
2094

    
2095
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2096
    return 0;
2097
}
2098

    
2099
static int bt_parse(const char *opt)
2100
{
2101
    const char *endp, *p;
2102
    int vlan;
2103

    
2104
    if (strstart(opt, "hci", &endp)) {
2105
        if (!*endp || *endp == ',') {
2106
            if (*endp)
2107
                if (!strstart(endp, ",vlan=", 0))
2108
                    opt = endp + 1;
2109

    
2110
            return bt_hci_parse(opt);
2111
       }
2112
    } else if (strstart(opt, "vhci", &endp)) {
2113
        if (!*endp || *endp == ',') {
2114
            if (*endp) {
2115
                if (strstart(endp, ",vlan=", &p)) {
2116
                    vlan = strtol(p, (char **) &endp, 0);
2117
                    if (*endp) {
2118
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2119
                        return 1;
2120
                    }
2121
                } else {
2122
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2123
                    return 1;
2124
                }
2125
            } else
2126
                vlan = 0;
2127

    
2128
            bt_vhci_add(vlan);
2129
            return 0;
2130
        }
2131
    } else if (strstart(opt, "device:", &endp))
2132
        return !bt_device_add(endp);
2133

    
2134
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2135
    return 1;
2136
}
2137

    
2138
/***********************************************************/
2139
/* QEMU Block devices */
2140

    
2141
#define HD_ALIAS "index=%d,media=disk"
2142
#ifdef TARGET_PPC
2143
#define CDROM_ALIAS "index=1,media=cdrom"
2144
#else
2145
#define CDROM_ALIAS "index=2,media=cdrom"
2146
#endif
2147
#define FD_ALIAS "index=%d,if=floppy"
2148
#define PFLASH_ALIAS "if=pflash"
2149
#define MTD_ALIAS "if=mtd"
2150
#define SD_ALIAS "index=0,if=sd"
2151

    
2152
static int drive_add(const char *file, const char *fmt, ...)
2153
{
2154
    va_list ap;
2155

    
2156
    if (nb_drives_opt >= MAX_DRIVES) {
2157
        fprintf(stderr, "qemu: too many drives\n");
2158
        exit(1);
2159
    }
2160

    
2161
    drives_opt[nb_drives_opt].file = file;
2162
    va_start(ap, fmt);
2163
    vsnprintf(drives_opt[nb_drives_opt].opt,
2164
              sizeof(drives_opt[0].opt), fmt, ap);
2165
    va_end(ap);
2166

    
2167
    return nb_drives_opt++;
2168
}
2169

    
2170
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2171
{
2172
    int index;
2173

    
2174
    /* seek interface, bus and unit */
2175

    
2176
    for (index = 0; index < nb_drives; index++)
2177
        if (drives_table[index].type == type &&
2178
            drives_table[index].bus == bus &&
2179
            drives_table[index].unit == unit)
2180
        return index;
2181

    
2182
    return -1;
2183
}
2184

    
2185
int drive_get_max_bus(BlockInterfaceType type)
2186
{
2187
    int max_bus;
2188
    int index;
2189

    
2190
    max_bus = -1;
2191
    for (index = 0; index < nb_drives; index++) {
2192
        if(drives_table[index].type == type &&
2193
           drives_table[index].bus > max_bus)
2194
            max_bus = drives_table[index].bus;
2195
    }
2196
    return max_bus;
2197
}
2198

    
2199
static void bdrv_format_print(void *opaque, const char *name)
2200
{
2201
    fprintf(stderr, " %s", name);
2202
}
2203

    
2204
static int drive_init(struct drive_opt *arg, int snapshot,
2205
                      QEMUMachine *machine)
2206
{
2207
    char buf[128];
2208
    char file[1024];
2209
    char devname[128];
2210
    const char *mediastr = "";
2211
    BlockInterfaceType type;
2212
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2213
    int bus_id, unit_id;
2214
    int cyls, heads, secs, translation;
2215
    BlockDriverState *bdrv;
2216
    BlockDriver *drv = NULL;
2217
    int max_devs;
2218
    int index;
2219
    int cache;
2220
    int bdrv_flags;
2221
    char *str = arg->opt;
2222
    static const char * const params[] = { "bus", "unit", "if", "index",
2223
                                           "cyls", "heads", "secs", "trans",
2224
                                           "media", "snapshot", "file",
2225
                                           "cache", "format", NULL };
2226

    
2227
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2228
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2229
                         buf, str);
2230
         return -1;
2231
    }
2232

    
2233
    file[0] = 0;
2234
    cyls = heads = secs = 0;
2235
    bus_id = 0;
2236
    unit_id = -1;
2237
    translation = BIOS_ATA_TRANSLATION_AUTO;
2238
    index = -1;
2239
    cache = 3;
2240

    
2241
    if (machine->use_scsi) {
2242
        type = IF_SCSI;
2243
        max_devs = MAX_SCSI_DEVS;
2244
        pstrcpy(devname, sizeof(devname), "scsi");
2245
    } else {
2246
        type = IF_IDE;
2247
        max_devs = MAX_IDE_DEVS;
2248
        pstrcpy(devname, sizeof(devname), "ide");
2249
    }
2250
    media = MEDIA_DISK;
2251

    
2252
    /* extract parameters */
2253

    
2254
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2255
        bus_id = strtol(buf, NULL, 0);
2256
        if (bus_id < 0) {
2257
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2258
            return -1;
2259
        }
2260
    }
2261

    
2262
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2263
        unit_id = strtol(buf, NULL, 0);
2264
        if (unit_id < 0) {
2265
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2266
            return -1;
2267
        }
2268
    }
2269

    
2270
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2271
        pstrcpy(devname, sizeof(devname), buf);
2272
        if (!strcmp(buf, "ide")) {
2273
            type = IF_IDE;
2274
            max_devs = MAX_IDE_DEVS;
2275
        } else if (!strcmp(buf, "scsi")) {
2276
            type = IF_SCSI;
2277
            max_devs = MAX_SCSI_DEVS;
2278
        } else if (!strcmp(buf, "floppy")) {
2279
            type = IF_FLOPPY;
2280
            max_devs = 0;
2281
        } else if (!strcmp(buf, "pflash")) {
2282
            type = IF_PFLASH;
2283
            max_devs = 0;
2284
        } else if (!strcmp(buf, "mtd")) {
2285
            type = IF_MTD;
2286
            max_devs = 0;
2287
        } else if (!strcmp(buf, "sd")) {
2288
            type = IF_SD;
2289
            max_devs = 0;
2290
        } else if (!strcmp(buf, "virtio")) {
2291
            type = IF_VIRTIO;
2292
            max_devs = 0;
2293
        } else {
2294
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2295
            return -1;
2296
        }
2297
    }
2298

    
2299
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2300
        index = strtol(buf, NULL, 0);
2301
        if (index < 0) {
2302
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2303
            return -1;
2304
        }
2305
    }
2306

    
2307
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2308
        cyls = strtol(buf, NULL, 0);
2309
    }
2310

    
2311
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2312
        heads = strtol(buf, NULL, 0);
2313
    }
2314

    
2315
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2316
        secs = strtol(buf, NULL, 0);
2317
    }
2318

    
2319
    if (cyls || heads || secs) {
2320
        if (cyls < 1 || cyls > 16383) {
2321
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2322
            return -1;
2323
        }
2324
        if (heads < 1 || heads > 16) {
2325
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2326
            return -1;
2327
        }
2328
        if (secs < 1 || secs > 63) {
2329
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2330
            return -1;
2331
        }
2332
    }
2333

    
2334
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2335
        if (!cyls) {
2336
            fprintf(stderr,
2337
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2338
                    str);
2339
            return -1;
2340
        }
2341
        if (!strcmp(buf, "none"))
2342
            translation = BIOS_ATA_TRANSLATION_NONE;
2343
        else if (!strcmp(buf, "lba"))
2344
            translation = BIOS_ATA_TRANSLATION_LBA;
2345
        else if (!strcmp(buf, "auto"))
2346
            translation = BIOS_ATA_TRANSLATION_AUTO;
2347
        else {
2348
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2349
            return -1;
2350
        }
2351
    }
2352

    
2353
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2354
        if (!strcmp(buf, "disk")) {
2355
            media = MEDIA_DISK;
2356
        } else if (!strcmp(buf, "cdrom")) {
2357
            if (cyls || secs || heads) {
2358
                fprintf(stderr,
2359
                        "qemu: '%s' invalid physical CHS format\n", str);
2360
                return -1;
2361
            }
2362
            media = MEDIA_CDROM;
2363
        } else {
2364
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2365
            return -1;
2366
        }
2367
    }
2368

    
2369
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2370
        if (!strcmp(buf, "on"))
2371
            snapshot = 1;
2372
        else if (!strcmp(buf, "off"))
2373
            snapshot = 0;
2374
        else {
2375
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2376
            return -1;
2377
        }
2378
    }
2379

    
2380
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2381
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2382
            cache = 0;
2383
        else if (!strcmp(buf, "writethrough"))
2384
            cache = 1;
2385
        else if (!strcmp(buf, "writeback"))
2386
            cache = 2;
2387
        else {
2388
           fprintf(stderr, "qemu: invalid cache option\n");
2389
           return -1;
2390
        }
2391
    }
2392

    
2393
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2394
       if (strcmp(buf, "?") == 0) {
2395
            fprintf(stderr, "qemu: Supported formats:");
2396
            bdrv_iterate_format(bdrv_format_print, NULL);
2397
            fprintf(stderr, "\n");
2398
            return -1;
2399
        }
2400
        drv = bdrv_find_format(buf);
2401
        if (!drv) {
2402
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2403
            return -1;
2404
        }
2405
    }
2406

    
2407
    if (arg->file == NULL)
2408
        get_param_value(file, sizeof(file), "file", str);
2409
    else
2410
        pstrcpy(file, sizeof(file), arg->file);
2411

    
2412
    /* compute bus and unit according index */
2413

    
2414
    if (index != -1) {
2415
        if (bus_id != 0 || unit_id != -1) {
2416
            fprintf(stderr,
2417
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2418
            return -1;
2419
        }
2420
        if (max_devs == 0)
2421
        {
2422
            unit_id = index;
2423
            bus_id = 0;
2424
        } else {
2425
            unit_id = index % max_devs;
2426
            bus_id = index / max_devs;
2427
        }
2428
    }
2429

    
2430
    /* if user doesn't specify a unit_id,
2431
     * try to find the first free
2432
     */
2433

    
2434
    if (unit_id == -1) {
2435
       unit_id = 0;
2436
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2437
           unit_id++;
2438
           if (max_devs && unit_id >= max_devs) {
2439
               unit_id -= max_devs;
2440
               bus_id++;
2441
           }
2442
       }
2443
    }
2444

    
2445
    /* check unit id */
2446

    
2447
    if (max_devs && unit_id >= max_devs) {
2448
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2449
                        str, unit_id, max_devs - 1);
2450
        return -1;
2451
    }
2452

    
2453
    /*
2454
     * ignore multiple definitions
2455
     */
2456

    
2457
    if (drive_get_index(type, bus_id, unit_id) != -1)
2458
        return 0;
2459

    
2460
    /* init */
2461

    
2462
    if (type == IF_IDE || type == IF_SCSI)
2463
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2464
    if (max_devs)
2465
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2466
                 devname, bus_id, mediastr, unit_id);
2467
    else
2468
        snprintf(buf, sizeof(buf), "%s%s%i",
2469
                 devname, mediastr, unit_id);
2470
    bdrv = bdrv_new(buf);
2471
    drives_table[nb_drives].bdrv = bdrv;
2472
    drives_table[nb_drives].type = type;
2473
    drives_table[nb_drives].bus = bus_id;
2474
    drives_table[nb_drives].unit = unit_id;
2475
    nb_drives++;
2476

    
2477
    switch(type) {
2478
    case IF_IDE:
2479
    case IF_SCSI:
2480
        switch(media) {
2481
        case MEDIA_DISK:
2482
            if (cyls != 0) {
2483
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2484
                bdrv_set_translation_hint(bdrv, translation);
2485
            }
2486
            break;
2487
        case MEDIA_CDROM:
2488
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2489
            break;
2490
        }
2491
        break;
2492
    case IF_SD:
2493
        /* FIXME: This isn't really a floppy, but it's a reasonable
2494
           approximation.  */
2495
    case IF_FLOPPY:
2496
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2497
        break;
2498
    case IF_PFLASH:
2499
    case IF_MTD:
2500
    case IF_VIRTIO:
2501
        break;
2502
    }
2503
    if (!file[0])
2504
        return 0;
2505
    bdrv_flags = 0;
2506
    if (snapshot) {
2507
        bdrv_flags |= BDRV_O_SNAPSHOT;
2508
        cache = 2; /* always use write-back with snapshot */
2509
    }
2510
    if (cache == 0) /* no caching */
2511
        bdrv_flags |= BDRV_O_NOCACHE;
2512
    else if (cache == 2) /* write-back */
2513
        bdrv_flags |= BDRV_O_CACHE_WB;
2514
    else if (cache == 3) /* not specified */
2515
        bdrv_flags |= BDRV_O_CACHE_DEF;
2516
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2517
        fprintf(stderr, "qemu: could not open disk image %s\n",
2518
                        file);
2519
        return -1;
2520
    }
2521
    return 0;
2522
}
2523

    
2524
/***********************************************************/
2525
/* USB devices */
2526

    
2527
static USBPort *used_usb_ports;
2528
static USBPort *free_usb_ports;
2529

    
2530
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2531
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2532
                            usb_attachfn attach)
2533
{
2534
    port->opaque = opaque;
2535
    port->index = index;
2536
    port->attach = attach;
2537
    port->next = free_usb_ports;
2538
    free_usb_ports = port;
2539
}
2540

    
2541
int usb_device_add_dev(USBDevice *dev)
2542
{
2543
    USBPort *port;
2544

    
2545
    /* Find a USB port to add the device to.  */
2546
    port = free_usb_ports;
2547
    if (!port->next) {
2548
        USBDevice *hub;
2549

    
2550
        /* Create a new hub and chain it on.  */
2551
        free_usb_ports = NULL;
2552
        port->next = used_usb_ports;
2553
        used_usb_ports = port;
2554

    
2555
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2556
        usb_attach(port, hub);
2557
        port = free_usb_ports;
2558
    }
2559

    
2560
    free_usb_ports = port->next;
2561
    port->next = used_usb_ports;
2562
    used_usb_ports = port;
2563
    usb_attach(port, dev);
2564
    return 0;
2565
}
2566

    
2567
static int usb_device_add(const char *devname)
2568
{
2569
    const char *p;
2570
    USBDevice *dev;
2571

    
2572
    if (!free_usb_ports)
2573
        return -1;
2574

    
2575
    if (strstart(devname, "host:", &p)) {
2576
        dev = usb_host_device_open(p);
2577
    } else if (!strcmp(devname, "mouse")) {
2578
        dev = usb_mouse_init();
2579
    } else if (!strcmp(devname, "tablet")) {
2580
        dev = usb_tablet_init();
2581
    } else if (!strcmp(devname, "keyboard")) {
2582
        dev = usb_keyboard_init();
2583
    } else if (strstart(devname, "disk:", &p)) {
2584
        dev = usb_msd_init(p);
2585
    } else if (!strcmp(devname, "wacom-tablet")) {
2586
        dev = usb_wacom_init();
2587
    } else if (strstart(devname, "serial:", &p)) {
2588
        dev = usb_serial_init(p);
2589
#ifdef CONFIG_BRLAPI
2590
    } else if (!strcmp(devname, "braille")) {
2591
        dev = usb_baum_init();
2592
#endif
2593
    } else if (strstart(devname, "net:", &p)) {
2594
        int nic = nb_nics;
2595

    
2596
        if (net_client_init("nic", p) < 0)
2597
            return -1;
2598
        nd_table[nic].model = "usb";
2599
        dev = usb_net_init(&nd_table[nic]);
2600
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2601
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2602
                        bt_new_hci(qemu_find_bt_vlan(0)));
2603
    } else {
2604
        return -1;
2605
    }
2606
    if (!dev)
2607
        return -1;
2608

    
2609
    return usb_device_add_dev(dev);
2610
}
2611

    
2612
int usb_device_del_addr(int bus_num, int addr)
2613
{
2614
    USBPort *port;
2615
    USBPort **lastp;
2616
    USBDevice *dev;
2617

    
2618
    if (!used_usb_ports)
2619
        return -1;
2620

    
2621
    if (bus_num != 0)
2622
        return -1;
2623

    
2624
    lastp = &used_usb_ports;
2625
    port = used_usb_ports;
2626
    while (port && port->dev->addr != addr) {
2627
        lastp = &port->next;
2628
        port = port->next;
2629
    }
2630

    
2631
    if (!port)
2632
        return -1;
2633

    
2634
    dev = port->dev;
2635
    *lastp = port->next;
2636
    usb_attach(port, NULL);
2637
    dev->handle_destroy(dev);
2638
    port->next = free_usb_ports;
2639
    free_usb_ports = port;
2640
    return 0;
2641
}
2642

    
2643
static int usb_device_del(const char *devname)
2644
{
2645
    int bus_num, addr;
2646
    const char *p;
2647

    
2648
    if (strstart(devname, "host:", &p))
2649
        return usb_host_device_close(p);
2650

    
2651
    if (!used_usb_ports)
2652
        return -1;
2653

    
2654
    p = strchr(devname, '.');
2655
    if (!p)
2656
        return -1;
2657
    bus_num = strtoul(devname, NULL, 0);
2658
    addr = strtoul(p + 1, NULL, 0);
2659

    
2660
    return usb_device_del_addr(bus_num, addr);
2661
}
2662

    
2663
void do_usb_add(const char *devname)
2664
{
2665
    usb_device_add(devname);
2666
}
2667

    
2668
void do_usb_del(const char *devname)
2669
{
2670
    usb_device_del(devname);
2671
}
2672

    
2673
void usb_info(void)
2674
{
2675
    USBDevice *dev;
2676
    USBPort *port;
2677
    const char *speed_str;
2678

    
2679
    if (!usb_enabled) {
2680
        term_printf("USB support not enabled\n");
2681
        return;
2682
    }
2683

    
2684
    for (port = used_usb_ports; port; port = port->next) {
2685
        dev = port->dev;
2686
        if (!dev)
2687
            continue;
2688
        switch(dev->speed) {
2689
        case USB_SPEED_LOW:
2690
            speed_str = "1.5";
2691
            break;
2692
        case USB_SPEED_FULL:
2693
            speed_str = "12";
2694
            break;
2695
        case USB_SPEED_HIGH:
2696
            speed_str = "480";
2697
            break;
2698
        default:
2699
            speed_str = "?";
2700
            break;
2701
        }
2702
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
2703
                    0, dev->addr, speed_str, dev->devname);
2704
    }
2705
}
2706

    
2707
/***********************************************************/
2708
/* PCMCIA/Cardbus */
2709

    
2710
static struct pcmcia_socket_entry_s {
2711
    struct pcmcia_socket_s *socket;
2712
    struct pcmcia_socket_entry_s *next;
2713
} *pcmcia_sockets = 0;
2714

    
2715
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2716
{
2717
    struct pcmcia_socket_entry_s *entry;
2718

    
2719
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2720
    entry->socket = socket;
2721
    entry->next = pcmcia_sockets;
2722
    pcmcia_sockets = entry;
2723
}
2724

    
2725
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2726
{
2727
    struct pcmcia_socket_entry_s *entry, **ptr;
2728

    
2729
    ptr = &pcmcia_sockets;
2730
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2731
        if (entry->socket == socket) {
2732
            *ptr = entry->next;
2733
            qemu_free(entry);
2734
        }
2735
}
2736

    
2737
void pcmcia_info(void)
2738
{
2739
    struct pcmcia_socket_entry_s *iter;
2740
    if (!pcmcia_sockets)
2741
        term_printf("No PCMCIA sockets\n");
2742

    
2743
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2744
        term_printf("%s: %s\n", iter->socket->slot_string,
2745
                    iter->socket->attached ? iter->socket->card_string :
2746
                    "Empty");
2747
}
2748

    
2749
/***********************************************************/
2750
/* dumb display */
2751

    
2752
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2753
{
2754
}
2755

    
2756
static void dumb_resize(DisplayState *ds, int w, int h)
2757
{
2758
}
2759

    
2760
static void dumb_display_init(DisplayState *ds)
2761
{
2762
    ds->data = NULL;
2763
    ds->linesize = 0;
2764
    ds->depth = 0;
2765
    ds->dpy_update = dumb_update;
2766
    ds->dpy_resize = dumb_resize;
2767
    ds->dpy_refresh = NULL;
2768
    ds->gui_timer_interval = 0;
2769
    ds->idle = 1;
2770
}
2771

    
2772
/***********************************************************/
2773
/* I/O handling */
2774

    
2775
#define MAX_IO_HANDLERS 64
2776

    
2777
typedef struct IOHandlerRecord {
2778
    int fd;
2779
    IOCanRWHandler *fd_read_poll;
2780
    IOHandler *fd_read;
2781
    IOHandler *fd_write;
2782
    int deleted;
2783
    void *opaque;
2784
    /* temporary data */
2785
    struct pollfd *ufd;
2786
    struct IOHandlerRecord *next;
2787
} IOHandlerRecord;
2788

    
2789
static IOHandlerRecord *first_io_handler;
2790

    
2791
/* XXX: fd_read_poll should be suppressed, but an API change is
2792
   necessary in the character devices to suppress fd_can_read(). */
2793
int qemu_set_fd_handler2(int fd,
2794
                         IOCanRWHandler *fd_read_poll,
2795
                         IOHandler *fd_read,
2796
                         IOHandler *fd_write,
2797
                         void *opaque)
2798
{
2799
    IOHandlerRecord **pioh, *ioh;
2800

    
2801
    if (!fd_read && !fd_write) {
2802
        pioh = &first_io_handler;
2803
        for(;;) {
2804
            ioh = *pioh;
2805
            if (ioh == NULL)
2806
                break;
2807
            if (ioh->fd == fd) {
2808
                ioh->deleted = 1;
2809
                break;
2810
            }
2811
            pioh = &ioh->next;
2812
        }
2813
    } else {
2814
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2815
            if (ioh->fd == fd)
2816
                goto found;
2817
        }
2818
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2819
        if (!ioh)
2820
            return -1;
2821
        ioh->next = first_io_handler;
2822
        first_io_handler = ioh;
2823
    found:
2824
        ioh->fd = fd;
2825
        ioh->fd_read_poll = fd_read_poll;
2826
        ioh->fd_read = fd_read;
2827
        ioh->fd_write = fd_write;
2828
        ioh->opaque = opaque;
2829
        ioh->deleted = 0;
2830
    }
2831
    return 0;
2832
}
2833

    
2834
int qemu_set_fd_handler(int fd,
2835
                        IOHandler *fd_read,
2836
                        IOHandler *fd_write,
2837
                        void *opaque)
2838
{
2839
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2840
}
2841

    
2842
#ifdef _WIN32
2843
/***********************************************************/
2844
/* Polling handling */
2845

    
2846
typedef struct PollingEntry {
2847
    PollingFunc *func;
2848
    void *opaque;
2849
    struct PollingEntry *next;
2850
} PollingEntry;
2851

    
2852
static PollingEntry *first_polling_entry;
2853

    
2854
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2855
{
2856
    PollingEntry **ppe, *pe;
2857
    pe = qemu_mallocz(sizeof(PollingEntry));
2858
    if (!pe)
2859
        return -1;
2860
    pe->func = func;
2861
    pe->opaque = opaque;
2862
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2863
    *ppe = pe;
2864
    return 0;
2865
}
2866

    
2867
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2868
{
2869
    PollingEntry **ppe, *pe;
2870
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2871
        pe = *ppe;
2872
        if (pe->func == func && pe->opaque == opaque) {
2873
            *ppe = pe->next;
2874
            qemu_free(pe);
2875
            break;
2876
        }
2877
    }
2878
}
2879

    
2880
/***********************************************************/
2881
/* Wait objects support */
2882
typedef struct WaitObjects {
2883
    int num;
2884
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2885
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2886
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2887
} WaitObjects;
2888

    
2889
static WaitObjects wait_objects = {0};
2890

    
2891
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2892
{
2893
    WaitObjects *w = &wait_objects;
2894

    
2895
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2896
        return -1;
2897
    w->events[w->num] = handle;
2898
    w->func[w->num] = func;
2899
    w->opaque[w->num] = opaque;
2900
    w->num++;
2901
    return 0;
2902
}
2903

    
2904
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2905
{
2906
    int i, found;
2907
    WaitObjects *w = &wait_objects;
2908

    
2909
    found = 0;
2910
    for (i = 0; i < w->num; i++) {
2911
        if (w->events[i] == handle)
2912
            found = 1;
2913
        if (found) {
2914
            w->events[i] = w->events[i + 1];
2915
            w->func[i] = w->func[i + 1];
2916
            w->opaque[i] = w->opaque[i + 1];
2917
        }
2918
    }
2919
    if (found)
2920
        w->num--;
2921
}
2922
#endif
2923

    
2924
/***********************************************************/
2925
/* ram save/restore */
2926

    
2927
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2928
{
2929
    int v;
2930

    
2931
    v = qemu_get_byte(f);
2932
    switch(v) {
2933
    case 0:
2934
        if (qemu_get_buffer(f, buf, len) != len)
2935
            return -EIO;
2936
        break;
2937
    case 1:
2938
        v = qemu_get_byte(f);
2939
        memset(buf, v, len);
2940
        break;
2941
    default:
2942
        return -EINVAL;
2943
    }
2944

    
2945
    if (qemu_file_has_error(f))
2946
        return -EIO;
2947

    
2948
    return 0;
2949
}
2950

    
2951
static int ram_load_v1(QEMUFile *f, void *opaque)
2952
{
2953
    int ret;
2954
    ram_addr_t i;
2955

    
2956
    if (qemu_get_be32(f) != phys_ram_size)
2957
        return -EINVAL;
2958
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2959
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2960
        if (ret)
2961
            return ret;
2962
    }
2963
    return 0;
2964
}
2965

    
2966
#define BDRV_HASH_BLOCK_SIZE 1024
2967
#define IOBUF_SIZE 4096
2968
#define RAM_CBLOCK_MAGIC 0xfabe
2969

    
2970
typedef struct RamDecompressState {
2971
    z_stream zstream;
2972
    QEMUFile *f;
2973
    uint8_t buf[IOBUF_SIZE];
2974
} RamDecompressState;
2975

    
2976
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2977
{
2978
    int ret;
2979
    memset(s, 0, sizeof(*s));
2980
    s->f = f;
2981
    ret = inflateInit(&s->zstream);
2982
    if (ret != Z_OK)
2983
        return -1;
2984
    return 0;
2985
}
2986

    
2987
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2988
{
2989
    int ret, clen;
2990

    
2991
    s->zstream.avail_out = len;
2992
    s->zstream.next_out = buf;
2993
    while (s->zstream.avail_out > 0) {
2994
        if (s->zstream.avail_in == 0) {
2995
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2996
                return -1;
2997
            clen = qemu_get_be16(s->f);
2998
            if (clen > IOBUF_SIZE)
2999
                return -1;
3000
            qemu_get_buffer(s->f, s->buf, clen);
3001
            s->zstream.avail_in = clen;
3002
            s->zstream.next_in = s->buf;
3003
        }
3004
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3005
        if (ret != Z_OK && ret != Z_STREAM_END) {
3006
            return -1;
3007
        }
3008
    }
3009
    return 0;
3010
}
3011

    
3012
static void ram_decompress_close(RamDecompressState *s)
3013
{
3014
    inflateEnd(&s->zstream);
3015
}
3016

    
3017
#define RAM_SAVE_FLAG_FULL        0x01
3018
#define RAM_SAVE_FLAG_COMPRESS        0x02
3019
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3020
#define RAM_SAVE_FLAG_PAGE        0x08
3021
#define RAM_SAVE_FLAG_EOS        0x10
3022

    
3023
static int is_dup_page(uint8_t *page, uint8_t ch)
3024
{
3025
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3026
    uint32_t *array = (uint32_t *)page;
3027
    int i;
3028

    
3029
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3030
        if (array[i] != val)
3031
            return 0;
3032
    }
3033

    
3034
    return 1;
3035
}
3036

    
3037
static int ram_save_block(QEMUFile *f)
3038
{
3039
    static ram_addr_t current_addr = 0;
3040
    ram_addr_t saved_addr = current_addr;
3041
    ram_addr_t addr = 0;
3042
    int found = 0;
3043

    
3044
    while (addr < phys_ram_size) {
3045
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3046
            uint8_t ch;
3047

    
3048
            cpu_physical_memory_reset_dirty(current_addr,
3049
                                            current_addr + TARGET_PAGE_SIZE,
3050
                                            MIGRATION_DIRTY_FLAG);
3051

    
3052
            ch = *(phys_ram_base + current_addr);
3053

    
3054
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
3055
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3056
                qemu_put_byte(f, ch);
3057
            } else {
3058
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3059
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3060
            }
3061

    
3062
            found = 1;
3063
            break;
3064
        }
3065
        addr += TARGET_PAGE_SIZE;
3066
        current_addr = (saved_addr + addr) % phys_ram_size;
3067
    }
3068

    
3069
    return found;
3070
}
3071

    
3072
static ram_addr_t ram_save_threshold = 10;
3073

    
3074
static ram_addr_t ram_save_remaining(void)
3075
{
3076
    ram_addr_t addr;
3077
    ram_addr_t count = 0;
3078

    
3079
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3080
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3081
            count++;
3082
    }
3083

    
3084
    return count;
3085
}
3086

    
3087
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3088
{
3089
    ram_addr_t addr;
3090

    
3091
    if (stage == 1) {
3092
        /* Make sure all dirty bits are set */
3093
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3094
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3095
                cpu_physical_memory_set_dirty(addr);
3096
        }
3097
        
3098
        /* Enable dirty memory tracking */
3099
        cpu_physical_memory_set_dirty_tracking(1);
3100

    
3101
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3102
    }
3103

    
3104
    while (!qemu_file_rate_limit(f)) {
3105
        int ret;
3106

    
3107
        ret = ram_save_block(f);
3108
        if (ret == 0) /* no more blocks */
3109
            break;
3110
    }
3111

    
3112
    /* try transferring iterative blocks of memory */
3113

    
3114
    if (stage == 3) {
3115
        cpu_physical_memory_set_dirty_tracking(0);
3116

    
3117
        /* flush all remaining blocks regardless of rate limiting */
3118
        while (ram_save_block(f) != 0);
3119
    }
3120

    
3121
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3122

    
3123
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3124
}
3125

    
3126
static int ram_load_dead(QEMUFile *f, void *opaque)
3127
{
3128
    RamDecompressState s1, *s = &s1;
3129
    uint8_t buf[10];
3130
    ram_addr_t i;
3131

    
3132
    if (ram_decompress_open(s, f) < 0)
3133
        return -EINVAL;
3134
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3135
        if (ram_decompress_buf(s, buf, 1) < 0) {
3136
            fprintf(stderr, "Error while reading ram block header\n");
3137
            goto error;
3138
        }
3139
        if (buf[0] == 0) {
3140
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3141
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3142
                goto error;
3143
            }
3144
        } else {
3145
        error:
3146
            printf("Error block header\n");
3147
            return -EINVAL;
3148
        }
3149
    }
3150
    ram_decompress_close(s);
3151

    
3152
    return 0;
3153
}
3154

    
3155
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3156
{
3157
    ram_addr_t addr;
3158
    int flags;
3159

    
3160
    if (version_id == 1)
3161
        return ram_load_v1(f, opaque);
3162

    
3163
    if (version_id == 2) {
3164
        if (qemu_get_be32(f) != phys_ram_size)
3165
            return -EINVAL;
3166
        return ram_load_dead(f, opaque);
3167
    }
3168

    
3169
    if (version_id != 3)
3170
        return -EINVAL;
3171

    
3172
    do {
3173
        addr = qemu_get_be64(f);
3174

    
3175
        flags = addr & ~TARGET_PAGE_MASK;
3176
        addr &= TARGET_PAGE_MASK;
3177

    
3178
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3179
            if (addr != phys_ram_size)
3180
                return -EINVAL;
3181
        }
3182

    
3183
        if (flags & RAM_SAVE_FLAG_FULL) {
3184
            if (ram_load_dead(f, opaque) < 0)
3185
                return -EINVAL;
3186
        }
3187
        
3188
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3189
            uint8_t ch = qemu_get_byte(f);
3190
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3191
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3192
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3193
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3194

    
3195
    return 0;
3196
}
3197

    
3198
void qemu_service_io(void)
3199
{
3200
    CPUState *env = cpu_single_env;
3201
    if (env) {
3202
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3203
#ifdef USE_KQEMU
3204
        if (env->kqemu_enabled) {
3205
            kqemu_cpu_interrupt(env);
3206
        }
3207
#endif
3208
    }
3209
}
3210

    
3211
/***********************************************************/
3212
/* bottom halves (can be seen as timers which expire ASAP) */
3213

    
3214
struct QEMUBH {
3215
    QEMUBHFunc *cb;
3216
    void *opaque;
3217
    int scheduled;
3218
    int idle;
3219
    int deleted;
3220
    QEMUBH *next;
3221
};
3222

    
3223
static QEMUBH *first_bh = NULL;
3224

    
3225
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3226
{
3227
    QEMUBH *bh;
3228
    bh = qemu_mallocz(sizeof(QEMUBH));
3229
    if (!bh)
3230
        return NULL;
3231
    bh->cb = cb;
3232
    bh->opaque = opaque;
3233
    bh->next = first_bh;
3234
    first_bh = bh;
3235
    return bh;
3236
}
3237

    
3238
int qemu_bh_poll(void)
3239
{
3240
    QEMUBH *bh, **bhp;
3241
    int ret;
3242

    
3243
    ret = 0;
3244
    for (bh = first_bh; bh; bh = bh->next) {
3245
        if (!bh->deleted && bh->scheduled) {
3246
            bh->scheduled = 0;
3247
            if (!bh->idle)
3248
                ret = 1;
3249
            bh->idle = 0;
3250
            bh->cb(bh->opaque);
3251
        }
3252
    }
3253

    
3254
    /* remove deleted bhs */
3255
    bhp = &first_bh;
3256
    while (*bhp) {
3257
        bh = *bhp;
3258
        if (bh->deleted) {
3259
            *bhp = bh->next;
3260
            qemu_free(bh);
3261
        } else
3262
            bhp = &bh->next;
3263
    }
3264

    
3265
    return ret;
3266
}
3267

    
3268
void qemu_bh_schedule_idle(QEMUBH *bh)
3269
{
3270
    if (bh->scheduled)
3271
        return;
3272
    bh->scheduled = 1;
3273
    bh->idle = 1;
3274
}
3275

    
3276
void qemu_bh_schedule(QEMUBH *bh)
3277
{
3278
    CPUState *env = cpu_single_env;
3279
    if (bh->scheduled)
3280
        return;
3281
    bh->scheduled = 1;
3282
    bh->idle = 0;
3283
    /* stop the currently executing CPU to execute the BH ASAP */
3284
    if (env) {
3285
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3286
    }
3287
}
3288

    
3289
void qemu_bh_cancel(QEMUBH *bh)
3290
{
3291
    bh->scheduled = 0;
3292
}
3293

    
3294
void qemu_bh_delete(QEMUBH *bh)
3295
{
3296
    bh->scheduled = 0;
3297
    bh->deleted = 1;
3298
}
3299

    
3300
static void qemu_bh_update_timeout(int *timeout)
3301
{
3302
    QEMUBH *bh;
3303

    
3304
    for (bh = first_bh; bh; bh = bh->next) {
3305
        if (!bh->deleted && bh->scheduled) {
3306
            if (bh->idle) {
3307
                /* idle bottom halves will be polled at least
3308
                 * every 10ms */
3309
                *timeout = MIN(10, *timeout);
3310
            } else {
3311
                /* non-idle bottom halves will be executed
3312
                 * immediately */
3313
                *timeout = 0;
3314
                break;
3315
            }
3316
        }
3317
    }
3318
}
3319

    
3320
/***********************************************************/
3321
/* machine registration */
3322

    
3323
static QEMUMachine *first_machine = NULL;
3324

    
3325
int qemu_register_machine(QEMUMachine *m)
3326
{
3327
    QEMUMachine **pm;
3328
    pm = &first_machine;
3329
    while (*pm != NULL)
3330
        pm = &(*pm)->next;
3331
    m->next = NULL;
3332
    *pm = m;
3333
    return 0;
3334
}
3335

    
3336
static QEMUMachine *find_machine(const char *name)
3337
{
3338
    QEMUMachine *m;
3339

    
3340
    for(m = first_machine; m != NULL; m = m->next) {
3341
        if (!strcmp(m->name, name))
3342
            return m;
3343
    }
3344
    return NULL;
3345
}
3346

    
3347
/***********************************************************/
3348
/* main execution loop */
3349

    
3350
static void gui_update(void *opaque)
3351
{
3352
    DisplayState *ds = opaque;
3353
    ds->dpy_refresh(ds);
3354
    qemu_mod_timer(ds->gui_timer,
3355
        (ds->gui_timer_interval ?
3356
            ds->gui_timer_interval :
3357
            GUI_REFRESH_INTERVAL)
3358
        + qemu_get_clock(rt_clock));
3359
}
3360

    
3361
struct vm_change_state_entry {
3362
    VMChangeStateHandler *cb;
3363
    void *opaque;
3364
    LIST_ENTRY (vm_change_state_entry) entries;
3365
};
3366

    
3367
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3368

    
3369
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3370
                                                     void *opaque)
3371
{
3372
    VMChangeStateEntry *e;
3373

    
3374
    e = qemu_mallocz(sizeof (*e));
3375
    if (!e)
3376
        return NULL;
3377

    
3378
    e->cb = cb;
3379
    e->opaque = opaque;
3380
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3381
    return e;
3382
}
3383

    
3384
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3385
{
3386
    LIST_REMOVE (e, entries);
3387
    qemu_free (e);
3388
}
3389

    
3390
static void vm_state_notify(int running)
3391
{
3392
    VMChangeStateEntry *e;
3393

    
3394
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3395
        e->cb(e->opaque, running);
3396
    }
3397
}
3398

    
3399
/* XXX: support several handlers */
3400
static VMStopHandler *vm_stop_cb;
3401
static void *vm_stop_opaque;
3402

    
3403
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3404
{
3405
    vm_stop_cb = cb;
3406
    vm_stop_opaque = opaque;
3407
    return 0;
3408
}
3409

    
3410
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3411
{
3412
    vm_stop_cb = NULL;
3413
}
3414

    
3415
void vm_start(void)
3416
{
3417
    if (!vm_running) {
3418
        cpu_enable_ticks();
3419
        vm_running = 1;
3420
        vm_state_notify(1);
3421
        qemu_rearm_alarm_timer(alarm_timer);
3422
    }
3423
}
3424

    
3425
void vm_stop(int reason)
3426
{
3427
    if (vm_running) {
3428
        cpu_disable_ticks();
3429
        vm_running = 0;
3430
        if (reason != 0) {
3431
            if (vm_stop_cb) {
3432
                vm_stop_cb(vm_stop_opaque, reason);
3433
            }
3434
        }
3435
        vm_state_notify(0);
3436
    }
3437
}
3438

    
3439
/* reset/shutdown handler */
3440

    
3441
typedef struct QEMUResetEntry {
3442
    QEMUResetHandler *func;
3443
    void *opaque;
3444
    struct QEMUResetEntry *next;
3445
} QEMUResetEntry;
3446

    
3447
static QEMUResetEntry *first_reset_entry;
3448
static int reset_requested;
3449
static int shutdown_requested;
3450
static int powerdown_requested;
3451

    
3452
int qemu_shutdown_requested(void)
3453
{
3454
    int r = shutdown_requested;
3455
    shutdown_requested = 0;
3456
    return r;
3457
}
3458

    
3459
int qemu_reset_requested(void)
3460
{
3461
    int r = reset_requested;
3462
    reset_requested = 0;
3463
    return r;
3464
}
3465

    
3466
int qemu_powerdown_requested(void)
3467
{
3468
    int r = powerdown_requested;
3469
    powerdown_requested = 0;
3470
    return r;
3471
}
3472

    
3473
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3474
{
3475
    QEMUResetEntry **pre, *re;
3476

    
3477
    pre = &first_reset_entry;
3478
    while (*pre != NULL)
3479
        pre = &(*pre)->next;
3480
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3481
    re->func = func;
3482
    re->opaque = opaque;
3483
    re->next = NULL;
3484
    *pre = re;
3485
}
3486

    
3487
void qemu_system_reset(void)
3488
{
3489
    QEMUResetEntry *re;
3490

    
3491
    /* reset all devices */
3492
    for(re = first_reset_entry; re != NULL; re = re->next) {
3493
        re->func(re->opaque);
3494
    }
3495
}
3496

    
3497
void qemu_system_reset_request(void)
3498
{
3499
    if (no_reboot) {
3500
        shutdown_requested = 1;
3501
    } else {
3502
        reset_requested = 1;
3503
    }
3504
    if (cpu_single_env)
3505
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3506
}
3507

    
3508
void qemu_system_shutdown_request(void)
3509
{
3510
    shutdown_requested = 1;
3511
    if (cpu_single_env)
3512
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3513
}
3514

    
3515
void qemu_system_powerdown_request(void)
3516
{
3517
    powerdown_requested = 1;
3518
    if (cpu_single_env)
3519
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3520
}
3521

    
3522
#ifdef _WIN32
3523
static void host_main_loop_wait(int *timeout)
3524
{
3525
    int ret, ret2, i;
3526
    PollingEntry *pe;
3527

    
3528

    
3529
    /* XXX: need to suppress polling by better using win32 events */
3530
    ret = 0;
3531
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3532
        ret |= pe->func(pe->opaque);
3533
    }
3534
    if (ret == 0) {
3535
        int err;
3536
        WaitObjects *w = &wait_objects;
3537

    
3538
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3539
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3540
            if (w->func[ret - WAIT_OBJECT_0])
3541
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3542

    
3543
            /* Check for additional signaled events */
3544
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3545

    
3546
                /* Check if event is signaled */
3547
                ret2 = WaitForSingleObject(w->events[i], 0);
3548
                if(ret2 == WAIT_OBJECT_0) {
3549
                    if (w->func[i])
3550
                        w->func[i](w->opaque[i]);
3551
                } else if (ret2 == WAIT_TIMEOUT) {
3552
                } else {
3553
                    err = GetLastError();
3554
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3555
                }
3556
            }
3557
        } else if (ret == WAIT_TIMEOUT) {
3558
        } else {
3559
            err = GetLastError();
3560
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3561
        }
3562
    }
3563

    
3564
    *timeout = 0;
3565
}
3566
#else
3567
static void host_main_loop_wait(int *timeout)
3568
{
3569
}
3570
#endif
3571

    
3572
void main_loop_wait(int timeout)
3573
{
3574
    IOHandlerRecord *ioh;
3575
    fd_set rfds, wfds, xfds;
3576
    int ret, nfds;
3577
    struct timeval tv;
3578

    
3579
    qemu_bh_update_timeout(&timeout);
3580

    
3581
    host_main_loop_wait(&timeout);
3582

    
3583
    /* poll any events */
3584
    /* XXX: separate device handlers from system ones */
3585
    nfds = -1;
3586
    FD_ZERO(&rfds);
3587
    FD_ZERO(&wfds);
3588
    FD_ZERO(&xfds);
3589
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3590
        if (ioh->deleted)
3591
            continue;
3592
        if (ioh->fd_read &&
3593
            (!ioh->fd_read_poll ||
3594
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3595
            FD_SET(ioh->fd, &rfds);
3596
            if (ioh->fd > nfds)
3597
                nfds = ioh->fd;
3598
        }
3599
        if (ioh->fd_write) {
3600
            FD_SET(ioh->fd, &wfds);
3601
            if (ioh->fd > nfds)
3602
                nfds = ioh->fd;
3603
        }
3604
    }
3605

    
3606
    tv.tv_sec = timeout / 1000;
3607
    tv.tv_usec = (timeout % 1000) * 1000;
3608

    
3609
#if defined(CONFIG_SLIRP)
3610
    if (slirp_is_inited()) {
3611
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3612
    }
3613
#endif
3614
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3615
    if (ret > 0) {
3616
        IOHandlerRecord **pioh;
3617

    
3618
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3619
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3620
                ioh->fd_read(ioh->opaque);
3621
            }
3622
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3623
                ioh->fd_write(ioh->opaque);
3624
            }
3625
        }
3626

    
3627
        /* remove deleted IO handlers */
3628
        pioh = &first_io_handler;
3629
        while (*pioh) {
3630
            ioh = *pioh;
3631
            if (ioh->deleted) {
3632
                *pioh = ioh->next;
3633
                qemu_free(ioh);
3634
            } else
3635
                pioh = &ioh->next;
3636
        }
3637
    }
3638
#if defined(CONFIG_SLIRP)
3639
    if (slirp_is_inited()) {
3640
        if (ret < 0) {
3641
            FD_ZERO(&rfds);
3642
            FD_ZERO(&wfds);
3643
            FD_ZERO(&xfds);
3644
        }
3645
        slirp_select_poll(&rfds, &wfds, &xfds);
3646
    }
3647
#endif
3648

    
3649
    /* vm time timers */
3650
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3651
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3652
                        qemu_get_clock(vm_clock));
3653

    
3654
    /* real time timers */
3655
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3656
                    qemu_get_clock(rt_clock));
3657

    
3658
    /* Check bottom-halves last in case any of the earlier events triggered
3659
       them.  */
3660
    qemu_bh_poll();
3661

    
3662
}
3663

    
3664
static int main_loop(void)
3665
{
3666
    int ret, timeout;
3667
#ifdef CONFIG_PROFILER
3668
    int64_t ti;
3669
#endif
3670
    CPUState *env;
3671

    
3672
    cur_cpu = first_cpu;
3673
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
3674
    for(;;) {
3675
        if (vm_running) {
3676

    
3677
            for(;;) {
3678
                /* get next cpu */
3679
                env = next_cpu;
3680
#ifdef CONFIG_PROFILER
3681
                ti = profile_getclock();
3682
#endif
3683
                if (use_icount) {
3684
                    int64_t count;
3685
                    int decr;
3686
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3687
                    env->icount_decr.u16.low = 0;
3688
                    env->icount_extra = 0;
3689
                    count = qemu_next_deadline();
3690
                    count = (count + (1 << icount_time_shift) - 1)
3691
                            >> icount_time_shift;
3692
                    qemu_icount += count;
3693
                    decr = (count > 0xffff) ? 0xffff : count;
3694
                    count -= decr;
3695
                    env->icount_decr.u16.low = decr;
3696
                    env->icount_extra = count;
3697
                }
3698
                ret = cpu_exec(env);
3699
#ifdef CONFIG_PROFILER
3700
                qemu_time += profile_getclock() - ti;
3701
#endif
3702
                if (use_icount) {
3703
                    /* Fold pending instructions back into the
3704
                       instruction counter, and clear the interrupt flag.  */
3705
                    qemu_icount -= (env->icount_decr.u16.low
3706
                                    + env->icount_extra);
3707
                    env->icount_decr.u32 = 0;
3708
                    env->icount_extra = 0;
3709
                }
3710
                next_cpu = env->next_cpu ?: first_cpu;
3711
                if (event_pending && likely(ret != EXCP_DEBUG)) {
3712
                    ret = EXCP_INTERRUPT;
3713
                    event_pending = 0;
3714
                    break;
3715
                }
3716
                if (ret == EXCP_HLT) {
3717
                    /* Give the next CPU a chance to run.  */
3718
                    cur_cpu = env;
3719
                    continue;
3720
                }
3721
                if (ret != EXCP_HALTED)
3722
                    break;
3723
                /* all CPUs are halted ? */
3724
                if (env == cur_cpu)
3725
                    break;
3726
            }
3727
            cur_cpu = env;
3728

    
3729
            if (shutdown_requested) {
3730
                ret = EXCP_INTERRUPT;
3731
                if (no_shutdown) {
3732
                    vm_stop(0);
3733
                    no_shutdown = 0;
3734
                }
3735
                else
3736
                    break;
3737
            }
3738
            if (reset_requested) {
3739
                reset_requested = 0;
3740
                qemu_system_reset();
3741
                ret = EXCP_INTERRUPT;
3742
            }
3743
            if (powerdown_requested) {
3744
                powerdown_requested = 0;
3745
                qemu_system_powerdown();
3746
                ret = EXCP_INTERRUPT;
3747
            }
3748
            if (unlikely(ret == EXCP_DEBUG)) {
3749
                gdb_set_stop_cpu(cur_cpu);
3750
                vm_stop(EXCP_DEBUG);
3751
            }
3752
            /* If all cpus are halted then wait until the next IRQ */
3753
            /* XXX: use timeout computed from timers */
3754
            if (ret == EXCP_HALTED) {
3755
                if (use_icount) {
3756
                    int64_t add;
3757
                    int64_t delta;
3758
                    /* Advance virtual time to the next event.  */
3759
                    if (use_icount == 1) {
3760
                        /* When not using an adaptive execution frequency
3761
                           we tend to get badly out of sync with real time,
3762
                           so just delay for a reasonable amount of time.  */
3763
                        delta = 0;
3764
                    } else {
3765
                        delta = cpu_get_icount() - cpu_get_clock();
3766
                    }
3767
                    if (delta > 0) {
3768
                        /* If virtual time is ahead of real time then just
3769
                           wait for IO.  */
3770
                        timeout = (delta / 1000000) + 1;
3771
                    } else {
3772
                        /* Wait for either IO to occur or the next
3773
                           timer event.  */
3774
                        add = qemu_next_deadline();
3775
                        /* We advance the timer before checking for IO.
3776
                           Limit the amount we advance so that early IO
3777
                           activity won't get the guest too far ahead.  */
3778
                        if (add > 10000000)
3779
                            add = 10000000;
3780
                        delta += add;
3781
                        add = (add + (1 << icount_time_shift) - 1)
3782
                              >> icount_time_shift;
3783
                        qemu_icount += add;
3784
                        timeout = delta / 1000000;
3785
                        if (timeout < 0)
3786
                            timeout = 0;
3787
                    }
3788
                } else {
3789
                    timeout = 5000;
3790
                }
3791
            } else {
3792
                timeout = 0;
3793
            }
3794
        } else {
3795
            if (shutdown_requested) {
3796
                ret = EXCP_INTERRUPT;
3797
                break;
3798
            }
3799
            timeout = 5000;
3800
        }
3801
#ifdef CONFIG_PROFILER
3802
        ti = profile_getclock();
3803
#endif
3804
        main_loop_wait(timeout);
3805
#ifdef CONFIG_PROFILER
3806
        dev_time += profile_getclock() - ti;
3807
#endif
3808
    }
3809
    cpu_disable_ticks();
3810
    return ret;
3811
}
3812

    
3813
static void help(int exitcode)
3814
{
3815
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3816
           "usage: %s [options] [disk_image]\n"
3817
           "\n"
3818
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3819
           "\n"
3820
           "Standard options:\n"
3821
           "-M machine      select emulated machine (-M ? for list)\n"
3822
           "-cpu cpu        select CPU (-cpu ? for list)\n"
3823
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
3824
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
3825
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
3826
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3827
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3828
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3829
           "       [,cache=writethrough|writeback|none][,format=f]\n"
3830
           "                use 'file' as a drive image\n"
3831
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
3832
           "-sd file        use 'file' as SecureDigital card image\n"
3833
           "-pflash file    use 'file' as a parallel flash image\n"
3834
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3835
           "-snapshot       write to temporary files instead of disk image files\n"
3836
#ifdef CONFIG_SDL
3837
           "-no-frame       open SDL window without a frame and window decorations\n"
3838
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3839
           "-no-quit        disable SDL window close capability\n"
3840
#endif
3841
#ifdef TARGET_I386
3842
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
3843
#endif
3844
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
3845
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
3846
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
3847
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
3848
#ifndef _WIN32
3849
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
3850
#endif
3851
#ifdef HAS_AUDIO
3852
           "-audio-help     print list of audio drivers and their options\n"
3853
           "-soundhw c1,... enable audio support\n"
3854
           "                and only specified sound cards (comma separated list)\n"
3855
           "                use -soundhw ? to get the list of supported cards\n"
3856
           "                use -soundhw all to enable all of them\n"
3857
#endif
3858
           "-vga [std|cirrus|vmware]\n"
3859
           "                select video card type\n"
3860
           "-localtime      set the real time clock to local time [default=utc]\n"
3861
           "-full-screen    start in full screen\n"
3862
#ifdef TARGET_I386
3863
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
3864
#endif
3865
           "-usb            enable the USB driver (will be the default soon)\n"
3866
           "-usbdevice name add the host or guest USB device 'name'\n"
3867
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3868
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
3869
#endif
3870
           "-name string    set the name of the guest\n"
3871
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3872
           "\n"
3873
           "Network options:\n"
3874
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
3875
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
3876
#ifdef CONFIG_SLIRP
3877
           "-net user[,vlan=n][,hostname=host]\n"
3878
           "                connect the user mode network stack to VLAN 'n' and send\n"
3879
           "                hostname 'host' to DHCP clients\n"
3880
#endif
3881
#ifdef _WIN32
3882
           "-net tap[,vlan=n],ifname=name\n"
3883
           "                connect the host TAP network interface to VLAN 'n'\n"
3884
#else
3885
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3886
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
3887
           "                network scripts 'file' (default=%s)\n"
3888
           "                and 'dfile' (default=%s);\n"
3889
           "                use '[down]script=no' to disable script execution;\n"
3890
           "                use 'fd=h' to connect to an already opened TAP interface\n"
3891
#endif
3892
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3893
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
3894
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
3895
           "                connect the vlan 'n' to multicast maddr and port\n"
3896
#ifdef CONFIG_VDE
3897
           "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3898
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
3899
           "                on host and listening for incoming connections on 'socketpath'.\n"
3900
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
3901
           "                ownership and permissions for communication port.\n"
3902
#endif
3903
           "-net none       use it alone to have zero network devices; if no -net option\n"
3904
           "                is provided, the default is '-net nic -net user'\n"
3905
           "\n"
3906
           "-bt hci,null    Dumb bluetooth HCI - doesn't respond to commands\n"
3907
           "-bt hci,host[:id]\n"
3908
           "                Use host's HCI with the given name\n"
3909
           "-bt hci[,vlan=n]\n"
3910
           "                Emulate a standard HCI in virtual scatternet 'n'\n"
3911
           "-bt vhci[,vlan=n]\n"
3912
           "                Add host computer to virtual scatternet 'n' using VHCI\n"
3913
           "-bt device:dev[,vlan=n]\n"
3914
           "                Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3915
           "\n"
3916
#ifdef CONFIG_SLIRP
3917
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
3918
           "-bootp file     advertise file in BOOTP replies\n"
3919
#ifndef _WIN32
3920
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
3921
#endif
3922
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3923
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
3924
#endif
3925
           "\n"
3926
           "Linux boot specific:\n"
3927
           "-kernel bzImage use 'bzImage' as kernel image\n"
3928
           "-append cmdline use 'cmdline' as kernel command line\n"
3929
           "-initrd file    use 'file' as initial ram disk\n"
3930
           "\n"
3931
           "Debug/Expert options:\n"
3932
           "-monitor dev    redirect the monitor to char device 'dev'\n"
3933
           "-serial dev     redirect the serial port to char device 'dev'\n"
3934
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
3935
           "-pidfile file   Write PID to 'file'\n"
3936
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
3937
           "-s              wait gdb connection to port\n"
3938
           "-p port         set gdb connection port [default=%s]\n"
3939
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
3940
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
3941
           "                translation (t=none or lba) (usually qemu can guess them)\n"
3942
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
3943
#ifdef USE_KQEMU
3944
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
3945
           "-no-kqemu       disable KQEMU kernel module usage\n"
3946
#endif
3947
#ifdef CONFIG_KVM
3948
           "-enable-kvm     enable KVM full virtualization support\n"
3949
#endif
3950
#ifdef TARGET_I386
3951
           "-no-acpi        disable ACPI\n"
3952
           "-no-hpet        disable HPET\n"
3953
#endif
3954
#ifdef CONFIG_CURSES
3955
           "-curses         use a curses/ncurses interface instead of SDL\n"
3956
#endif
3957
           "-no-reboot      exit instead of rebooting\n"
3958
           "-no-shutdown    stop before shutdown\n"
3959
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
3960
           "-vnc display    start a VNC server on display\n"
3961
#ifndef _WIN32
3962
           "-daemonize      daemonize QEMU after initializing\n"
3963
#endif
3964
           "-option-rom rom load a file, rom, into the option ROM space\n"
3965
#ifdef TARGET_SPARC
3966
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
3967
#endif
3968
           "-clock          force the use of the given methods for timer alarm.\n"
3969
           "                To see what timers are available use -clock ?\n"
3970
           "-startdate      select initial date of the clock\n"
3971
           "-icount [N|auto]\n"
3972
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
3973
           "\n"
3974
           "During emulation, the following keys are useful:\n"
3975
           "ctrl-alt-f      toggle full screen\n"
3976
           "ctrl-alt-n      switch to virtual console 'n'\n"
3977
           "ctrl-alt        toggle mouse and keyboard grab\n"
3978
           "\n"
3979
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
3980
           ,
3981
           "qemu",
3982
           DEFAULT_RAM_SIZE,
3983
#ifndef _WIN32
3984
           DEFAULT_NETWORK_SCRIPT,
3985
           DEFAULT_NETWORK_DOWN_SCRIPT,
3986
#endif
3987
           DEFAULT_GDBSTUB_PORT,
3988
           "/tmp/qemu.log");
3989
    exit(exitcode);
3990
}
3991

    
3992
#define HAS_ARG 0x0001
3993

    
3994
enum {
3995
    QEMU_OPTION_h,
3996

    
3997
    QEMU_OPTION_M,
3998
    QEMU_OPTION_cpu,
3999
    QEMU_OPTION_fda,
4000
    QEMU_OPTION_fdb,
4001
    QEMU_OPTION_hda,
4002
    QEMU_OPTION_hdb,
4003
    QEMU_OPTION_hdc,
4004
    QEMU_OPTION_hdd,
4005
    QEMU_OPTION_drive,
4006
    QEMU_OPTION_cdrom,
4007
    QEMU_OPTION_mtdblock,
4008
    QEMU_OPTION_sd,
4009
    QEMU_OPTION_pflash,
4010
    QEMU_OPTION_boot,
4011
    QEMU_OPTION_snapshot,
4012
#ifdef TARGET_I386
4013
    QEMU_OPTION_no_fd_bootchk,
4014
#endif
4015
    QEMU_OPTION_m,
4016
    QEMU_OPTION_nographic,
4017
    QEMU_OPTION_portrait,
4018
#ifdef HAS_AUDIO
4019
    QEMU_OPTION_audio_help,
4020
    QEMU_OPTION_soundhw,
4021
#endif
4022

    
4023
    QEMU_OPTION_net,
4024
    QEMU_OPTION_tftp,
4025
    QEMU_OPTION_bootp,
4026
    QEMU_OPTION_smb,
4027
    QEMU_OPTION_redir,
4028
    QEMU_OPTION_bt,
4029

    
4030
    QEMU_OPTION_kernel,
4031
    QEMU_OPTION_append,
4032
    QEMU_OPTION_initrd,
4033

    
4034
    QEMU_OPTION_S,
4035
    QEMU_OPTION_s,
4036
    QEMU_OPTION_p,
4037
    QEMU_OPTION_d,
4038
    QEMU_OPTION_hdachs,
4039
    QEMU_OPTION_L,
4040
    QEMU_OPTION_bios,
4041
    QEMU_OPTION_k,
4042
    QEMU_OPTION_localtime,
4043
    QEMU_OPTION_g,
4044
    QEMU_OPTION_vga,
4045
    QEMU_OPTION_echr,
4046
    QEMU_OPTION_monitor,
4047
    QEMU_OPTION_serial,
4048
    QEMU_OPTION_parallel,
4049
    QEMU_OPTION_loadvm,
4050
    QEMU_OPTION_full_screen,
4051
    QEMU_OPTION_no_frame,
4052
    QEMU_OPTION_alt_grab,
4053
    QEMU_OPTION_no_quit,
4054
    QEMU_OPTION_pidfile,
4055
    QEMU_OPTION_no_kqemu,
4056
    QEMU_OPTION_kernel_kqemu,
4057
    QEMU_OPTION_enable_kvm,
4058
    QEMU_OPTION_win2k_hack,
4059
    QEMU_OPTION_usb,
4060
    QEMU_OPTION_usbdevice,
4061
    QEMU_OPTION_smp,
4062
    QEMU_OPTION_vnc,
4063
    QEMU_OPTION_no_acpi,
4064
    QEMU_OPTION_no_hpet,
4065
    QEMU_OPTION_curses,
4066
    QEMU_OPTION_no_reboot,
4067
    QEMU_OPTION_no_shutdown,
4068
    QEMU_OPTION_show_cursor,
4069
    QEMU_OPTION_daemonize,
4070
    QEMU_OPTION_option_rom,
4071
    QEMU_OPTION_semihosting,
4072
    QEMU_OPTION_name,
4073
    QEMU_OPTION_prom_env,
4074
    QEMU_OPTION_old_param,
4075
    QEMU_OPTION_clock,
4076
    QEMU_OPTION_startdate,
4077
    QEMU_OPTION_tb_size,
4078
    QEMU_OPTION_icount,
4079
    QEMU_OPTION_uuid,
4080
    QEMU_OPTION_incoming,
4081
};
4082

    
4083
typedef struct QEMUOption {
4084
    const char *name;
4085
    int flags;
4086
    int index;
4087
} QEMUOption;
4088

    
4089
static const QEMUOption qemu_options[] = {
4090
    { "h", 0, QEMU_OPTION_h },
4091
    { "help", 0, QEMU_OPTION_h },
4092

    
4093
    { "M", HAS_ARG, QEMU_OPTION_M },
4094
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4095
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4096
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4097
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4098
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4099
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4100
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4101
    { "drive", HAS_ARG, QEMU_OPTION_drive },
4102
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4103
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4104
    { "sd", HAS_ARG, QEMU_OPTION_sd },
4105
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4106
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4107
    { "snapshot", 0, QEMU_OPTION_snapshot },
4108
#ifdef TARGET_I386
4109
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4110
#endif
4111
    { "m", HAS_ARG, QEMU_OPTION_m },
4112
    { "nographic", 0, QEMU_OPTION_nographic },
4113
    { "portrait", 0, QEMU_OPTION_portrait },
4114
    { "k", HAS_ARG, QEMU_OPTION_k },
4115
#ifdef HAS_AUDIO
4116
    { "audio-help", 0, QEMU_OPTION_audio_help },
4117
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4118
#endif
4119

    
4120
    { "net", HAS_ARG, QEMU_OPTION_net},
4121
#ifdef CONFIG_SLIRP
4122
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4123
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4124
#ifndef _WIN32
4125
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4126
#endif
4127
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4128
#endif
4129
    { "bt", HAS_ARG, QEMU_OPTION_bt },
4130

    
4131
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4132
    { "append", HAS_ARG, QEMU_OPTION_append },
4133
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4134

    
4135
    { "S", 0, QEMU_OPTION_S },
4136
    { "s", 0, QEMU_OPTION_s },
4137
    { "p", HAS_ARG, QEMU_OPTION_p },
4138
    { "d", HAS_ARG, QEMU_OPTION_d },
4139
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4140
    { "L", HAS_ARG, QEMU_OPTION_L },
4141
    { "bios", HAS_ARG, QEMU_OPTION_bios },
4142
#ifdef USE_KQEMU
4143
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4144
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4145
#endif
4146
#ifdef CONFIG_KVM
4147
    { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4148
#endif
4149
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4150
    { "g", 1, QEMU_OPTION_g },
4151
#endif
4152
    { "localtime", 0, QEMU_OPTION_localtime },
4153
    { "vga", HAS_ARG, QEMU_OPTION_vga },
4154
    { "echr", HAS_ARG, QEMU_OPTION_echr },
4155
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4156
    { "serial", HAS_ARG, QEMU_OPTION_serial },
4157
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4158
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4159
    { "full-screen", 0, QEMU_OPTION_full_screen },
4160
#ifdef CONFIG_SDL
4161
    { "no-frame", 0, QEMU_OPTION_no_frame },
4162
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
4163
    { "no-quit", 0, QEMU_OPTION_no_quit },
4164
#endif
4165
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4166
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4167
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4168
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4169
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4170
#ifdef CONFIG_CURSES
4171
    { "curses", 0, QEMU_OPTION_curses },
4172
#endif
4173
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4174

    
4175
    /* temporary options */
4176
    { "usb", 0, QEMU_OPTION_usb },
4177
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4178
    { "no-hpet", 0, QEMU_OPTION_no_hpet },
4179
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
4180
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4181
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
4182
    { "daemonize", 0, QEMU_OPTION_daemonize },
4183
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4184
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4185
    { "semihosting", 0, QEMU_OPTION_semihosting },
4186
#endif
4187
    { "name", HAS_ARG, QEMU_OPTION_name },
4188
#if defined(TARGET_SPARC)
4189
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4190
#endif
4191
#if defined(TARGET_ARM)
4192
    { "old-param", 0, QEMU_OPTION_old_param },
4193
#endif
4194
    { "clock", HAS_ARG, QEMU_OPTION_clock },
4195
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4196
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4197
    { "icount", HAS_ARG, QEMU_OPTION_icount },
4198
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4199
    { NULL },
4200
};
4201

    
4202
/* password input */
4203

    
4204
int qemu_key_check(BlockDriverState *bs, const char *name)
4205
{
4206
    char password[256];
4207
    int i;
4208

    
4209
    if (!bdrv_is_encrypted(bs))
4210
        return 0;
4211

    
4212
    term_printf("%s is encrypted.\n", name);
4213
    for(i = 0; i < 3; i++) {
4214
        monitor_readline("Password: ", 1, password, sizeof(password));
4215
        if (bdrv_set_key(bs, password) == 0)
4216
            return 0;
4217
        term_printf("invalid password\n");
4218
    }
4219
    return -EPERM;
4220
}
4221

    
4222
static BlockDriverState *get_bdrv(int index)
4223
{
4224
    if (index > nb_drives)
4225
        return NULL;
4226
    return drives_table[index].bdrv;
4227
}
4228

    
4229
static void read_passwords(void)
4230
{
4231
    BlockDriverState *bs;
4232
    int i;
4233

    
4234
    for(i = 0; i < 6; i++) {
4235
        bs = get_bdrv(i);
4236
        if (bs)
4237
            qemu_key_check(bs, bdrv_get_device_name(bs));
4238
    }
4239
}
4240

    
4241
#ifdef HAS_AUDIO
4242
struct soundhw soundhw[] = {
4243
#ifdef HAS_AUDIO_CHOICE
4244
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4245
    {
4246
        "pcspk",
4247
        "PC speaker",
4248
        0,
4249
        1,
4250
        { .init_isa = pcspk_audio_init }
4251
    },
4252
#endif
4253
    {
4254
        "sb16",
4255
        "Creative Sound Blaster 16",
4256
        0,
4257
        1,
4258
        { .init_isa = SB16_init }
4259
    },
4260

    
4261
#ifdef CONFIG_CS4231A
4262
    {
4263
        "cs4231a",
4264
        "CS4231A",
4265
        0,
4266
        1,
4267
        { .init_isa = cs4231a_init }
4268
    },
4269
#endif
4270

    
4271
#ifdef CONFIG_ADLIB
4272
    {
4273
        "adlib",
4274
#ifdef HAS_YMF262
4275
        "Yamaha YMF262 (OPL3)",
4276
#else
4277
        "Yamaha YM3812 (OPL2)",
4278
#endif
4279
        0,
4280
        1,
4281
        { .init_isa = Adlib_init }
4282
    },
4283
#endif
4284

    
4285
#ifdef CONFIG_GUS
4286
    {
4287
        "gus",
4288
        "Gravis Ultrasound GF1",
4289
        0,
4290
        1,
4291
        { .init_isa = GUS_init }
4292
    },
4293
#endif
4294

    
4295
#ifdef CONFIG_AC97
4296
    {
4297
        "ac97",
4298
        "Intel 82801AA AC97 Audio",
4299
        0,
4300
        0,
4301
        { .init_pci = ac97_init }
4302
    },
4303
#endif
4304

    
4305
    {
4306
        "es1370",
4307
        "ENSONIQ AudioPCI ES1370",
4308
        0,
4309
        0,
4310
        { .init_pci = es1370_init }
4311
    },
4312
#endif
4313

    
4314
    { NULL, NULL, 0, 0, { NULL } }
4315
};
4316

    
4317
static void select_soundhw (const char *optarg)
4318
{
4319
    struct soundhw *c;
4320

    
4321
    if (*optarg == '?') {
4322
    show_valid_cards:
4323

    
4324
        printf ("Valid sound card names (comma separated):\n");
4325
        for (c = soundhw; c->name; ++c) {
4326
            printf ("%-11s %s\n", c->name, c->descr);
4327
        }
4328
        printf ("\n-soundhw all will enable all of the above\n");
4329
        exit (*optarg != '?');
4330
    }
4331
    else {
4332
        size_t l;
4333
        const char *p;
4334
        char *e;
4335
        int bad_card = 0;
4336

    
4337
        if (!strcmp (optarg, "all")) {
4338
            for (c = soundhw; c->name; ++c) {
4339
                c->enabled = 1;
4340
            }
4341
            return;
4342
        }
4343

    
4344
        p = optarg;
4345
        while (*p) {
4346
            e = strchr (p, ',');
4347
            l = !e ? strlen (p) : (size_t) (e - p);
4348

    
4349
            for (c = soundhw; c->name; ++c) {
4350
                if (!strncmp (c->name, p, l)) {
4351
                    c->enabled = 1;
4352
                    break;
4353
                }
4354
            }
4355

    
4356
            if (!c->name) {
4357
                if (l > 80) {
4358
                    fprintf (stderr,
4359
                             "Unknown sound card name (too big to show)\n");
4360
                }
4361
                else {
4362
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4363
                             (int) l, p);
4364
                }
4365
                bad_card = 1;
4366
            }
4367
            p += l + (e != NULL);
4368
        }
4369

    
4370
        if (bad_card)
4371
            goto show_valid_cards;
4372
    }
4373
}
4374
#endif
4375

    
4376
static void select_vgahw (const char *p)
4377
{
4378
    const char *opts;
4379

    
4380
    if (strstart(p, "std", &opts)) {
4381
        cirrus_vga_enabled = 0;
4382
        vmsvga_enabled = 0;
4383
    } else if (strstart(p, "cirrus", &opts)) {
4384
        cirrus_vga_enabled = 1;
4385
        vmsvga_enabled = 0;
4386
    } else if (strstart(p, "vmware", &opts)) {
4387
        cirrus_vga_enabled = 0;
4388
        vmsvga_enabled = 1;
4389
    } else {
4390
    invalid_vga:
4391
        fprintf(stderr, "Unknown vga type: %s\n", p);
4392
        exit(1);
4393
    }
4394
    while (*opts) {
4395
        const char *nextopt;
4396

    
4397
        if (strstart(opts, ",retrace=", &nextopt)) {
4398
            opts = nextopt;
4399
            if (strstart(opts, "dumb", &nextopt))
4400
                vga_retrace_method = VGA_RETRACE_DUMB;
4401
            else if (strstart(opts, "precise", &nextopt))
4402
                vga_retrace_method = VGA_RETRACE_PRECISE;
4403
            else goto invalid_vga;
4404
        } else goto invalid_vga;
4405
        opts = nextopt;
4406
    }
4407
}
4408

    
4409
#ifdef _WIN32
4410
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4411
{
4412
    exit(STATUS_CONTROL_C_EXIT);
4413
    return TRUE;
4414
}
4415
#endif
4416

    
4417
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4418
{
4419
    int ret;
4420

    
4421
    if(strlen(str) != 36)
4422
        return -1;
4423

    
4424
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4425
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4426
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4427

    
4428
    if(ret != 16)
4429
        return -1;
4430

    
4431
    return 0;
4432
}
4433

    
4434
#define MAX_NET_CLIENTS 32
4435

    
4436
#ifndef _WIN32
4437

    
4438
static void termsig_handler(int signal)
4439
{
4440
    qemu_system_shutdown_request();
4441
}
4442

    
4443
static void termsig_setup(void)
4444
{
4445
    struct sigaction act;
4446

    
4447
    memset(&act, 0, sizeof(act));
4448
    act.sa_handler = termsig_handler;
4449
    sigaction(SIGINT,  &act, NULL);
4450
    sigaction(SIGHUP,  &act, NULL);
4451
    sigaction(SIGTERM, &act, NULL);
4452
}
4453

    
4454
#endif
4455

    
4456
int main(int argc, char **argv, char **envp)
4457
{
4458
#ifdef CONFIG_GDBSTUB
4459
    int use_gdbstub;
4460
    const char *gdbstub_port;
4461
#endif
4462
    uint32_t boot_devices_bitmap = 0;
4463
    int i;
4464
    int snapshot, linux_boot, net_boot;
4465
    const char *initrd_filename;
4466
    const char *kernel_filename, *kernel_cmdline;
4467
    const char *boot_devices = "";
4468
    DisplayState *ds = &display_state;
4469
    int cyls, heads, secs, translation;
4470
    const char *net_clients[MAX_NET_CLIENTS];
4471
    int nb_net_clients;
4472
    const char *bt_opts[MAX_BT_CMDLINE];
4473
    int nb_bt_opts;
4474
    int hda_index;
4475
    int optind;
4476
    const char *r, *optarg;
4477
    CharDriverState *monitor_hd;
4478
    const char *monitor_device;
4479
    const char *serial_devices[MAX_SERIAL_PORTS];
4480
    int serial_device_index;
4481
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4482
    int parallel_device_index;
4483
    const char *loadvm = NULL;
4484
    QEMUMachine *machine;
4485
    const char *cpu_model;
4486
    const char *usb_devices[MAX_USB_CMDLINE];
4487
    int usb_devices_index;
4488
    int fds[2];
4489
    int tb_size;
4490
    const char *pid_file = NULL;
4491
    int autostart;
4492
    const char *incoming = NULL;
4493

    
4494
    qemu_cache_utils_init(envp);
4495

    
4496
    LIST_INIT (&vm_change_state_head);
4497
#ifndef _WIN32
4498
    {
4499
        struct sigaction act;
4500
        sigfillset(&act.sa_mask);
4501
        act.sa_flags = 0;
4502
        act.sa_handler = SIG_IGN;
4503
        sigaction(SIGPIPE, &act, NULL);
4504
    }
4505
#else
4506
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4507
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4508
       QEMU to run on a single CPU */
4509
    {
4510
        HANDLE h;
4511
        DWORD mask, smask;
4512
        int i;
4513
        h = GetCurrentProcess();
4514
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4515
            for(i = 0; i < 32; i++) {
4516
                if (mask & (1 << i))
4517
                    break;
4518
            }
4519
            if (i != 32) {
4520
                mask = 1 << i;
4521
                SetProcessAffinityMask(h, mask);
4522
            }
4523
        }
4524
    }
4525
#endif
4526

    
4527
    register_machines();
4528
    machine = first_machine;
4529
    cpu_model = NULL;
4530
    initrd_filename = NULL;
4531
    ram_size = 0;
4532
    vga_ram_size = VGA_RAM_SIZE;
4533
#ifdef CONFIG_GDBSTUB
4534
    use_gdbstub = 0;
4535
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
4536
#endif
4537
    snapshot = 0;
4538
    nographic = 0;
4539
    curses = 0;
4540
    kernel_filename = NULL;
4541
    kernel_cmdline = "";
4542
    cyls = heads = secs = 0;
4543
    translation = BIOS_ATA_TRANSLATION_AUTO;
4544
    monitor_device = "vc";
4545

    
4546
    serial_devices[0] = "vc:80Cx24C";
4547
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4548
        serial_devices[i] = NULL;
4549
    serial_device_index = 0;
4550

    
4551
    parallel_devices[0] = "vc:640x480";
4552
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4553
        parallel_devices[i] = NULL;
4554
    parallel_device_index = 0;
4555

    
4556
    usb_devices_index = 0;
4557

    
4558
    nb_net_clients = 0;
4559
    nb_bt_opts = 0;
4560
    nb_drives = 0;
4561
    nb_drives_opt = 0;
4562
    hda_index = -1;
4563

    
4564
    nb_nics = 0;
4565

    
4566
    tb_size = 0;
4567
    autostart= 1;
4568

    
4569
    optind = 1;
4570
    for(;;) {
4571
        if (optind >= argc)
4572
            break;
4573
        r = argv[optind];
4574
        if (r[0] != '-') {
4575
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4576
        } else {
4577
            const QEMUOption *popt;
4578

    
4579
            optind++;
4580
            /* Treat --foo the same as -foo.  */
4581
            if (r[1] == '-')
4582
                r++;
4583
            popt = qemu_options;
4584
            for(;;) {
4585
                if (!popt->name) {
4586
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4587
                            argv[0], r);
4588
                    exit(1);
4589
                }
4590
                if (!strcmp(popt->name, r + 1))
4591
                    break;
4592
                popt++;
4593
            }
4594
            if (popt->flags & HAS_ARG) {
4595
                if (optind >= argc) {
4596
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4597
                            argv[0], r);
4598
                    exit(1);
4599
                }
4600
                optarg = argv[optind++];
4601
            } else {
4602
                optarg = NULL;
4603
            }
4604

    
4605
            switch(popt->index) {
4606
            case QEMU_OPTION_M:
4607
                machine = find_machine(optarg);
4608
                if (!machine) {
4609
                    QEMUMachine *m;
4610
                    printf("Supported machines are:\n");
4611
                    for(m = first_machine; m != NULL; m = m->next) {
4612
                        printf("%-10s %s%s\n",
4613
                               m->name, m->desc,
4614
                               m == first_machine ? " (default)" : "");
4615
                    }
4616
                    exit(*optarg != '?');
4617
                }
4618
                break;
4619
            case QEMU_OPTION_cpu:
4620
                /* hw initialization will check this */
4621
                if (*optarg == '?') {
4622
/* XXX: implement xxx_cpu_list for targets that still miss it */
4623
#if defined(cpu_list)
4624
                    cpu_list(stdout, &fprintf);
4625
#endif
4626
                    exit(0);
4627
                } else {
4628
                    cpu_model = optarg;
4629
                }
4630
                break;
4631
            case QEMU_OPTION_initrd:
4632
                initrd_filename = optarg;
4633
                break;
4634
            case QEMU_OPTION_hda:
4635
                if (cyls == 0)
4636
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4637
                else
4638
                    hda_index = drive_add(optarg, HD_ALIAS
4639
                             ",cyls=%d,heads=%d,secs=%d%s",
4640
                             0, cyls, heads, secs,
4641
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4642
                                 ",trans=lba" :
4643
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4644
                                 ",trans=none" : "");
4645
                 break;
4646
            case QEMU_OPTION_hdb:
4647
            case QEMU_OPTION_hdc:
4648
            case QEMU_OPTION_hdd:
4649
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4650
                break;
4651
            case QEMU_OPTION_drive:
4652
                drive_add(NULL, "%s", optarg);
4653
                break;
4654
            case QEMU_OPTION_mtdblock:
4655
                drive_add(optarg, MTD_ALIAS);
4656
                break;
4657
            case QEMU_OPTION_sd:
4658
                drive_add(optarg, SD_ALIAS);
4659
                break;
4660
            case QEMU_OPTION_pflash:
4661
                drive_add(optarg, PFLASH_ALIAS);
4662
                break;
4663
            case QEMU_OPTION_snapshot:
4664
                snapshot = 1;
4665
                break;
4666
            case QEMU_OPTION_hdachs:
4667
                {
4668
                    const char *p;
4669
                    p = optarg;
4670
                    cyls = strtol(p, (char **)&p, 0);
4671
                    if (cyls < 1 || cyls > 16383)
4672
                        goto chs_fail;
4673
                    if (*p != ',')
4674
                        goto chs_fail;
4675
                    p++;
4676
                    heads = strtol(p, (char **)&p, 0);
4677
                    if (heads < 1 || heads > 16)
4678
                        goto chs_fail;
4679
                    if (*p != ',')
4680
                        goto chs_fail;
4681
                    p++;
4682
                    secs = strtol(p, (char **)&p, 0);
4683
                    if (secs < 1 || secs > 63)
4684
                        goto chs_fail;
4685
                    if (*p == ',') {
4686
                        p++;
4687
                        if (!strcmp(p, "none"))
4688
                            translation = BIOS_ATA_TRANSLATION_NONE;
4689
                        else if (!strcmp(p, "lba"))
4690
                            translation = BIOS_ATA_TRANSLATION_LBA;
4691
                        else if (!strcmp(p, "auto"))
4692
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4693
                        else
4694
                            goto chs_fail;
4695
                    } else if (*p != '\0') {
4696
                    chs_fail:
4697
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4698
                        exit(1);
4699
                    }
4700
                    if (hda_index != -1)
4701
                        snprintf(drives_opt[hda_index].opt,
4702
                                 sizeof(drives_opt[hda_index].opt),
4703
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4704
                                 0, cyls, heads, secs,
4705
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4706
                                         ",trans=lba" :
4707
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4708
                                     ",trans=none" : "");
4709
                }
4710
                break;
4711
            case QEMU_OPTION_nographic:
4712
                nographic = 1;
4713
                break;
4714
#ifdef CONFIG_CURSES
4715
            case QEMU_OPTION_curses:
4716
                curses = 1;
4717
                break;
4718
#endif
4719
            case QEMU_OPTION_portrait:
4720
                graphic_rotate = 1;
4721
                break;
4722
            case QEMU_OPTION_kernel:
4723
                kernel_filename = optarg;
4724
                break;
4725
            case QEMU_OPTION_append:
4726
                kernel_cmdline = optarg;
4727
                break;
4728
            case QEMU_OPTION_cdrom:
4729
                drive_add(optarg, CDROM_ALIAS);
4730
                break;
4731
            case QEMU_OPTION_boot:
4732
                boot_devices = optarg;
4733
                /* We just do some generic consistency checks */
4734
                {
4735
                    /* Could easily be extended to 64 devices if needed */
4736
                    const char *p;
4737
                    
4738
                    boot_devices_bitmap = 0;
4739
                    for (p = boot_devices; *p != '\0'; p++) {
4740
                        /* Allowed boot devices are:
4741
                         * a b     : floppy disk drives
4742
                         * c ... f : IDE disk drives
4743
                         * g ... m : machine implementation dependant drives
4744
                         * n ... p : network devices
4745
                         * It's up to each machine implementation to check
4746
                         * if the given boot devices match the actual hardware
4747
                         * implementation and firmware features.
4748
                         */
4749
                        if (*p < 'a' || *p > 'q') {
4750
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4751
                            exit(1);
4752
                        }
4753
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4754
                            fprintf(stderr,
4755
                                    "Boot device '%c' was given twice\n",*p);
4756
                            exit(1);
4757
                        }
4758
                        boot_devices_bitmap |= 1 << (*p - 'a');
4759
                    }
4760
                }
4761
                break;
4762
            case QEMU_OPTION_fda:
4763
            case QEMU_OPTION_fdb:
4764
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4765
                break;
4766
#ifdef TARGET_I386
4767
            case QEMU_OPTION_no_fd_bootchk:
4768
                fd_bootchk = 0;
4769
                break;
4770
#endif
4771
            case QEMU_OPTION_net:
4772
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4773
                    fprintf(stderr, "qemu: too many network clients\n");
4774
                    exit(1);
4775
                }
4776
                net_clients[nb_net_clients] = optarg;
4777
                nb_net_clients++;
4778
                break;
4779
#ifdef CONFIG_SLIRP
4780
            case QEMU_OPTION_tftp:
4781
                tftp_prefix = optarg;
4782
                break;
4783
            case QEMU_OPTION_bootp:
4784
                bootp_filename = optarg;
4785
                break;
4786
#ifndef _WIN32
4787
            case QEMU_OPTION_smb:
4788
                net_slirp_smb(optarg);
4789
                break;
4790
#endif
4791
            case QEMU_OPTION_redir:
4792
                net_slirp_redir(optarg);
4793
                break;
4794
#endif
4795
            case QEMU_OPTION_bt:
4796
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4797
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4798
                    exit(1);
4799
                }
4800
                bt_opts[nb_bt_opts++] = optarg;
4801
                break;
4802
#ifdef HAS_AUDIO
4803
            case QEMU_OPTION_audio_help:
4804
                AUD_help ();
4805
                exit (0);
4806
                break;
4807
            case QEMU_OPTION_soundhw:
4808
                select_soundhw (optarg);
4809
                break;
4810
#endif
4811
            case QEMU_OPTION_h:
4812
                help(0);
4813
                break;
4814
            case QEMU_OPTION_m: {
4815
                uint64_t value;
4816
                char *ptr;
4817

    
4818
                value = strtoul(optarg, &ptr, 10);
4819
                switch (*ptr) {
4820
                case 0: case 'M': case 'm':
4821
                    value <<= 20;
4822
                    break;
4823
                case 'G': case 'g':
4824
                    value <<= 30;
4825
                    break;
4826
                default:
4827
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4828
                    exit(1);
4829
                }
4830

    
4831
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4832
                if (value > (2047 << 20)
4833
#ifndef USE_KQEMU
4834
                    && HOST_LONG_BITS == 32
4835
#endif
4836
                    ) {
4837
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4838
                    exit(1);
4839
                }
4840
                if (value != (uint64_t)(ram_addr_t)value) {
4841
                    fprintf(stderr, "qemu: ram size too large\n");
4842
                    exit(1);
4843
                }
4844
                ram_size = value;
4845
                break;
4846
            }
4847
            case QEMU_OPTION_d:
4848
                {
4849
                    int mask;
4850
                    const CPULogItem *item;
4851

    
4852
                    mask = cpu_str_to_log_mask(optarg);
4853
                    if (!mask) {
4854
                        printf("Log items (comma separated):\n");
4855
                    for(item = cpu_log_items; item->mask != 0; item++) {
4856
                        printf("%-10s %s\n", item->name, item->help);
4857
                    }
4858
                    exit(1);
4859
                    }
4860
                    cpu_set_log(mask);
4861
                }
4862
                break;
4863
#ifdef CONFIG_GDBSTUB
4864
            case QEMU_OPTION_s:
4865
                use_gdbstub = 1;
4866
                break;
4867
            case QEMU_OPTION_p:
4868
                gdbstub_port = optarg;
4869
                break;
4870
#endif
4871
            case QEMU_OPTION_L:
4872
                bios_dir = optarg;
4873
                break;
4874
            case QEMU_OPTION_bios:
4875
                bios_name = optarg;
4876
                break;
4877
            case QEMU_OPTION_S:
4878
                autostart = 0;
4879
                break;
4880
            case QEMU_OPTION_k:
4881
                keyboard_layout = optarg;
4882
                break;
4883
            case QEMU_OPTION_localtime:
4884
                rtc_utc = 0;
4885
                break;
4886
            case QEMU_OPTION_vga:
4887
                select_vgahw (optarg);
4888
                break;
4889
            case QEMU_OPTION_g:
4890
                {
4891
                    const char *p;
4892
                    int w, h, depth;
4893
                    p = optarg;
4894
                    w = strtol(p, (char **)&p, 10);
4895
                    if (w <= 0) {
4896
                    graphic_error:
4897
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
4898
                        exit(1);
4899
                    }
4900
                    if (*p != 'x')
4901
                        goto graphic_error;
4902
                    p++;
4903
                    h = strtol(p, (char **)&p, 10);
4904
                    if (h <= 0)
4905
                        goto graphic_error;
4906
                    if (*p == 'x') {
4907
                        p++;
4908
                        depth = strtol(p, (char **)&p, 10);
4909
                        if (depth != 8 && depth != 15 && depth != 16 &&
4910
                            depth != 24 && depth != 32)
4911
                            goto graphic_error;
4912
                    } else if (*p == '\0') {
4913
                        depth = graphic_depth;
4914
                    } else {
4915
                        goto graphic_error;
4916
                    }
4917

    
4918
                    graphic_width = w;
4919
                    graphic_height = h;
4920
                    graphic_depth = depth;
4921
                }
4922
                break;
4923
            case QEMU_OPTION_echr:
4924
                {
4925
                    char *r;
4926
                    term_escape_char = strtol(optarg, &r, 0);
4927
                    if (r == optarg)
4928
                        printf("Bad argument to echr\n");
4929
                    break;
4930
                }
4931
            case QEMU_OPTION_monitor:
4932
                monitor_device = optarg;
4933
                break;
4934
            case QEMU_OPTION_serial:
4935
                if (serial_device_index >= MAX_SERIAL_PORTS) {
4936
                    fprintf(stderr, "qemu: too many serial ports\n");
4937
                    exit(1);
4938
                }
4939
                serial_devices[serial_device_index] = optarg;
4940
                serial_device_index++;
4941
                break;
4942
            case QEMU_OPTION_parallel:
4943
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
4944
                    fprintf(stderr, "qemu: too many parallel ports\n");
4945
                    exit(1);
4946
                }
4947
                parallel_devices[parallel_device_index] = optarg;
4948
                parallel_device_index++;
4949
                break;
4950
            case QEMU_OPTION_loadvm:
4951
                loadvm = optarg;
4952
                break;
4953
            case QEMU_OPTION_full_screen:
4954
                full_screen = 1;
4955
                break;
4956
#ifdef CONFIG_SDL
4957
            case QEMU_OPTION_no_frame:
4958
                no_frame = 1;
4959
                break;
4960
            case QEMU_OPTION_alt_grab:
4961
                alt_grab = 1;
4962
                break;
4963
            case QEMU_OPTION_no_quit:
4964
                no_quit = 1;
4965
                break;
4966
#endif
4967
            case QEMU_OPTION_pidfile:
4968
                pid_file = optarg;
4969
                break;
4970
#ifdef TARGET_I386
4971
            case QEMU_OPTION_win2k_hack:
4972
                win2k_install_hack = 1;
4973
                break;
4974
#endif
4975
#ifdef USE_KQEMU
4976
            case QEMU_OPTION_no_kqemu:
4977
                kqemu_allowed = 0;
4978
                break;
4979
            case QEMU_OPTION_kernel_kqemu:
4980
                kqemu_allowed = 2;
4981
                break;
4982
#endif
4983
#ifdef CONFIG_KVM
4984
            case QEMU_OPTION_enable_kvm:
4985
                kvm_allowed = 1;
4986
#ifdef USE_KQEMU
4987
                kqemu_allowed = 0;
4988
#endif
4989
                break;
4990
#endif
4991
            case QEMU_OPTION_usb:
4992
                usb_enabled = 1;
4993
                break;
4994
            case QEMU_OPTION_usbdevice:
4995
                usb_enabled = 1;
4996
                if (usb_devices_index >= MAX_USB_CMDLINE) {
4997
                    fprintf(stderr, "Too many USB devices\n");
4998
                    exit(1);
4999
                }
5000
                usb_devices[usb_devices_index] = optarg;
5001
                usb_devices_index++;
5002
                break;
5003
            case QEMU_OPTION_smp:
5004
                smp_cpus = atoi(optarg);
5005
                if (smp_cpus < 1) {
5006
                    fprintf(stderr, "Invalid number of CPUs\n");
5007
                    exit(1);
5008
                }
5009
                break;
5010
            case QEMU_OPTION_vnc:
5011
                vnc_display = optarg;
5012
                break;
5013
            case QEMU_OPTION_no_acpi:
5014
                acpi_enabled = 0;
5015
                break;
5016
            case QEMU_OPTION_no_hpet:
5017
                no_hpet = 1;
5018
                break;
5019
            case QEMU_OPTION_no_reboot:
5020
                no_reboot = 1;
5021
                break;
5022
            case QEMU_OPTION_no_shutdown:
5023
                no_shutdown = 1;
5024
                break;
5025
            case QEMU_OPTION_show_cursor:
5026
                cursor_hide = 0;
5027
                break;
5028
            case QEMU_OPTION_uuid:
5029
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5030
                    fprintf(stderr, "Fail to parse UUID string."
5031
                            " Wrong format.\n");
5032
                    exit(1);
5033
                }
5034
                break;
5035
            case QEMU_OPTION_daemonize:
5036
                daemonize = 1;
5037
                break;
5038
            case QEMU_OPTION_option_rom:
5039
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5040
                    fprintf(stderr, "Too many option ROMs\n");
5041
                    exit(1);
5042
                }
5043
                option_rom[nb_option_roms] = optarg;
5044
                nb_option_roms++;
5045
                break;
5046
            case QEMU_OPTION_semihosting:
5047
                semihosting_enabled = 1;
5048
                break;
5049
            case QEMU_OPTION_name:
5050
                qemu_name = optarg;
5051
                break;
5052
#ifdef TARGET_SPARC
5053
            case QEMU_OPTION_prom_env:
5054
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5055
                    fprintf(stderr, "Too many prom variables\n");
5056
                    exit(1);
5057
                }
5058
                prom_envs[nb_prom_envs] = optarg;
5059
                nb_prom_envs++;
5060
                break;
5061
#endif
5062
#ifdef TARGET_ARM
5063
            case QEMU_OPTION_old_param:
5064
                old_param = 1;
5065
                break;
5066
#endif
5067
            case QEMU_OPTION_clock:
5068
                configure_alarms(optarg);
5069
                break;
5070
            case QEMU_OPTION_startdate:
5071
                {
5072
                    struct tm tm;
5073
                    time_t rtc_start_date;
5074
                    if (!strcmp(optarg, "now")) {
5075
                        rtc_date_offset = -1;
5076
                    } else {
5077
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5078
                               &tm.tm_year,
5079
                               &tm.tm_mon,
5080
                               &tm.tm_mday,
5081
                               &tm.tm_hour,
5082
                               &tm.tm_min,
5083
                               &tm.tm_sec) == 6) {
5084
                            /* OK */
5085
                        } else if (sscanf(optarg, "%d-%d-%d",
5086
                                          &tm.tm_year,
5087
                                          &tm.tm_mon,
5088
                                          &tm.tm_mday) == 3) {
5089
                            tm.tm_hour = 0;
5090
                            tm.tm_min = 0;
5091
                            tm.tm_sec = 0;
5092
                        } else {
5093
                            goto date_fail;
5094
                        }
5095
                        tm.tm_year -= 1900;
5096
                        tm.tm_mon--;
5097
                        rtc_start_date = mktimegm(&tm);
5098
                        if (rtc_start_date == -1) {
5099
                        date_fail:
5100
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5101
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5102
                            exit(1);
5103
                        }
5104
                        rtc_date_offset = time(NULL) - rtc_start_date;
5105
                    }
5106
                }
5107
                break;
5108
            case QEMU_OPTION_tb_size:
5109
                tb_size = strtol(optarg, NULL, 0);
5110
                if (tb_size < 0)
5111
                    tb_size = 0;
5112
                break;
5113
            case QEMU_OPTION_icount:
5114
                use_icount = 1;
5115
                if (strcmp(optarg, "auto") == 0) {
5116
                    icount_time_shift = -1;
5117
                } else {
5118
                    icount_time_shift = strtol(optarg, NULL, 0);
5119
                }
5120
                break;
5121
            case QEMU_OPTION_incoming:
5122
                incoming = optarg;
5123
                break;
5124
            }
5125
        }
5126
    }
5127

    
5128
#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5129
    if (kvm_allowed && kqemu_allowed) {
5130
        fprintf(stderr,
5131
                "You can not enable both KVM and kqemu at the same time\n");
5132
        exit(1);
5133
    }
5134
#endif
5135

    
5136
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5137
    if (smp_cpus > machine->max_cpus) {
5138
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5139
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5140
                machine->max_cpus);
5141
        exit(1);
5142
    }
5143

    
5144
    if (nographic) {
5145
       if (serial_device_index == 0)
5146
           serial_devices[0] = "stdio";
5147
       if (parallel_device_index == 0)
5148
           parallel_devices[0] = "null";
5149
       if (strncmp(monitor_device, "vc", 2) == 0)
5150
           monitor_device = "stdio";
5151
    }
5152

    
5153
#ifndef _WIN32
5154
    if (daemonize) {
5155
        pid_t pid;
5156

    
5157
        if (pipe(fds) == -1)
5158
            exit(1);
5159

    
5160
        pid = fork();
5161
        if (pid > 0) {
5162
            uint8_t status;
5163
            ssize_t len;
5164

    
5165
            close(fds[1]);
5166

    
5167
        again:
5168
            len = read(fds[0], &status, 1);
5169
            if (len == -1 && (errno == EINTR))
5170
                goto again;
5171

    
5172
            if (len != 1)
5173
                exit(1);
5174
            else if (status == 1) {
5175
                fprintf(stderr, "Could not acquire pidfile\n");
5176
                exit(1);
5177
            } else
5178
                exit(0);
5179
        } else if (pid < 0)
5180
            exit(1);
5181

    
5182
        setsid();
5183

    
5184
        pid = fork();
5185
        if (pid > 0)
5186
            exit(0);
5187
        else if (pid < 0)
5188
            exit(1);
5189

    
5190
        umask(027);
5191

    
5192
        signal(SIGTSTP, SIG_IGN);
5193
        signal(SIGTTOU, SIG_IGN);
5194
        signal(SIGTTIN, SIG_IGN);
5195
    }
5196
#endif
5197

    
5198
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5199
        if (daemonize) {
5200
            uint8_t status = 1;
5201
            write(fds[1], &status, 1);
5202
        } else
5203
            fprintf(stderr, "Could not acquire pid file\n");
5204
        exit(1);
5205
    }
5206

    
5207
#ifdef USE_KQEMU
5208
    if (smp_cpus > 1)
5209
        kqemu_allowed = 0;
5210
#endif
5211
    linux_boot = (kernel_filename != NULL);
5212
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5213

    
5214
    if (!linux_boot && net_boot == 0 &&
5215
        !machine->nodisk_ok && nb_drives_opt == 0)
5216
        help(1);
5217

    
5218
    if (!linux_boot && *kernel_cmdline != '\0') {
5219
        fprintf(stderr, "-append only allowed with -kernel option\n");
5220
        exit(1);
5221
    }
5222

    
5223
    if (!linux_boot && initrd_filename != NULL) {
5224
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5225
        exit(1);
5226
    }
5227

    
5228
    /* boot to floppy or the default cd if no hard disk defined yet */
5229
    if (!boot_devices[0]) {
5230
        boot_devices = "cad";
5231
    }
5232
    setvbuf(stdout, NULL, _IOLBF, 0);
5233

    
5234
    init_timers();
5235
    if (init_timer_alarm() < 0) {
5236
        fprintf(stderr, "could not initialize alarm timer\n");
5237
        exit(1);
5238
    }
5239
    if (use_icount && icount_time_shift < 0) {
5240
        use_icount = 2;
5241
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5242
           It will be corrected fairly quickly anyway.  */
5243
        icount_time_shift = 3;
5244
        init_icount_adjust();
5245
    }
5246

    
5247
#ifdef _WIN32
5248
    socket_init();
5249
#endif
5250

    
5251
    /* init network clients */
5252
    if (nb_net_clients == 0) {
5253
        /* if no clients, we use a default config */
5254
        net_clients[nb_net_clients++] = "nic";
5255
#ifdef CONFIG_SLIRP
5256
        net_clients[nb_net_clients++] = "user";
5257
#endif
5258
    }
5259

    
5260
    for(i = 0;i < nb_net_clients; i++) {
5261
        if (net_client_parse(net_clients[i]) < 0)
5262
            exit(1);
5263
    }
5264
    net_client_check();
5265

    
5266
#ifdef TARGET_I386
5267
    /* XXX: this should be moved in the PC machine instantiation code */
5268
    if (net_boot != 0) {
5269
        int netroms = 0;
5270
        for (i = 0; i < nb_nics && i < 4; i++) {
5271
            const char *model = nd_table[i].model;
5272
            char buf[1024];
5273
            if (net_boot & (1 << i)) {
5274
                if (model == NULL)
5275
                    model = "ne2k_pci";
5276
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5277
                if (get_image_size(buf) > 0) {
5278
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5279
                        fprintf(stderr, "Too many option ROMs\n");
5280
                        exit(1);
5281
                    }
5282
                    option_rom[nb_option_roms] = strdup(buf);
5283
                    nb_option_roms++;
5284
                    netroms++;
5285
                }
5286
            }
5287
        }
5288
        if (netroms == 0) {
5289
            fprintf(stderr, "No valid PXE rom found for network device\n");
5290
            exit(1);
5291
        }
5292
    }
5293
#endif
5294

    
5295
    /* init the bluetooth world */
5296
    for (i = 0; i < nb_bt_opts; i++)
5297
        if (bt_parse(bt_opts[i]))
5298
            exit(1);
5299

    
5300
    /* init the memory */
5301
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5302

    
5303
    if (machine->ram_require & RAMSIZE_FIXED) {
5304
        if (ram_size > 0) {
5305
            if (ram_size < phys_ram_size) {
5306
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5307
                                machine->name, (unsigned long long) phys_ram_size);
5308
                exit(-1);
5309
            }
5310

    
5311
            phys_ram_size = ram_size;
5312
        } else
5313
            ram_size = phys_ram_size;
5314
    } else {
5315
        if (ram_size == 0)
5316
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5317

    
5318
        phys_ram_size += ram_size;
5319
    }
5320

    
5321
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5322
    if (!phys_ram_base) {
5323
        fprintf(stderr, "Could not allocate physical memory\n");
5324
        exit(1);
5325
    }
5326

    
5327
    /* init the dynamic translator */
5328
    cpu_exec_init_all(tb_size * 1024 * 1024);
5329

    
5330
    bdrv_init();
5331

    
5332
    /* we always create the cdrom drive, even if no disk is there */
5333

    
5334
    if (nb_drives_opt < MAX_DRIVES)
5335
        drive_add(NULL, CDROM_ALIAS);
5336

    
5337
    /* we always create at least one floppy */
5338

    
5339
    if (nb_drives_opt < MAX_DRIVES)
5340
        drive_add(NULL, FD_ALIAS, 0);
5341

    
5342
    /* we always create one sd slot, even if no card is in it */
5343

    
5344
    if (nb_drives_opt < MAX_DRIVES)
5345
        drive_add(NULL, SD_ALIAS);
5346

    
5347
    /* open the virtual block devices */
5348

    
5349
    for(i = 0; i < nb_drives_opt; i++)
5350
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5351
            exit(1);
5352

    
5353
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5354
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5355

    
5356
    /* terminal init */
5357
    memset(&display_state, 0, sizeof(display_state));
5358
    if (nographic) {
5359
        if (curses) {
5360
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5361
            exit(1);
5362
        }
5363
        /* nearly nothing to do */
5364
        dumb_display_init(ds);
5365
    } else if (vnc_display != NULL) {
5366
        vnc_display_init(ds);
5367
        if (vnc_display_open(ds, vnc_display) < 0)
5368
            exit(1);
5369
    } else
5370
#if defined(CONFIG_CURSES)
5371
    if (curses) {
5372
        curses_display_init(ds, full_screen);
5373
    } else
5374
#endif
5375
    {
5376
#if defined(CONFIG_SDL)
5377
        sdl_display_init(ds, full_screen, no_frame);
5378
#elif defined(CONFIG_COCOA)
5379
        cocoa_display_init(ds, full_screen);
5380
#else
5381
        dumb_display_init(ds);
5382
#endif
5383
    }
5384

    
5385
#ifndef _WIN32
5386
    /* must be after terminal init, SDL library changes signal handlers */
5387
    termsig_setup();
5388
#endif
5389

    
5390
    /* Maintain compatibility with multiple stdio monitors */
5391
    if (!strcmp(monitor_device,"stdio")) {
5392
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5393
            const char *devname = serial_devices[i];
5394
            if (devname && !strcmp(devname,"mon:stdio")) {
5395
                monitor_device = NULL;
5396
                break;
5397
            } else if (devname && !strcmp(devname,"stdio")) {
5398
                monitor_device = NULL;
5399
                serial_devices[i] = "mon:stdio";
5400
                break;
5401
            }
5402
        }
5403
    }
5404
    if (monitor_device) {
5405
        monitor_hd = qemu_chr_open("monitor", monitor_device);
5406
        if (!monitor_hd) {
5407
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5408
            exit(1);
5409
        }
5410
        monitor_init(monitor_hd, !nographic);
5411
    }
5412

    
5413
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5414
        const char *devname = serial_devices[i];
5415
        if (devname && strcmp(devname, "none")) {
5416
            char label[32];
5417
            snprintf(label, sizeof(label), "serial%d", i);
5418
            serial_hds[i] = qemu_chr_open(label, devname);
5419
            if (!serial_hds[i]) {
5420
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5421
                        devname);
5422
                exit(1);
5423
            }
5424
            if (strstart(devname, "vc", 0))
5425
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5426
        }
5427
    }
5428

    
5429
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5430
        const char *devname = parallel_devices[i];
5431
        if (devname && strcmp(devname, "none")) {
5432
            char label[32];
5433
            snprintf(label, sizeof(label), "parallel%d", i);
5434
            parallel_hds[i] = qemu_chr_open(label, devname);
5435
            if (!parallel_hds[i]) {
5436
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5437
                        devname);
5438
                exit(1);
5439
            }
5440
            if (strstart(devname, "vc", 0))
5441
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5442
        }
5443
    }
5444

    
5445
    if (kvm_enabled()) {
5446
        int ret;
5447

    
5448
        ret = kvm_init(smp_cpus);
5449
        if (ret < 0) {
5450
            fprintf(stderr, "failed to initialize KVM\n");
5451
            exit(1);
5452
        }
5453
    }
5454

    
5455
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
5456
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5457

    
5458
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5459
    if (kvm_enabled()) {
5460
        int ret;
5461

    
5462
        ret = kvm_sync_vcpus();
5463
        if (ret < 0) {
5464
            fprintf(stderr, "failed to initialize vcpus\n");
5465
            exit(1);
5466
        }
5467
    }
5468

    
5469
    /* init USB devices */
5470
    if (usb_enabled) {
5471
        for(i = 0; i < usb_devices_index; i++) {
5472
            if (usb_device_add(usb_devices[i]) < 0) {
5473
                fprintf(stderr, "Warning: could not add USB device %s\n",
5474
                        usb_devices[i]);
5475
            }
5476
        }
5477
    }
5478

    
5479
    if (display_state.dpy_refresh) {
5480
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
5481
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
5482
    }
5483

    
5484
#ifdef CONFIG_GDBSTUB
5485
    if (use_gdbstub) {
5486
        /* XXX: use standard host:port notation and modify options
5487
           accordingly. */
5488
        if (gdbserver_start(gdbstub_port) < 0) {
5489
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5490
                    gdbstub_port);
5491
            exit(1);
5492
        }
5493
    }
5494
#endif
5495

    
5496
    if (loadvm)
5497
        do_loadvm(loadvm);
5498

    
5499
    if (incoming) {
5500
        autostart = 0; /* fixme how to deal with -daemonize */
5501
        qemu_start_incoming_migration(incoming);
5502
    }
5503

    
5504
    {
5505
        /* XXX: simplify init */
5506
        read_passwords();
5507
        if (autostart) {
5508
            vm_start();
5509
        }
5510
    }
5511

    
5512
    if (daemonize) {
5513
        uint8_t status = 0;
5514
        ssize_t len;
5515
        int fd;
5516

    
5517
    again1:
5518
        len = write(fds[1], &status, 1);
5519
        if (len == -1 && (errno == EINTR))
5520
            goto again1;
5521

    
5522
        if (len != 1)
5523
            exit(1);
5524

    
5525
        chdir("/");
5526
        TFR(fd = open("/dev/null", O_RDWR));
5527
        if (fd == -1)
5528
            exit(1);
5529

    
5530
        dup2(fd, 0);
5531
        dup2(fd, 1);
5532
        dup2(fd, 2);
5533

    
5534
        close(fd);
5535
    }
5536

    
5537
    main_loop();
5538
    quit_timers();
5539
    net_cleanup();
5540

    
5541
    return 0;
5542
}