Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ b3baa152

History | View | Annotate | Download (52.3 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31

    
32
#ifdef CONFIG_KVM_PARA
33
#include <linux/kvm_para.h>
34
#endif
35
//
36
//#define DEBUG_KVM
37

    
38
#ifdef DEBUG_KVM
39
#define DPRINTF(fmt, ...) \
40
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41
#else
42
#define DPRINTF(fmt, ...) \
43
    do { } while (0)
44
#endif
45

    
46
#define MSR_KVM_WALL_CLOCK  0x11
47
#define MSR_KVM_SYSTEM_TIME 0x12
48

    
49
#ifndef BUS_MCEERR_AR
50
#define BUS_MCEERR_AR 4
51
#endif
52
#ifndef BUS_MCEERR_AO
53
#define BUS_MCEERR_AO 5
54
#endif
55

    
56
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57
    KVM_CAP_INFO(SET_TSS_ADDR),
58
    KVM_CAP_INFO(EXT_CPUID),
59
    KVM_CAP_INFO(MP_STATE),
60
    KVM_CAP_LAST_INFO
61
};
62

    
63
static bool has_msr_star;
64
static bool has_msr_hsave_pa;
65
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
66
static bool has_msr_async_pf_en;
67
#endif
68
static int lm_capable_kernel;
69

    
70
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
71
{
72
    struct kvm_cpuid2 *cpuid;
73
    int r, size;
74

    
75
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
76
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
77
    cpuid->nent = max;
78
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
79
    if (r == 0 && cpuid->nent >= max) {
80
        r = -E2BIG;
81
    }
82
    if (r < 0) {
83
        if (r == -E2BIG) {
84
            qemu_free(cpuid);
85
            return NULL;
86
        } else {
87
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
88
                    strerror(-r));
89
            exit(1);
90
        }
91
    }
92
    return cpuid;
93
}
94

    
95
#ifdef CONFIG_KVM_PARA
96
struct kvm_para_features {
97
    int cap;
98
    int feature;
99
} para_features[] = {
100
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
101
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
102
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
103
#ifdef KVM_CAP_ASYNC_PF
104
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
105
#endif
106
    { -1, -1 }
107
};
108

    
109
static int get_para_features(CPUState *env)
110
{
111
    int i, features = 0;
112

    
113
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
114
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
115
            features |= (1 << para_features[i].feature);
116
        }
117
    }
118

    
119
    return features;
120
}
121
#endif
122

    
123

    
124
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
125
                                      uint32_t index, int reg)
126
{
127
    struct kvm_cpuid2 *cpuid;
128
    int i, max;
129
    uint32_t ret = 0;
130
    uint32_t cpuid_1_edx;
131
#ifdef CONFIG_KVM_PARA
132
    int has_kvm_features = 0;
133
#endif
134

    
135
    max = 1;
136
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
137
        max *= 2;
138
    }
139

    
140
    for (i = 0; i < cpuid->nent; ++i) {
141
        if (cpuid->entries[i].function == function &&
142
            cpuid->entries[i].index == index) {
143
#ifdef CONFIG_KVM_PARA
144
            if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
145
                has_kvm_features = 1;
146
            }
147
#endif
148
            switch (reg) {
149
            case R_EAX:
150
                ret = cpuid->entries[i].eax;
151
                break;
152
            case R_EBX:
153
                ret = cpuid->entries[i].ebx;
154
                break;
155
            case R_ECX:
156
                ret = cpuid->entries[i].ecx;
157
                break;
158
            case R_EDX:
159
                ret = cpuid->entries[i].edx;
160
                switch (function) {
161
                case 1:
162
                    /* KVM before 2.6.30 misreports the following features */
163
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
164
                    break;
165
                case 0x80000001:
166
                    /* On Intel, kvm returns cpuid according to the Intel spec,
167
                     * so add missing bits according to the AMD spec:
168
                     */
169
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
170
                    ret |= cpuid_1_edx & 0x183f7ff;
171
                    break;
172
                }
173
                break;
174
            }
175
        }
176
    }
177

    
178
    qemu_free(cpuid);
179

    
180
#ifdef CONFIG_KVM_PARA
181
    /* fallback for older kernels */
182
    if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
183
        ret = get_para_features(env);
184
    }
185
#endif
186

    
187
    return ret;
188
}
189

    
190
typedef struct HWPoisonPage {
191
    ram_addr_t ram_addr;
192
    QLIST_ENTRY(HWPoisonPage) list;
193
} HWPoisonPage;
194

    
195
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
196
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
197

    
198
static void kvm_unpoison_all(void *param)
199
{
200
    HWPoisonPage *page, *next_page;
201

    
202
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
203
        QLIST_REMOVE(page, list);
204
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
205
        qemu_free(page);
206
    }
207
}
208

    
209
#ifdef KVM_CAP_MCE
210
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
211
{
212
    HWPoisonPage *page;
213

    
214
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
215
        if (page->ram_addr == ram_addr) {
216
            return;
217
        }
218
    }
219
    page = qemu_malloc(sizeof(HWPoisonPage));
220
    page->ram_addr = ram_addr;
221
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
222
}
223

    
224
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
225
                                     int *max_banks)
226
{
227
    int r;
228

    
229
    r = kvm_check_extension(s, KVM_CAP_MCE);
230
    if (r > 0) {
231
        *max_banks = r;
232
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
233
    }
234
    return -ENOSYS;
235
}
236

    
237
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
238
{
239
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
240
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
241
    uint64_t mcg_status = MCG_STATUS_MCIP;
242

    
243
    if (code == BUS_MCEERR_AR) {
244
        status |= MCI_STATUS_AR | 0x134;
245
        mcg_status |= MCG_STATUS_EIPV;
246
    } else {
247
        status |= 0xc0;
248
        mcg_status |= MCG_STATUS_RIPV;
249
    }
250
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
251
                       (MCM_ADDR_PHYS << 6) | 0xc,
252
                       cpu_x86_support_mca_broadcast(env) ?
253
                       MCE_INJECT_BROADCAST : 0);
254
}
255
#endif /* KVM_CAP_MCE */
256

    
257
static void hardware_memory_error(void)
258
{
259
    fprintf(stderr, "Hardware memory error!\n");
260
    exit(1);
261
}
262

    
263
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
264
{
265
#ifdef KVM_CAP_MCE
266
    ram_addr_t ram_addr;
267
    target_phys_addr_t paddr;
268

    
269
    if ((env->mcg_cap & MCG_SER_P) && addr
270
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
271
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
272
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr,
273
                                               &paddr)) {
274
            fprintf(stderr, "Hardware memory error for memory used by "
275
                    "QEMU itself instead of guest system!\n");
276
            /* Hope we are lucky for AO MCE */
277
            if (code == BUS_MCEERR_AO) {
278
                return 0;
279
            } else {
280
                hardware_memory_error();
281
            }
282
        }
283
        kvm_hwpoison_page_add(ram_addr);
284
        kvm_mce_inject(env, paddr, code);
285
    } else
286
#endif /* KVM_CAP_MCE */
287
    {
288
        if (code == BUS_MCEERR_AO) {
289
            return 0;
290
        } else if (code == BUS_MCEERR_AR) {
291
            hardware_memory_error();
292
        } else {
293
            return 1;
294
        }
295
    }
296
    return 0;
297
}
298

    
299
int kvm_arch_on_sigbus(int code, void *addr)
300
{
301
#ifdef KVM_CAP_MCE
302
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
303
        ram_addr_t ram_addr;
304
        target_phys_addr_t paddr;
305

    
306
        /* Hope we are lucky for AO MCE */
307
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
308
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr,
309
                                               &paddr)) {
310
            fprintf(stderr, "Hardware memory error for memory used by "
311
                    "QEMU itself instead of guest system!: %p\n", addr);
312
            return 0;
313
        }
314
        kvm_hwpoison_page_add(ram_addr);
315
        kvm_mce_inject(first_cpu, paddr, code);
316
    } else
317
#endif /* KVM_CAP_MCE */
318
    {
319
        if (code == BUS_MCEERR_AO) {
320
            return 0;
321
        } else if (code == BUS_MCEERR_AR) {
322
            hardware_memory_error();
323
        } else {
324
            return 1;
325
        }
326
    }
327
    return 0;
328
}
329

    
330
static int kvm_inject_mce_oldstyle(CPUState *env)
331
{
332
#ifdef KVM_CAP_MCE
333
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
334
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
335
        struct kvm_x86_mce mce;
336

    
337
        env->exception_injected = -1;
338

    
339
        /*
340
         * There must be at least one bank in use if an MCE is pending.
341
         * Find it and use its values for the event injection.
342
         */
343
        for (bank = 0; bank < bank_num; bank++) {
344
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
345
                break;
346
            }
347
        }
348
        assert(bank < bank_num);
349

    
350
        mce.bank = bank;
351
        mce.status = env->mce_banks[bank * 4 + 1];
352
        mce.mcg_status = env->mcg_status;
353
        mce.addr = env->mce_banks[bank * 4 + 2];
354
        mce.misc = env->mce_banks[bank * 4 + 3];
355

    
356
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
357
    }
358
#endif /* KVM_CAP_MCE */
359
    return 0;
360
}
361

    
362
static void cpu_update_state(void *opaque, int running, int reason)
363
{
364
    CPUState *env = opaque;
365

    
366
    if (running) {
367
        env->tsc_valid = false;
368
    }
369
}
370

    
371
int kvm_arch_init_vcpu(CPUState *env)
372
{
373
    struct {
374
        struct kvm_cpuid2 cpuid;
375
        struct kvm_cpuid_entry2 entries[100];
376
    } __attribute__((packed)) cpuid_data;
377
    uint32_t limit, i, j, cpuid_i;
378
    uint32_t unused;
379
    struct kvm_cpuid_entry2 *c;
380
#ifdef CONFIG_KVM_PARA
381
    uint32_t signature[3];
382
#endif
383

    
384
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
385

    
386
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
387
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
388
    env->cpuid_ext_features |= i;
389

    
390
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
391
                                                             0, R_EDX);
392
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
393
                                                             0, R_ECX);
394
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
395
                                                             0, R_EDX);
396

    
397

    
398
    cpuid_i = 0;
399

    
400
#ifdef CONFIG_KVM_PARA
401
    /* Paravirtualization CPUIDs */
402
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
403
    c = &cpuid_data.entries[cpuid_i++];
404
    memset(c, 0, sizeof(*c));
405
    c->function = KVM_CPUID_SIGNATURE;
406
    c->eax = 0;
407
    c->ebx = signature[0];
408
    c->ecx = signature[1];
409
    c->edx = signature[2];
410

    
411
    c = &cpuid_data.entries[cpuid_i++];
412
    memset(c, 0, sizeof(*c));
413
    c->function = KVM_CPUID_FEATURES;
414
    c->eax = env->cpuid_kvm_features & kvm_arch_get_supported_cpuid(env,
415
                                                KVM_CPUID_FEATURES, 0, R_EAX);
416

    
417
#ifdef KVM_CAP_ASYNC_PF
418
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
419
#endif
420

    
421
#endif
422

    
423
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
424

    
425
    for (i = 0; i <= limit; i++) {
426
        c = &cpuid_data.entries[cpuid_i++];
427

    
428
        switch (i) {
429
        case 2: {
430
            /* Keep reading function 2 till all the input is received */
431
            int times;
432

    
433
            c->function = i;
434
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
435
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
436
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
437
            times = c->eax & 0xff;
438

    
439
            for (j = 1; j < times; ++j) {
440
                c = &cpuid_data.entries[cpuid_i++];
441
                c->function = i;
442
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
443
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
444
            }
445
            break;
446
        }
447
        case 4:
448
        case 0xb:
449
        case 0xd:
450
            for (j = 0; ; j++) {
451
                c->function = i;
452
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
453
                c->index = j;
454
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
455

    
456
                if (i == 4 && c->eax == 0) {
457
                    break;
458
                }
459
                if (i == 0xb && !(c->ecx & 0xff00)) {
460
                    break;
461
                }
462
                if (i == 0xd && c->eax == 0) {
463
                    break;
464
                }
465
                c = &cpuid_data.entries[cpuid_i++];
466
            }
467
            break;
468
        default:
469
            c->function = i;
470
            c->flags = 0;
471
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
472
            break;
473
        }
474
    }
475
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
476

    
477
    for (i = 0x80000000; i <= limit; i++) {
478
        c = &cpuid_data.entries[cpuid_i++];
479

    
480
        c->function = i;
481
        c->flags = 0;
482
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
483
    }
484

    
485
    /* Call Centaur's CPUID instructions they are supported. */
486
    if (env->cpuid_xlevel2 > 0) {
487
        env->cpuid_ext4_features &=
488
            kvm_arch_get_supported_cpuid(env, 0xC0000001, 0, R_EDX);
489
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
490

    
491
        for (i = 0xC0000000; i <= limit; i++) {
492
            c = &cpuid_data.entries[cpuid_i++];
493

    
494
            c->function = i;
495
            c->flags = 0;
496
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
497
        }
498
    }
499

    
500
    cpuid_data.cpuid.nent = cpuid_i;
501

    
502
#ifdef KVM_CAP_MCE
503
    if (((env->cpuid_version >> 8)&0xF) >= 6
504
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
505
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
506
        uint64_t mcg_cap;
507
        int banks;
508
        int ret;
509

    
510
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
511
        if (ret < 0) {
512
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
513
            return ret;
514
        }
515

    
516
        if (banks > MCE_BANKS_DEF) {
517
            banks = MCE_BANKS_DEF;
518
        }
519
        mcg_cap &= MCE_CAP_DEF;
520
        mcg_cap |= banks;
521
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
522
        if (ret < 0) {
523
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
524
            return ret;
525
        }
526

    
527
        env->mcg_cap = mcg_cap;
528
    }
529
#endif
530

    
531
    qemu_add_vm_change_state_handler(cpu_update_state, env);
532

    
533
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
534
}
535

    
536
void kvm_arch_reset_vcpu(CPUState *env)
537
{
538
    env->exception_injected = -1;
539
    env->interrupt_injected = -1;
540
    env->xcr0 = 1;
541
    if (kvm_irqchip_in_kernel()) {
542
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
543
                                          KVM_MP_STATE_UNINITIALIZED;
544
    } else {
545
        env->mp_state = KVM_MP_STATE_RUNNABLE;
546
    }
547
}
548

    
549
static int kvm_get_supported_msrs(KVMState *s)
550
{
551
    static int kvm_supported_msrs;
552
    int ret = 0;
553

    
554
    /* first time */
555
    if (kvm_supported_msrs == 0) {
556
        struct kvm_msr_list msr_list, *kvm_msr_list;
557

    
558
        kvm_supported_msrs = -1;
559

    
560
        /* Obtain MSR list from KVM.  These are the MSRs that we must
561
         * save/restore */
562
        msr_list.nmsrs = 0;
563
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
564
        if (ret < 0 && ret != -E2BIG) {
565
            return ret;
566
        }
567
        /* Old kernel modules had a bug and could write beyond the provided
568
           memory. Allocate at least a safe amount of 1K. */
569
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
570
                                              msr_list.nmsrs *
571
                                              sizeof(msr_list.indices[0])));
572

    
573
        kvm_msr_list->nmsrs = msr_list.nmsrs;
574
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
575
        if (ret >= 0) {
576
            int i;
577

    
578
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
579
                if (kvm_msr_list->indices[i] == MSR_STAR) {
580
                    has_msr_star = true;
581
                    continue;
582
                }
583
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
584
                    has_msr_hsave_pa = true;
585
                    continue;
586
                }
587
            }
588
        }
589

    
590
        qemu_free(kvm_msr_list);
591
    }
592

    
593
    return ret;
594
}
595

    
596
int kvm_arch_init(KVMState *s)
597
{
598
    uint64_t identity_base = 0xfffbc000;
599
    int ret;
600
    struct utsname utsname;
601

    
602
    ret = kvm_get_supported_msrs(s);
603
    if (ret < 0) {
604
        return ret;
605
    }
606

    
607
    uname(&utsname);
608
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
609

    
610
    /*
611
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
612
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
613
     * Since these must be part of guest physical memory, we need to allocate
614
     * them, both by setting their start addresses in the kernel and by
615
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
616
     *
617
     * Older KVM versions may not support setting the identity map base. In
618
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
619
     * size.
620
     */
621
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
622
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
623
        /* Allows up to 16M BIOSes. */
624
        identity_base = 0xfeffc000;
625

    
626
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
627
        if (ret < 0) {
628
            return ret;
629
        }
630
    }
631
#endif
632
    /* Set TSS base one page after EPT identity map. */
633
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
634
    if (ret < 0) {
635
        return ret;
636
    }
637

    
638
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
639
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
640
    if (ret < 0) {
641
        fprintf(stderr, "e820_add_entry() table is full\n");
642
        return ret;
643
    }
644
    qemu_register_reset(kvm_unpoison_all, NULL);
645

    
646
    return 0;
647
}
648

    
649
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
650
{
651
    lhs->selector = rhs->selector;
652
    lhs->base = rhs->base;
653
    lhs->limit = rhs->limit;
654
    lhs->type = 3;
655
    lhs->present = 1;
656
    lhs->dpl = 3;
657
    lhs->db = 0;
658
    lhs->s = 1;
659
    lhs->l = 0;
660
    lhs->g = 0;
661
    lhs->avl = 0;
662
    lhs->unusable = 0;
663
}
664

    
665
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
666
{
667
    unsigned flags = rhs->flags;
668
    lhs->selector = rhs->selector;
669
    lhs->base = rhs->base;
670
    lhs->limit = rhs->limit;
671
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
672
    lhs->present = (flags & DESC_P_MASK) != 0;
673
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
674
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
675
    lhs->s = (flags & DESC_S_MASK) != 0;
676
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
677
    lhs->g = (flags & DESC_G_MASK) != 0;
678
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
679
    lhs->unusable = 0;
680
}
681

    
682
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
683
{
684
    lhs->selector = rhs->selector;
685
    lhs->base = rhs->base;
686
    lhs->limit = rhs->limit;
687
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
688
                 (rhs->present * DESC_P_MASK) |
689
                 (rhs->dpl << DESC_DPL_SHIFT) |
690
                 (rhs->db << DESC_B_SHIFT) |
691
                 (rhs->s * DESC_S_MASK) |
692
                 (rhs->l << DESC_L_SHIFT) |
693
                 (rhs->g * DESC_G_MASK) |
694
                 (rhs->avl * DESC_AVL_MASK);
695
}
696

    
697
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
698
{
699
    if (set) {
700
        *kvm_reg = *qemu_reg;
701
    } else {
702
        *qemu_reg = *kvm_reg;
703
    }
704
}
705

    
706
static int kvm_getput_regs(CPUState *env, int set)
707
{
708
    struct kvm_regs regs;
709
    int ret = 0;
710

    
711
    if (!set) {
712
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
713
        if (ret < 0) {
714
            return ret;
715
        }
716
    }
717

    
718
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
719
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
720
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
721
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
722
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
723
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
724
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
725
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
726
#ifdef TARGET_X86_64
727
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
728
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
729
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
730
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
731
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
732
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
733
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
734
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
735
#endif
736

    
737
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
738
    kvm_getput_reg(&regs.rip, &env->eip, set);
739

    
740
    if (set) {
741
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
742
    }
743

    
744
    return ret;
745
}
746

    
747
static int kvm_put_fpu(CPUState *env)
748
{
749
    struct kvm_fpu fpu;
750
    int i;
751

    
752
    memset(&fpu, 0, sizeof fpu);
753
    fpu.fsw = env->fpus & ~(7 << 11);
754
    fpu.fsw |= (env->fpstt & 7) << 11;
755
    fpu.fcw = env->fpuc;
756
    for (i = 0; i < 8; ++i) {
757
        fpu.ftwx |= (!env->fptags[i]) << i;
758
    }
759
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
760
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
761
    fpu.mxcsr = env->mxcsr;
762

    
763
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
764
}
765

    
766
#ifdef KVM_CAP_XSAVE
767
#define XSAVE_CWD_RIP     2
768
#define XSAVE_CWD_RDP     4
769
#define XSAVE_MXCSR       6
770
#define XSAVE_ST_SPACE    8
771
#define XSAVE_XMM_SPACE   40
772
#define XSAVE_XSTATE_BV   128
773
#define XSAVE_YMMH_SPACE  144
774
#endif
775

    
776
static int kvm_put_xsave(CPUState *env)
777
{
778
#ifdef KVM_CAP_XSAVE
779
    int i, r;
780
    struct kvm_xsave* xsave;
781
    uint16_t cwd, swd, twd, fop;
782

    
783
    if (!kvm_has_xsave()) {
784
        return kvm_put_fpu(env);
785
    }
786

    
787
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
788
    memset(xsave, 0, sizeof(struct kvm_xsave));
789
    cwd = swd = twd = fop = 0;
790
    swd = env->fpus & ~(7 << 11);
791
    swd |= (env->fpstt & 7) << 11;
792
    cwd = env->fpuc;
793
    for (i = 0; i < 8; ++i) {
794
        twd |= (!env->fptags[i]) << i;
795
    }
796
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
797
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
798
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
799
            sizeof env->fpregs);
800
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
801
            sizeof env->xmm_regs);
802
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
803
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
804
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
805
            sizeof env->ymmh_regs);
806
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
807
    qemu_free(xsave);
808
    return r;
809
#else
810
    return kvm_put_fpu(env);
811
#endif
812
}
813

    
814
static int kvm_put_xcrs(CPUState *env)
815
{
816
#ifdef KVM_CAP_XCRS
817
    struct kvm_xcrs xcrs;
818

    
819
    if (!kvm_has_xcrs()) {
820
        return 0;
821
    }
822

    
823
    xcrs.nr_xcrs = 1;
824
    xcrs.flags = 0;
825
    xcrs.xcrs[0].xcr = 0;
826
    xcrs.xcrs[0].value = env->xcr0;
827
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
828
#else
829
    return 0;
830
#endif
831
}
832

    
833
static int kvm_put_sregs(CPUState *env)
834
{
835
    struct kvm_sregs sregs;
836

    
837
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
838
    if (env->interrupt_injected >= 0) {
839
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
840
                (uint64_t)1 << (env->interrupt_injected % 64);
841
    }
842

    
843
    if ((env->eflags & VM_MASK)) {
844
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
845
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
846
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
847
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
848
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
849
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
850
    } else {
851
        set_seg(&sregs.cs, &env->segs[R_CS]);
852
        set_seg(&sregs.ds, &env->segs[R_DS]);
853
        set_seg(&sregs.es, &env->segs[R_ES]);
854
        set_seg(&sregs.fs, &env->segs[R_FS]);
855
        set_seg(&sregs.gs, &env->segs[R_GS]);
856
        set_seg(&sregs.ss, &env->segs[R_SS]);
857
    }
858

    
859
    set_seg(&sregs.tr, &env->tr);
860
    set_seg(&sregs.ldt, &env->ldt);
861

    
862
    sregs.idt.limit = env->idt.limit;
863
    sregs.idt.base = env->idt.base;
864
    sregs.gdt.limit = env->gdt.limit;
865
    sregs.gdt.base = env->gdt.base;
866

    
867
    sregs.cr0 = env->cr[0];
868
    sregs.cr2 = env->cr[2];
869
    sregs.cr3 = env->cr[3];
870
    sregs.cr4 = env->cr[4];
871

    
872
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
873
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
874

    
875
    sregs.efer = env->efer;
876

    
877
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
878
}
879

    
880
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
881
                              uint32_t index, uint64_t value)
882
{
883
    entry->index = index;
884
    entry->data = value;
885
}
886

    
887
static int kvm_put_msrs(CPUState *env, int level)
888
{
889
    struct {
890
        struct kvm_msrs info;
891
        struct kvm_msr_entry entries[100];
892
    } msr_data;
893
    struct kvm_msr_entry *msrs = msr_data.entries;
894
    int n = 0;
895

    
896
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
897
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
898
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
899
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
900
    if (has_msr_star) {
901
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
902
    }
903
    if (has_msr_hsave_pa) {
904
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
905
    }
906
#ifdef TARGET_X86_64
907
    if (lm_capable_kernel) {
908
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
909
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
910
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
911
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
912
    }
913
#endif
914
    if (level == KVM_PUT_FULL_STATE) {
915
        /*
916
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
917
         * writeback. Until this is fixed, we only write the offset to SMP
918
         * guests after migration, desynchronizing the VCPUs, but avoiding
919
         * huge jump-backs that would occur without any writeback at all.
920
         */
921
        if (smp_cpus == 1 || env->tsc != 0) {
922
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
923
        }
924
    }
925
    /*
926
     * The following paravirtual MSRs have side effects on the guest or are
927
     * too heavy for normal writeback. Limit them to reset or full state
928
     * updates.
929
     */
930
    if (level >= KVM_PUT_RESET_STATE) {
931
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
932
                          env->system_time_msr);
933
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
934
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
935
        if (has_msr_async_pf_en) {
936
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
937
                              env->async_pf_en_msr);
938
        }
939
#endif
940
    }
941
#ifdef KVM_CAP_MCE
942
    if (env->mcg_cap) {
943
        int i;
944

    
945
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
946
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
947
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
948
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
949
        }
950
    }
951
#endif
952

    
953
    msr_data.info.nmsrs = n;
954

    
955
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
956

    
957
}
958

    
959

    
960
static int kvm_get_fpu(CPUState *env)
961
{
962
    struct kvm_fpu fpu;
963
    int i, ret;
964

    
965
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
966
    if (ret < 0) {
967
        return ret;
968
    }
969

    
970
    env->fpstt = (fpu.fsw >> 11) & 7;
971
    env->fpus = fpu.fsw;
972
    env->fpuc = fpu.fcw;
973
    for (i = 0; i < 8; ++i) {
974
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
975
    }
976
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
977
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
978
    env->mxcsr = fpu.mxcsr;
979

    
980
    return 0;
981
}
982

    
983
static int kvm_get_xsave(CPUState *env)
984
{
985
#ifdef KVM_CAP_XSAVE
986
    struct kvm_xsave* xsave;
987
    int ret, i;
988
    uint16_t cwd, swd, twd, fop;
989

    
990
    if (!kvm_has_xsave()) {
991
        return kvm_get_fpu(env);
992
    }
993

    
994
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
995
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
996
    if (ret < 0) {
997
        qemu_free(xsave);
998
        return ret;
999
    }
1000

    
1001
    cwd = (uint16_t)xsave->region[0];
1002
    swd = (uint16_t)(xsave->region[0] >> 16);
1003
    twd = (uint16_t)xsave->region[1];
1004
    fop = (uint16_t)(xsave->region[1] >> 16);
1005
    env->fpstt = (swd >> 11) & 7;
1006
    env->fpus = swd;
1007
    env->fpuc = cwd;
1008
    for (i = 0; i < 8; ++i) {
1009
        env->fptags[i] = !((twd >> i) & 1);
1010
    }
1011
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1012
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1013
            sizeof env->fpregs);
1014
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1015
            sizeof env->xmm_regs);
1016
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1017
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1018
            sizeof env->ymmh_regs);
1019
    qemu_free(xsave);
1020
    return 0;
1021
#else
1022
    return kvm_get_fpu(env);
1023
#endif
1024
}
1025

    
1026
static int kvm_get_xcrs(CPUState *env)
1027
{
1028
#ifdef KVM_CAP_XCRS
1029
    int i, ret;
1030
    struct kvm_xcrs xcrs;
1031

    
1032
    if (!kvm_has_xcrs()) {
1033
        return 0;
1034
    }
1035

    
1036
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1037
    if (ret < 0) {
1038
        return ret;
1039
    }
1040

    
1041
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1042
        /* Only support xcr0 now */
1043
        if (xcrs.xcrs[0].xcr == 0) {
1044
            env->xcr0 = xcrs.xcrs[0].value;
1045
            break;
1046
        }
1047
    }
1048
    return 0;
1049
#else
1050
    return 0;
1051
#endif
1052
}
1053

    
1054
static int kvm_get_sregs(CPUState *env)
1055
{
1056
    struct kvm_sregs sregs;
1057
    uint32_t hflags;
1058
    int bit, i, ret;
1059

    
1060
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1061
    if (ret < 0) {
1062
        return ret;
1063
    }
1064

    
1065
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1066
       to find it and save its number instead (-1 for none). */
1067
    env->interrupt_injected = -1;
1068
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1069
        if (sregs.interrupt_bitmap[i]) {
1070
            bit = ctz64(sregs.interrupt_bitmap[i]);
1071
            env->interrupt_injected = i * 64 + bit;
1072
            break;
1073
        }
1074
    }
1075

    
1076
    get_seg(&env->segs[R_CS], &sregs.cs);
1077
    get_seg(&env->segs[R_DS], &sregs.ds);
1078
    get_seg(&env->segs[R_ES], &sregs.es);
1079
    get_seg(&env->segs[R_FS], &sregs.fs);
1080
    get_seg(&env->segs[R_GS], &sregs.gs);
1081
    get_seg(&env->segs[R_SS], &sregs.ss);
1082

    
1083
    get_seg(&env->tr, &sregs.tr);
1084
    get_seg(&env->ldt, &sregs.ldt);
1085

    
1086
    env->idt.limit = sregs.idt.limit;
1087
    env->idt.base = sregs.idt.base;
1088
    env->gdt.limit = sregs.gdt.limit;
1089
    env->gdt.base = sregs.gdt.base;
1090

    
1091
    env->cr[0] = sregs.cr0;
1092
    env->cr[2] = sregs.cr2;
1093
    env->cr[3] = sregs.cr3;
1094
    env->cr[4] = sregs.cr4;
1095

    
1096
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1097

    
1098
    env->efer = sregs.efer;
1099
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1100

    
1101
#define HFLAG_COPY_MASK \
1102
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1103
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1104
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1105
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1106

    
1107
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1108
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1109
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1110
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1111
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1112
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1113
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1114

    
1115
    if (env->efer & MSR_EFER_LMA) {
1116
        hflags |= HF_LMA_MASK;
1117
    }
1118

    
1119
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1120
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1121
    } else {
1122
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1123
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1124
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1125
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1126
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1127
            !(hflags & HF_CS32_MASK)) {
1128
            hflags |= HF_ADDSEG_MASK;
1129
        } else {
1130
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1131
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1132
        }
1133
    }
1134
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1135

    
1136
    return 0;
1137
}
1138

    
1139
static int kvm_get_msrs(CPUState *env)
1140
{
1141
    struct {
1142
        struct kvm_msrs info;
1143
        struct kvm_msr_entry entries[100];
1144
    } msr_data;
1145
    struct kvm_msr_entry *msrs = msr_data.entries;
1146
    int ret, i, n;
1147

    
1148
    n = 0;
1149
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1150
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1151
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1152
    msrs[n++].index = MSR_PAT;
1153
    if (has_msr_star) {
1154
        msrs[n++].index = MSR_STAR;
1155
    }
1156
    if (has_msr_hsave_pa) {
1157
        msrs[n++].index = MSR_VM_HSAVE_PA;
1158
    }
1159

    
1160
    if (!env->tsc_valid) {
1161
        msrs[n++].index = MSR_IA32_TSC;
1162
        env->tsc_valid = !vm_running;
1163
    }
1164

    
1165
#ifdef TARGET_X86_64
1166
    if (lm_capable_kernel) {
1167
        msrs[n++].index = MSR_CSTAR;
1168
        msrs[n++].index = MSR_KERNELGSBASE;
1169
        msrs[n++].index = MSR_FMASK;
1170
        msrs[n++].index = MSR_LSTAR;
1171
    }
1172
#endif
1173
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1174
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1175
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1176
    if (has_msr_async_pf_en) {
1177
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1178
    }
1179
#endif
1180

    
1181
#ifdef KVM_CAP_MCE
1182
    if (env->mcg_cap) {
1183
        msrs[n++].index = MSR_MCG_STATUS;
1184
        msrs[n++].index = MSR_MCG_CTL;
1185
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1186
            msrs[n++].index = MSR_MC0_CTL + i;
1187
        }
1188
    }
1189
#endif
1190

    
1191
    msr_data.info.nmsrs = n;
1192
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1193
    if (ret < 0) {
1194
        return ret;
1195
    }
1196

    
1197
    for (i = 0; i < ret; i++) {
1198
        switch (msrs[i].index) {
1199
        case MSR_IA32_SYSENTER_CS:
1200
            env->sysenter_cs = msrs[i].data;
1201
            break;
1202
        case MSR_IA32_SYSENTER_ESP:
1203
            env->sysenter_esp = msrs[i].data;
1204
            break;
1205
        case MSR_IA32_SYSENTER_EIP:
1206
            env->sysenter_eip = msrs[i].data;
1207
            break;
1208
        case MSR_PAT:
1209
            env->pat = msrs[i].data;
1210
            break;
1211
        case MSR_STAR:
1212
            env->star = msrs[i].data;
1213
            break;
1214
#ifdef TARGET_X86_64
1215
        case MSR_CSTAR:
1216
            env->cstar = msrs[i].data;
1217
            break;
1218
        case MSR_KERNELGSBASE:
1219
            env->kernelgsbase = msrs[i].data;
1220
            break;
1221
        case MSR_FMASK:
1222
            env->fmask = msrs[i].data;
1223
            break;
1224
        case MSR_LSTAR:
1225
            env->lstar = msrs[i].data;
1226
            break;
1227
#endif
1228
        case MSR_IA32_TSC:
1229
            env->tsc = msrs[i].data;
1230
            break;
1231
        case MSR_VM_HSAVE_PA:
1232
            env->vm_hsave = msrs[i].data;
1233
            break;
1234
        case MSR_KVM_SYSTEM_TIME:
1235
            env->system_time_msr = msrs[i].data;
1236
            break;
1237
        case MSR_KVM_WALL_CLOCK:
1238
            env->wall_clock_msr = msrs[i].data;
1239
            break;
1240
#ifdef KVM_CAP_MCE
1241
        case MSR_MCG_STATUS:
1242
            env->mcg_status = msrs[i].data;
1243
            break;
1244
        case MSR_MCG_CTL:
1245
            env->mcg_ctl = msrs[i].data;
1246
            break;
1247
#endif
1248
        default:
1249
#ifdef KVM_CAP_MCE
1250
            if (msrs[i].index >= MSR_MC0_CTL &&
1251
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1252
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1253
            }
1254
#endif
1255
            break;
1256
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1257
        case MSR_KVM_ASYNC_PF_EN:
1258
            env->async_pf_en_msr = msrs[i].data;
1259
            break;
1260
#endif
1261
        }
1262
    }
1263

    
1264
    return 0;
1265
}
1266

    
1267
static int kvm_put_mp_state(CPUState *env)
1268
{
1269
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1270

    
1271
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1272
}
1273

    
1274
static int kvm_get_mp_state(CPUState *env)
1275
{
1276
    struct kvm_mp_state mp_state;
1277
    int ret;
1278

    
1279
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1280
    if (ret < 0) {
1281
        return ret;
1282
    }
1283
    env->mp_state = mp_state.mp_state;
1284
    if (kvm_irqchip_in_kernel()) {
1285
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1286
    }
1287
    return 0;
1288
}
1289

    
1290
static int kvm_put_vcpu_events(CPUState *env, int level)
1291
{
1292
#ifdef KVM_CAP_VCPU_EVENTS
1293
    struct kvm_vcpu_events events;
1294

    
1295
    if (!kvm_has_vcpu_events()) {
1296
        return 0;
1297
    }
1298

    
1299
    events.exception.injected = (env->exception_injected >= 0);
1300
    events.exception.nr = env->exception_injected;
1301
    events.exception.has_error_code = env->has_error_code;
1302
    events.exception.error_code = env->error_code;
1303

    
1304
    events.interrupt.injected = (env->interrupt_injected >= 0);
1305
    events.interrupt.nr = env->interrupt_injected;
1306
    events.interrupt.soft = env->soft_interrupt;
1307

    
1308
    events.nmi.injected = env->nmi_injected;
1309
    events.nmi.pending = env->nmi_pending;
1310
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1311

    
1312
    events.sipi_vector = env->sipi_vector;
1313

    
1314
    events.flags = 0;
1315
    if (level >= KVM_PUT_RESET_STATE) {
1316
        events.flags |=
1317
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1318
    }
1319

    
1320
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1321
#else
1322
    return 0;
1323
#endif
1324
}
1325

    
1326
static int kvm_get_vcpu_events(CPUState *env)
1327
{
1328
#ifdef KVM_CAP_VCPU_EVENTS
1329
    struct kvm_vcpu_events events;
1330
    int ret;
1331

    
1332
    if (!kvm_has_vcpu_events()) {
1333
        return 0;
1334
    }
1335

    
1336
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1337
    if (ret < 0) {
1338
       return ret;
1339
    }
1340
    env->exception_injected =
1341
       events.exception.injected ? events.exception.nr : -1;
1342
    env->has_error_code = events.exception.has_error_code;
1343
    env->error_code = events.exception.error_code;
1344

    
1345
    env->interrupt_injected =
1346
        events.interrupt.injected ? events.interrupt.nr : -1;
1347
    env->soft_interrupt = events.interrupt.soft;
1348

    
1349
    env->nmi_injected = events.nmi.injected;
1350
    env->nmi_pending = events.nmi.pending;
1351
    if (events.nmi.masked) {
1352
        env->hflags2 |= HF2_NMI_MASK;
1353
    } else {
1354
        env->hflags2 &= ~HF2_NMI_MASK;
1355
    }
1356

    
1357
    env->sipi_vector = events.sipi_vector;
1358
#endif
1359

    
1360
    return 0;
1361
}
1362

    
1363
static int kvm_guest_debug_workarounds(CPUState *env)
1364
{
1365
    int ret = 0;
1366
#ifdef KVM_CAP_SET_GUEST_DEBUG
1367
    unsigned long reinject_trap = 0;
1368

    
1369
    if (!kvm_has_vcpu_events()) {
1370
        if (env->exception_injected == 1) {
1371
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1372
        } else if (env->exception_injected == 3) {
1373
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1374
        }
1375
        env->exception_injected = -1;
1376
    }
1377

    
1378
    /*
1379
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1380
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1381
     * by updating the debug state once again if single-stepping is on.
1382
     * Another reason to call kvm_update_guest_debug here is a pending debug
1383
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1384
     * reinject them via SET_GUEST_DEBUG.
1385
     */
1386
    if (reinject_trap ||
1387
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1388
        ret = kvm_update_guest_debug(env, reinject_trap);
1389
    }
1390
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1391
    return ret;
1392
}
1393

    
1394
static int kvm_put_debugregs(CPUState *env)
1395
{
1396
#ifdef KVM_CAP_DEBUGREGS
1397
    struct kvm_debugregs dbgregs;
1398
    int i;
1399

    
1400
    if (!kvm_has_debugregs()) {
1401
        return 0;
1402
    }
1403

    
1404
    for (i = 0; i < 4; i++) {
1405
        dbgregs.db[i] = env->dr[i];
1406
    }
1407
    dbgregs.dr6 = env->dr[6];
1408
    dbgregs.dr7 = env->dr[7];
1409
    dbgregs.flags = 0;
1410

    
1411
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1412
#else
1413
    return 0;
1414
#endif
1415
}
1416

    
1417
static int kvm_get_debugregs(CPUState *env)
1418
{
1419
#ifdef KVM_CAP_DEBUGREGS
1420
    struct kvm_debugregs dbgregs;
1421
    int i, ret;
1422

    
1423
    if (!kvm_has_debugregs()) {
1424
        return 0;
1425
    }
1426

    
1427
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1428
    if (ret < 0) {
1429
        return ret;
1430
    }
1431
    for (i = 0; i < 4; i++) {
1432
        env->dr[i] = dbgregs.db[i];
1433
    }
1434
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1435
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1436
#endif
1437

    
1438
    return 0;
1439
}
1440

    
1441
int kvm_arch_put_registers(CPUState *env, int level)
1442
{
1443
    int ret;
1444

    
1445
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1446

    
1447
    ret = kvm_getput_regs(env, 1);
1448
    if (ret < 0) {
1449
        return ret;
1450
    }
1451
    ret = kvm_put_xsave(env);
1452
    if (ret < 0) {
1453
        return ret;
1454
    }
1455
    ret = kvm_put_xcrs(env);
1456
    if (ret < 0) {
1457
        return ret;
1458
    }
1459
    ret = kvm_put_sregs(env);
1460
    if (ret < 0) {
1461
        return ret;
1462
    }
1463
    /* must be before kvm_put_msrs */
1464
    ret = kvm_inject_mce_oldstyle(env);
1465
    if (ret < 0) {
1466
        return ret;
1467
    }
1468
    ret = kvm_put_msrs(env, level);
1469
    if (ret < 0) {
1470
        return ret;
1471
    }
1472
    if (level >= KVM_PUT_RESET_STATE) {
1473
        ret = kvm_put_mp_state(env);
1474
        if (ret < 0) {
1475
            return ret;
1476
        }
1477
    }
1478
    ret = kvm_put_vcpu_events(env, level);
1479
    if (ret < 0) {
1480
        return ret;
1481
    }
1482
    ret = kvm_put_debugregs(env);
1483
    if (ret < 0) {
1484
        return ret;
1485
    }
1486
    /* must be last */
1487
    ret = kvm_guest_debug_workarounds(env);
1488
    if (ret < 0) {
1489
        return ret;
1490
    }
1491
    return 0;
1492
}
1493

    
1494
int kvm_arch_get_registers(CPUState *env)
1495
{
1496
    int ret;
1497

    
1498
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1499

    
1500
    ret = kvm_getput_regs(env, 0);
1501
    if (ret < 0) {
1502
        return ret;
1503
    }
1504
    ret = kvm_get_xsave(env);
1505
    if (ret < 0) {
1506
        return ret;
1507
    }
1508
    ret = kvm_get_xcrs(env);
1509
    if (ret < 0) {
1510
        return ret;
1511
    }
1512
    ret = kvm_get_sregs(env);
1513
    if (ret < 0) {
1514
        return ret;
1515
    }
1516
    ret = kvm_get_msrs(env);
1517
    if (ret < 0) {
1518
        return ret;
1519
    }
1520
    ret = kvm_get_mp_state(env);
1521
    if (ret < 0) {
1522
        return ret;
1523
    }
1524
    ret = kvm_get_vcpu_events(env);
1525
    if (ret < 0) {
1526
        return ret;
1527
    }
1528
    ret = kvm_get_debugregs(env);
1529
    if (ret < 0) {
1530
        return ret;
1531
    }
1532
    return 0;
1533
}
1534

    
1535
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1536
{
1537
    int ret;
1538

    
1539
    /* Inject NMI */
1540
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1541
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1542
        DPRINTF("injected NMI\n");
1543
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1544
        if (ret < 0) {
1545
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1546
                    strerror(-ret));
1547
        }
1548
    }
1549

    
1550
    if (!kvm_irqchip_in_kernel()) {
1551
        /* Force the VCPU out of its inner loop to process the INIT request */
1552
        if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1553
            env->exit_request = 1;
1554
        }
1555

    
1556
        /* Try to inject an interrupt if the guest can accept it */
1557
        if (run->ready_for_interrupt_injection &&
1558
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1559
            (env->eflags & IF_MASK)) {
1560
            int irq;
1561

    
1562
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1563
            irq = cpu_get_pic_interrupt(env);
1564
            if (irq >= 0) {
1565
                struct kvm_interrupt intr;
1566

    
1567
                intr.irq = irq;
1568
                DPRINTF("injected interrupt %d\n", irq);
1569
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1570
                if (ret < 0) {
1571
                    fprintf(stderr,
1572
                            "KVM: injection failed, interrupt lost (%s)\n",
1573
                            strerror(-ret));
1574
                }
1575
            }
1576
        }
1577

    
1578
        /* If we have an interrupt but the guest is not ready to receive an
1579
         * interrupt, request an interrupt window exit.  This will
1580
         * cause a return to userspace as soon as the guest is ready to
1581
         * receive interrupts. */
1582
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1583
            run->request_interrupt_window = 1;
1584
        } else {
1585
            run->request_interrupt_window = 0;
1586
        }
1587

    
1588
        DPRINTF("setting tpr\n");
1589
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1590
    }
1591
}
1592

    
1593
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1594
{
1595
    if (run->if_flag) {
1596
        env->eflags |= IF_MASK;
1597
    } else {
1598
        env->eflags &= ~IF_MASK;
1599
    }
1600
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1601
    cpu_set_apic_base(env->apic_state, run->apic_base);
1602
}
1603

    
1604
int kvm_arch_process_async_events(CPUState *env)
1605
{
1606
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1607
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1608
        assert(env->mcg_cap);
1609

    
1610
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1611

    
1612
        kvm_cpu_synchronize_state(env);
1613

    
1614
        if (env->exception_injected == EXCP08_DBLE) {
1615
            /* this means triple fault */
1616
            qemu_system_reset_request();
1617
            env->exit_request = 1;
1618
            return 0;
1619
        }
1620
        env->exception_injected = EXCP12_MCHK;
1621
        env->has_error_code = 0;
1622

    
1623
        env->halted = 0;
1624
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1625
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1626
        }
1627
    }
1628

    
1629
    if (kvm_irqchip_in_kernel()) {
1630
        return 0;
1631
    }
1632

    
1633
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1634
         (env->eflags & IF_MASK)) ||
1635
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1636
        env->halted = 0;
1637
    }
1638
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1639
        kvm_cpu_synchronize_state(env);
1640
        do_cpu_init(env);
1641
    }
1642
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1643
        kvm_cpu_synchronize_state(env);
1644
        do_cpu_sipi(env);
1645
    }
1646

    
1647
    return env->halted;
1648
}
1649

    
1650
static int kvm_handle_halt(CPUState *env)
1651
{
1652
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1653
          (env->eflags & IF_MASK)) &&
1654
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1655
        env->halted = 1;
1656
        return EXCP_HLT;
1657
    }
1658

    
1659
    return 0;
1660
}
1661

    
1662
#ifdef KVM_CAP_SET_GUEST_DEBUG
1663
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1664
{
1665
    static const uint8_t int3 = 0xcc;
1666

    
1667
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1668
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1669
        return -EINVAL;
1670
    }
1671
    return 0;
1672
}
1673

    
1674
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1675
{
1676
    uint8_t int3;
1677

    
1678
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1679
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1680
        return -EINVAL;
1681
    }
1682
    return 0;
1683
}
1684

    
1685
static struct {
1686
    target_ulong addr;
1687
    int len;
1688
    int type;
1689
} hw_breakpoint[4];
1690

    
1691
static int nb_hw_breakpoint;
1692

    
1693
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1694
{
1695
    int n;
1696

    
1697
    for (n = 0; n < nb_hw_breakpoint; n++) {
1698
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1699
            (hw_breakpoint[n].len == len || len == -1)) {
1700
            return n;
1701
        }
1702
    }
1703
    return -1;
1704
}
1705

    
1706
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1707
                                  target_ulong len, int type)
1708
{
1709
    switch (type) {
1710
    case GDB_BREAKPOINT_HW:
1711
        len = 1;
1712
        break;
1713
    case GDB_WATCHPOINT_WRITE:
1714
    case GDB_WATCHPOINT_ACCESS:
1715
        switch (len) {
1716
        case 1:
1717
            break;
1718
        case 2:
1719
        case 4:
1720
        case 8:
1721
            if (addr & (len - 1)) {
1722
                return -EINVAL;
1723
            }
1724
            break;
1725
        default:
1726
            return -EINVAL;
1727
        }
1728
        break;
1729
    default:
1730
        return -ENOSYS;
1731
    }
1732

    
1733
    if (nb_hw_breakpoint == 4) {
1734
        return -ENOBUFS;
1735
    }
1736
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1737
        return -EEXIST;
1738
    }
1739
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1740
    hw_breakpoint[nb_hw_breakpoint].len = len;
1741
    hw_breakpoint[nb_hw_breakpoint].type = type;
1742
    nb_hw_breakpoint++;
1743

    
1744
    return 0;
1745
}
1746

    
1747
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1748
                                  target_ulong len, int type)
1749
{
1750
    int n;
1751

    
1752
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1753
    if (n < 0) {
1754
        return -ENOENT;
1755
    }
1756
    nb_hw_breakpoint--;
1757
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1758

    
1759
    return 0;
1760
}
1761

    
1762
void kvm_arch_remove_all_hw_breakpoints(void)
1763
{
1764
    nb_hw_breakpoint = 0;
1765
}
1766

    
1767
static CPUWatchpoint hw_watchpoint;
1768

    
1769
static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1770
{
1771
    int ret = 0;
1772
    int n;
1773

    
1774
    if (arch_info->exception == 1) {
1775
        if (arch_info->dr6 & (1 << 14)) {
1776
            if (cpu_single_env->singlestep_enabled) {
1777
                ret = EXCP_DEBUG;
1778
            }
1779
        } else {
1780
            for (n = 0; n < 4; n++) {
1781
                if (arch_info->dr6 & (1 << n)) {
1782
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1783
                    case 0x0:
1784
                        ret = EXCP_DEBUG;
1785
                        break;
1786
                    case 0x1:
1787
                        ret = EXCP_DEBUG;
1788
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1789
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1790
                        hw_watchpoint.flags = BP_MEM_WRITE;
1791
                        break;
1792
                    case 0x3:
1793
                        ret = EXCP_DEBUG;
1794
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1795
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1796
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1797
                        break;
1798
                    }
1799
                }
1800
            }
1801
        }
1802
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1803
        ret = EXCP_DEBUG;
1804
    }
1805
    if (ret == 0) {
1806
        cpu_synchronize_state(cpu_single_env);
1807
        assert(cpu_single_env->exception_injected == -1);
1808

    
1809
        /* pass to guest */
1810
        cpu_single_env->exception_injected = arch_info->exception;
1811
        cpu_single_env->has_error_code = 0;
1812
    }
1813

    
1814
    return ret;
1815
}
1816

    
1817
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1818
{
1819
    const uint8_t type_code[] = {
1820
        [GDB_BREAKPOINT_HW] = 0x0,
1821
        [GDB_WATCHPOINT_WRITE] = 0x1,
1822
        [GDB_WATCHPOINT_ACCESS] = 0x3
1823
    };
1824
    const uint8_t len_code[] = {
1825
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1826
    };
1827
    int n;
1828

    
1829
    if (kvm_sw_breakpoints_active(env)) {
1830
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1831
    }
1832
    if (nb_hw_breakpoint > 0) {
1833
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1834
        dbg->arch.debugreg[7] = 0x0600;
1835
        for (n = 0; n < nb_hw_breakpoint; n++) {
1836
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1837
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1838
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1839
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1840
        }
1841
    }
1842
}
1843
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1844

    
1845
static bool host_supports_vmx(void)
1846
{
1847
    uint32_t ecx, unused;
1848

    
1849
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1850
    return ecx & CPUID_EXT_VMX;
1851
}
1852

    
1853
#define VMX_INVALID_GUEST_STATE 0x80000021
1854

    
1855
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1856
{
1857
    uint64_t code;
1858
    int ret;
1859

    
1860
    switch (run->exit_reason) {
1861
    case KVM_EXIT_HLT:
1862
        DPRINTF("handle_hlt\n");
1863
        ret = kvm_handle_halt(env);
1864
        break;
1865
    case KVM_EXIT_SET_TPR:
1866
        ret = 0;
1867
        break;
1868
    case KVM_EXIT_FAIL_ENTRY:
1869
        code = run->fail_entry.hardware_entry_failure_reason;
1870
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1871
                code);
1872
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1873
            fprintf(stderr,
1874
                    "\nIf you're runnning a guest on an Intel machine without "
1875
                        "unrestricted mode\n"
1876
                    "support, the failure can be most likely due to the guest "
1877
                        "entering an invalid\n"
1878
                    "state for Intel VT. For example, the guest maybe running "
1879
                        "in big real mode\n"
1880
                    "which is not supported on less recent Intel processors."
1881
                        "\n\n");
1882
        }
1883
        ret = -1;
1884
        break;
1885
    case KVM_EXIT_EXCEPTION:
1886
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1887
                run->ex.exception, run->ex.error_code);
1888
        ret = -1;
1889
        break;
1890
#ifdef KVM_CAP_SET_GUEST_DEBUG
1891
    case KVM_EXIT_DEBUG:
1892
        DPRINTF("kvm_exit_debug\n");
1893
        ret = kvm_handle_debug(&run->debug.arch);
1894
        break;
1895
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1896
    default:
1897
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1898
        ret = -1;
1899
        break;
1900
    }
1901

    
1902
    return ret;
1903
}
1904

    
1905
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1906
{
1907
    return !(env->cr[0] & CR0_PE_MASK) ||
1908
           ((env->segs[R_CS].selector  & 3) != 3);
1909
}