Statistics
| Branch: | Revision:

root / vl.c @ b473df6e

History | View | Annotate | Download (154.9 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <unistd.h>
25
#include <fcntl.h>
26
#include <signal.h>
27
#include <time.h>
28
#include <errno.h>
29
#include <sys/time.h>
30
#include <zlib.h>
31

    
32
/* Needed early for CONFIG_BSD etc. */
33
#include "config-host.h"
34

    
35
#ifndef _WIN32
36
#include <libgen.h>
37
#include <pwd.h>
38
#include <sys/times.h>
39
#include <sys/wait.h>
40
#include <termios.h>
41
#include <sys/mman.h>
42
#include <sys/ioctl.h>
43
#include <sys/resource.h>
44
#include <sys/socket.h>
45
#include <netinet/in.h>
46
#include <net/if.h>
47
#include <arpa/inet.h>
48
#include <dirent.h>
49
#include <netdb.h>
50
#include <sys/select.h>
51
#ifdef CONFIG_BSD
52
#include <sys/stat.h>
53
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
54
#include <libutil.h>
55
#else
56
#include <util.h>
57
#endif
58
#else
59
#ifdef __linux__
60
#include <pty.h>
61
#include <malloc.h>
62
#include <linux/rtc.h>
63
#include <sys/prctl.h>
64

    
65
/* For the benefit of older linux systems which don't supply it,
66
   we use a local copy of hpet.h. */
67
/* #include <linux/hpet.h> */
68
#include "hpet.h"
69

    
70
#include <linux/ppdev.h>
71
#include <linux/parport.h>
72
#endif
73
#ifdef __sun__
74
#include <sys/stat.h>
75
#include <sys/ethernet.h>
76
#include <sys/sockio.h>
77
#include <netinet/arp.h>
78
#include <netinet/in.h>
79
#include <netinet/in_systm.h>
80
#include <netinet/ip.h>
81
#include <netinet/ip_icmp.h> // must come after ip.h
82
#include <netinet/udp.h>
83
#include <netinet/tcp.h>
84
#include <net/if.h>
85
#include <syslog.h>
86
#include <stropts.h>
87
/* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
88
   discussion about Solaris header problems */
89
extern int madvise(caddr_t, size_t, int);
90
#endif
91
#endif
92
#endif
93

    
94
#if defined(__OpenBSD__)
95
#include <util.h>
96
#endif
97

    
98
#if defined(CONFIG_VDE)
99
#include <libvdeplug.h>
100
#endif
101

    
102
#ifdef _WIN32
103
#include <windows.h>
104
#include <mmsystem.h>
105
#endif
106

    
107
#ifdef CONFIG_SDL
108
#if defined(__APPLE__) || defined(main)
109
#include <SDL.h>
110
int qemu_main(int argc, char **argv, char **envp);
111
int main(int argc, char **argv)
112
{
113
    return qemu_main(argc, argv, NULL);
114
}
115
#undef main
116
#define main qemu_main
117
#endif
118
#endif /* CONFIG_SDL */
119

    
120
#ifdef CONFIG_COCOA
121
#undef main
122
#define main qemu_main
123
#endif /* CONFIG_COCOA */
124

    
125
#include "hw/hw.h"
126
#include "hw/boards.h"
127
#include "hw/usb.h"
128
#include "hw/pcmcia.h"
129
#include "hw/pc.h"
130
#include "hw/audiodev.h"
131
#include "hw/isa.h"
132
#include "hw/baum.h"
133
#include "hw/bt.h"
134
#include "hw/watchdog.h"
135
#include "hw/smbios.h"
136
#include "hw/xen.h"
137
#include "hw/qdev.h"
138
#include "hw/loader.h"
139
#include "bt-host.h"
140
#include "net.h"
141
#include "net/slirp.h"
142
#include "monitor.h"
143
#include "console.h"
144
#include "sysemu.h"
145
#include "gdbstub.h"
146
#include "qemu-timer.h"
147
#include "qemu-char.h"
148
#include "cache-utils.h"
149
#include "block.h"
150
#include "block_int.h"
151
#include "block-migration.h"
152
#include "dma.h"
153
#include "audio/audio.h"
154
#include "migration.h"
155
#include "kvm.h"
156
#include "balloon.h"
157
#include "qemu-option.h"
158
#include "qemu-config.h"
159
#include "qemu-objects.h"
160

    
161
#include "disas.h"
162

    
163
#include "exec-all.h"
164

    
165
#include "qemu_socket.h"
166

    
167
#include "slirp/libslirp.h"
168

    
169
#include "qemu-queue.h"
170

    
171
//#define DEBUG_NET
172
//#define DEBUG_SLIRP
173

    
174
#define DEFAULT_RAM_SIZE 128
175

    
176
#define MAX_VIRTIO_CONSOLES 1
177

    
178
static const char *data_dir;
179
const char *bios_name = NULL;
180
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
181
   to store the VM snapshots */
182
struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
183
struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
184
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
185
static DisplayState *display_state;
186
DisplayType display_type = DT_DEFAULT;
187
const char* keyboard_layout = NULL;
188
ram_addr_t ram_size;
189
int nb_nics;
190
NICInfo nd_table[MAX_NICS];
191
int vm_running;
192
int autostart;
193
static int rtc_utc = 1;
194
static int rtc_date_offset = -1; /* -1 means no change */
195
QEMUClock *rtc_clock;
196
int vga_interface_type = VGA_NONE;
197
#ifdef TARGET_SPARC
198
int graphic_width = 1024;
199
int graphic_height = 768;
200
int graphic_depth = 8;
201
#else
202
int graphic_width = 800;
203
int graphic_height = 600;
204
int graphic_depth = 15;
205
#endif
206
static int full_screen = 0;
207
#ifdef CONFIG_SDL
208
static int no_frame = 0;
209
#endif
210
int no_quit = 0;
211
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
212
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
213
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
214
#ifdef TARGET_I386
215
int win2k_install_hack = 0;
216
int rtc_td_hack = 0;
217
#endif
218
int usb_enabled = 0;
219
int singlestep = 0;
220
int smp_cpus = 1;
221
int max_cpus = 0;
222
int smp_cores = 1;
223
int smp_threads = 1;
224
const char *vnc_display;
225
int acpi_enabled = 1;
226
int no_hpet = 0;
227
int fd_bootchk = 1;
228
int no_reboot = 0;
229
int no_shutdown = 0;
230
int cursor_hide = 1;
231
int graphic_rotate = 0;
232
uint8_t irq0override = 1;
233
#ifndef _WIN32
234
int daemonize = 0;
235
#endif
236
const char *watchdog;
237
const char *option_rom[MAX_OPTION_ROMS];
238
int nb_option_roms;
239
int semihosting_enabled = 0;
240
#ifdef TARGET_ARM
241
int old_param = 0;
242
#endif
243
const char *qemu_name;
244
int alt_grab = 0;
245
int ctrl_grab = 0;
246
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
247
unsigned int nb_prom_envs = 0;
248
const char *prom_envs[MAX_PROM_ENVS];
249
#endif
250
int boot_menu;
251

    
252
int nb_numa_nodes;
253
uint64_t node_mem[MAX_NODES];
254
uint64_t node_cpumask[MAX_NODES];
255

    
256
static CPUState *cur_cpu;
257
static CPUState *next_cpu;
258
static int timer_alarm_pending = 1;
259
/* Conversion factor from emulated instructions to virtual clock ticks.  */
260
static int icount_time_shift;
261
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
262
#define MAX_ICOUNT_SHIFT 10
263
/* Compensate for varying guest execution speed.  */
264
static int64_t qemu_icount_bias;
265
static QEMUTimer *icount_rt_timer;
266
static QEMUTimer *icount_vm_timer;
267
static QEMUTimer *nographic_timer;
268

    
269
uint8_t qemu_uuid[16];
270

    
271
static QEMUBootSetHandler *boot_set_handler;
272
static void *boot_set_opaque;
273

    
274
static int default_serial = 1;
275
static int default_parallel = 1;
276
static int default_virtcon = 1;
277
static int default_monitor = 1;
278
static int default_vga = 1;
279
static int default_floppy = 1;
280
static int default_cdrom = 1;
281
static int default_sdcard = 1;
282

    
283
static struct {
284
    const char *driver;
285
    int *flag;
286
} default_list[] = {
287
    { .driver = "isa-serial",           .flag = &default_serial    },
288
    { .driver = "isa-parallel",         .flag = &default_parallel  },
289
    { .driver = "isa-fdc",              .flag = &default_floppy    },
290
    { .driver = "ide-drive",            .flag = &default_cdrom     },
291
    { .driver = "virtio-serial-pci",    .flag = &default_virtcon   },
292
    { .driver = "virtio-serial-s390",   .flag = &default_virtcon   },
293
    { .driver = "virtio-serial",        .flag = &default_virtcon   },
294
    { .driver = "VGA",                  .flag = &default_vga       },
295
    { .driver = "cirrus-vga",           .flag = &default_vga       },
296
    { .driver = "vmware-svga",          .flag = &default_vga       },
297
};
298

    
299
static int default_driver_check(QemuOpts *opts, void *opaque)
300
{
301
    const char *driver = qemu_opt_get(opts, "driver");
302
    int i;
303

    
304
    if (!driver)
305
        return 0;
306
    for (i = 0; i < ARRAY_SIZE(default_list); i++) {
307
        if (strcmp(default_list[i].driver, driver) != 0)
308
            continue;
309
        *(default_list[i].flag) = 0;
310
    }
311
    return 0;
312
}
313

    
314
/***********************************************************/
315
/* x86 ISA bus support */
316

    
317
target_phys_addr_t isa_mem_base = 0;
318
PicState2 *isa_pic;
319

    
320
/***********************************************************/
321
void hw_error(const char *fmt, ...)
322
{
323
    va_list ap;
324
    CPUState *env;
325

    
326
    va_start(ap, fmt);
327
    fprintf(stderr, "qemu: hardware error: ");
328
    vfprintf(stderr, fmt, ap);
329
    fprintf(stderr, "\n");
330
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
331
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
332
#ifdef TARGET_I386
333
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
334
#else
335
        cpu_dump_state(env, stderr, fprintf, 0);
336
#endif
337
    }
338
    va_end(ap);
339
    abort();
340
}
341

    
342
static void set_proc_name(const char *s)
343
{
344
#if defined(__linux__) && defined(PR_SET_NAME)
345
    char name[16];
346
    if (!s)
347
        return;
348
    name[sizeof(name) - 1] = 0;
349
    strncpy(name, s, sizeof(name));
350
    /* Could rewrite argv[0] too, but that's a bit more complicated.
351
       This simple way is enough for `top'. */
352
    prctl(PR_SET_NAME, name);
353
#endif            
354
}
355
 
356
/***************/
357
/* ballooning */
358

    
359
static QEMUBalloonEvent *qemu_balloon_event;
360
void *qemu_balloon_event_opaque;
361

    
362
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
363
{
364
    qemu_balloon_event = func;
365
    qemu_balloon_event_opaque = opaque;
366
}
367

    
368
int qemu_balloon(ram_addr_t target, MonitorCompletion cb, void *opaque)
369
{
370
    if (qemu_balloon_event) {
371
        qemu_balloon_event(qemu_balloon_event_opaque, target, cb, opaque);
372
        return 1;
373
    } else {
374
        return 0;
375
    }
376
}
377

    
378
int qemu_balloon_status(MonitorCompletion cb, void *opaque)
379
{
380
    if (qemu_balloon_event) {
381
        qemu_balloon_event(qemu_balloon_event_opaque, 0, cb, opaque);
382
        return 1;
383
    } else {
384
        return 0;
385
    }
386
}
387

    
388

    
389
/***********************************************************/
390
/* real time host monotonic timer */
391

    
392
/* compute with 96 bit intermediate result: (a*b)/c */
393
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
394
{
395
    union {
396
        uint64_t ll;
397
        struct {
398
#ifdef HOST_WORDS_BIGENDIAN
399
            uint32_t high, low;
400
#else
401
            uint32_t low, high;
402
#endif
403
        } l;
404
    } u, res;
405
    uint64_t rl, rh;
406

    
407
    u.ll = a;
408
    rl = (uint64_t)u.l.low * (uint64_t)b;
409
    rh = (uint64_t)u.l.high * (uint64_t)b;
410
    rh += (rl >> 32);
411
    res.l.high = rh / c;
412
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
413
    return res.ll;
414
}
415

    
416
static int64_t get_clock_realtime(void)
417
{
418
    struct timeval tv;
419

    
420
    gettimeofday(&tv, NULL);
421
    return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
422
}
423

    
424
#ifdef WIN32
425

    
426
static int64_t clock_freq;
427

    
428
static void init_get_clock(void)
429
{
430
    LARGE_INTEGER freq;
431
    int ret;
432
    ret = QueryPerformanceFrequency(&freq);
433
    if (ret == 0) {
434
        fprintf(stderr, "Could not calibrate ticks\n");
435
        exit(1);
436
    }
437
    clock_freq = freq.QuadPart;
438
}
439

    
440
static int64_t get_clock(void)
441
{
442
    LARGE_INTEGER ti;
443
    QueryPerformanceCounter(&ti);
444
    return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
445
}
446

    
447
#else
448

    
449
static int use_rt_clock;
450

    
451
static void init_get_clock(void)
452
{
453
    use_rt_clock = 0;
454
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
455
    || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
456
    {
457
        struct timespec ts;
458
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
459
            use_rt_clock = 1;
460
        }
461
    }
462
#endif
463
}
464

    
465
static int64_t get_clock(void)
466
{
467
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
468
        || defined(__DragonFly__) || defined(__FreeBSD_kernel__)
469
    if (use_rt_clock) {
470
        struct timespec ts;
471
        clock_gettime(CLOCK_MONOTONIC, &ts);
472
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
473
    } else
474
#endif
475
    {
476
        /* XXX: using gettimeofday leads to problems if the date
477
           changes, so it should be avoided. */
478
        return get_clock_realtime();
479
    }
480
}
481
#endif
482

    
483
/* Return the virtual CPU time, based on the instruction counter.  */
484
static int64_t cpu_get_icount(void)
485
{
486
    int64_t icount;
487
    CPUState *env = cpu_single_env;;
488
    icount = qemu_icount;
489
    if (env) {
490
        if (!can_do_io(env))
491
            fprintf(stderr, "Bad clock read\n");
492
        icount -= (env->icount_decr.u16.low + env->icount_extra);
493
    }
494
    return qemu_icount_bias + (icount << icount_time_shift);
495
}
496

    
497
/***********************************************************/
498
/* guest cycle counter */
499

    
500
typedef struct TimersState {
501
    int64_t cpu_ticks_prev;
502
    int64_t cpu_ticks_offset;
503
    int64_t cpu_clock_offset;
504
    int32_t cpu_ticks_enabled;
505
    int64_t dummy;
506
} TimersState;
507

    
508
TimersState timers_state;
509

    
510
/* return the host CPU cycle counter and handle stop/restart */
511
int64_t cpu_get_ticks(void)
512
{
513
    if (use_icount) {
514
        return cpu_get_icount();
515
    }
516
    if (!timers_state.cpu_ticks_enabled) {
517
        return timers_state.cpu_ticks_offset;
518
    } else {
519
        int64_t ticks;
520
        ticks = cpu_get_real_ticks();
521
        if (timers_state.cpu_ticks_prev > ticks) {
522
            /* Note: non increasing ticks may happen if the host uses
523
               software suspend */
524
            timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
525
        }
526
        timers_state.cpu_ticks_prev = ticks;
527
        return ticks + timers_state.cpu_ticks_offset;
528
    }
529
}
530

    
531
/* return the host CPU monotonic timer and handle stop/restart */
532
static int64_t cpu_get_clock(void)
533
{
534
    int64_t ti;
535
    if (!timers_state.cpu_ticks_enabled) {
536
        return timers_state.cpu_clock_offset;
537
    } else {
538
        ti = get_clock();
539
        return ti + timers_state.cpu_clock_offset;
540
    }
541
}
542

    
543
/* enable cpu_get_ticks() */
544
void cpu_enable_ticks(void)
545
{
546
    if (!timers_state.cpu_ticks_enabled) {
547
        timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
548
        timers_state.cpu_clock_offset -= get_clock();
549
        timers_state.cpu_ticks_enabled = 1;
550
    }
551
}
552

    
553
/* disable cpu_get_ticks() : the clock is stopped. You must not call
554
   cpu_get_ticks() after that.  */
555
void cpu_disable_ticks(void)
556
{
557
    if (timers_state.cpu_ticks_enabled) {
558
        timers_state.cpu_ticks_offset = cpu_get_ticks();
559
        timers_state.cpu_clock_offset = cpu_get_clock();
560
        timers_state.cpu_ticks_enabled = 0;
561
    }
562
}
563

    
564
/***********************************************************/
565
/* timers */
566

    
567
#define QEMU_CLOCK_REALTIME 0
568
#define QEMU_CLOCK_VIRTUAL  1
569
#define QEMU_CLOCK_HOST     2
570

    
571
struct QEMUClock {
572
    int type;
573
    /* XXX: add frequency */
574
};
575

    
576
struct QEMUTimer {
577
    QEMUClock *clock;
578
    int64_t expire_time;
579
    QEMUTimerCB *cb;
580
    void *opaque;
581
    struct QEMUTimer *next;
582
};
583

    
584
struct qemu_alarm_timer {
585
    char const *name;
586
    unsigned int flags;
587

    
588
    int (*start)(struct qemu_alarm_timer *t);
589
    void (*stop)(struct qemu_alarm_timer *t);
590
    void (*rearm)(struct qemu_alarm_timer *t);
591
    void *priv;
592
};
593

    
594
#define ALARM_FLAG_DYNTICKS  0x1
595
#define ALARM_FLAG_EXPIRED   0x2
596

    
597
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
598
{
599
    return t && (t->flags & ALARM_FLAG_DYNTICKS);
600
}
601

    
602
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
603
{
604
    if (!alarm_has_dynticks(t))
605
        return;
606

    
607
    t->rearm(t);
608
}
609

    
610
/* TODO: MIN_TIMER_REARM_US should be optimized */
611
#define MIN_TIMER_REARM_US 250
612

    
613
static struct qemu_alarm_timer *alarm_timer;
614

    
615
#ifdef _WIN32
616

    
617
struct qemu_alarm_win32 {
618
    MMRESULT timerId;
619
    unsigned int period;
620
} alarm_win32_data = {0, -1};
621

    
622
static int win32_start_timer(struct qemu_alarm_timer *t);
623
static void win32_stop_timer(struct qemu_alarm_timer *t);
624
static void win32_rearm_timer(struct qemu_alarm_timer *t);
625

    
626
#else
627

    
628
static int unix_start_timer(struct qemu_alarm_timer *t);
629
static void unix_stop_timer(struct qemu_alarm_timer *t);
630

    
631
#ifdef __linux__
632

    
633
static int dynticks_start_timer(struct qemu_alarm_timer *t);
634
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
635
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
636

    
637
static int hpet_start_timer(struct qemu_alarm_timer *t);
638
static void hpet_stop_timer(struct qemu_alarm_timer *t);
639

    
640
static int rtc_start_timer(struct qemu_alarm_timer *t);
641
static void rtc_stop_timer(struct qemu_alarm_timer *t);
642

    
643
#endif /* __linux__ */
644

    
645
#endif /* _WIN32 */
646

    
647
/* Correlation between real and virtual time is always going to be
648
   fairly approximate, so ignore small variation.
649
   When the guest is idle real and virtual time will be aligned in
650
   the IO wait loop.  */
651
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
652

    
653
static void icount_adjust(void)
654
{
655
    int64_t cur_time;
656
    int64_t cur_icount;
657
    int64_t delta;
658
    static int64_t last_delta;
659
    /* If the VM is not running, then do nothing.  */
660
    if (!vm_running)
661
        return;
662

    
663
    cur_time = cpu_get_clock();
664
    cur_icount = qemu_get_clock(vm_clock);
665
    delta = cur_icount - cur_time;
666
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
667
    if (delta > 0
668
        && last_delta + ICOUNT_WOBBLE < delta * 2
669
        && icount_time_shift > 0) {
670
        /* The guest is getting too far ahead.  Slow time down.  */
671
        icount_time_shift--;
672
    }
673
    if (delta < 0
674
        && last_delta - ICOUNT_WOBBLE > delta * 2
675
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
676
        /* The guest is getting too far behind.  Speed time up.  */
677
        icount_time_shift++;
678
    }
679
    last_delta = delta;
680
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
681
}
682

    
683
static void icount_adjust_rt(void * opaque)
684
{
685
    qemu_mod_timer(icount_rt_timer,
686
                   qemu_get_clock(rt_clock) + 1000);
687
    icount_adjust();
688
}
689

    
690
static void icount_adjust_vm(void * opaque)
691
{
692
    qemu_mod_timer(icount_vm_timer,
693
                   qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
694
    icount_adjust();
695
}
696

    
697
static void init_icount_adjust(void)
698
{
699
    /* Have both realtime and virtual time triggers for speed adjustment.
700
       The realtime trigger catches emulated time passing too slowly,
701
       the virtual time trigger catches emulated time passing too fast.
702
       Realtime triggers occur even when idle, so use them less frequently
703
       than VM triggers.  */
704
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
705
    qemu_mod_timer(icount_rt_timer,
706
                   qemu_get_clock(rt_clock) + 1000);
707
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
708
    qemu_mod_timer(icount_vm_timer,
709
                   qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
710
}
711

    
712
static struct qemu_alarm_timer alarm_timers[] = {
713
#ifndef _WIN32
714
#ifdef __linux__
715
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
716
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
717
    /* HPET - if available - is preferred */
718
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
719
    /* ...otherwise try RTC */
720
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
721
#endif
722
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
723
#else
724
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
725
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
726
    {"win32", 0, win32_start_timer,
727
     win32_stop_timer, NULL, &alarm_win32_data},
728
#endif
729
    {NULL, }
730
};
731

    
732
static void show_available_alarms(void)
733
{
734
    int i;
735

    
736
    printf("Available alarm timers, in order of precedence:\n");
737
    for (i = 0; alarm_timers[i].name; i++)
738
        printf("%s\n", alarm_timers[i].name);
739
}
740

    
741
static void configure_alarms(char const *opt)
742
{
743
    int i;
744
    int cur = 0;
745
    int count = ARRAY_SIZE(alarm_timers) - 1;
746
    char *arg;
747
    char *name;
748
    struct qemu_alarm_timer tmp;
749

    
750
    if (!strcmp(opt, "?")) {
751
        show_available_alarms();
752
        exit(0);
753
    }
754

    
755
    arg = qemu_strdup(opt);
756

    
757
    /* Reorder the array */
758
    name = strtok(arg, ",");
759
    while (name) {
760
        for (i = 0; i < count && alarm_timers[i].name; i++) {
761
            if (!strcmp(alarm_timers[i].name, name))
762
                break;
763
        }
764

    
765
        if (i == count) {
766
            fprintf(stderr, "Unknown clock %s\n", name);
767
            goto next;
768
        }
769

    
770
        if (i < cur)
771
            /* Ignore */
772
            goto next;
773

    
774
        /* Swap */
775
        tmp = alarm_timers[i];
776
        alarm_timers[i] = alarm_timers[cur];
777
        alarm_timers[cur] = tmp;
778

    
779
        cur++;
780
next:
781
        name = strtok(NULL, ",");
782
    }
783

    
784
    qemu_free(arg);
785

    
786
    if (cur) {
787
        /* Disable remaining timers */
788
        for (i = cur; i < count; i++)
789
            alarm_timers[i].name = NULL;
790
    } else {
791
        show_available_alarms();
792
        exit(1);
793
    }
794
}
795

    
796
#define QEMU_NUM_CLOCKS 3
797

    
798
QEMUClock *rt_clock;
799
QEMUClock *vm_clock;
800
QEMUClock *host_clock;
801

    
802
static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
803

    
804
static QEMUClock *qemu_new_clock(int type)
805
{
806
    QEMUClock *clock;
807
    clock = qemu_mallocz(sizeof(QEMUClock));
808
    clock->type = type;
809
    return clock;
810
}
811

    
812
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
813
{
814
    QEMUTimer *ts;
815

    
816
    ts = qemu_mallocz(sizeof(QEMUTimer));
817
    ts->clock = clock;
818
    ts->cb = cb;
819
    ts->opaque = opaque;
820
    return ts;
821
}
822

    
823
void qemu_free_timer(QEMUTimer *ts)
824
{
825
    qemu_free(ts);
826
}
827

    
828
/* stop a timer, but do not dealloc it */
829
void qemu_del_timer(QEMUTimer *ts)
830
{
831
    QEMUTimer **pt, *t;
832

    
833
    /* NOTE: this code must be signal safe because
834
       qemu_timer_expired() can be called from a signal. */
835
    pt = &active_timers[ts->clock->type];
836
    for(;;) {
837
        t = *pt;
838
        if (!t)
839
            break;
840
        if (t == ts) {
841
            *pt = t->next;
842
            break;
843
        }
844
        pt = &t->next;
845
    }
846
}
847

    
848
/* modify the current timer so that it will be fired when current_time
849
   >= expire_time. The corresponding callback will be called. */
850
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
851
{
852
    QEMUTimer **pt, *t;
853

    
854
    qemu_del_timer(ts);
855

    
856
    /* add the timer in the sorted list */
857
    /* NOTE: this code must be signal safe because
858
       qemu_timer_expired() can be called from a signal. */
859
    pt = &active_timers[ts->clock->type];
860
    for(;;) {
861
        t = *pt;
862
        if (!t)
863
            break;
864
        if (t->expire_time > expire_time)
865
            break;
866
        pt = &t->next;
867
    }
868
    ts->expire_time = expire_time;
869
    ts->next = *pt;
870
    *pt = ts;
871

    
872
    /* Rearm if necessary  */
873
    if (pt == &active_timers[ts->clock->type]) {
874
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
875
            qemu_rearm_alarm_timer(alarm_timer);
876
        }
877
        /* Interrupt execution to force deadline recalculation.  */
878
        if (use_icount)
879
            qemu_notify_event();
880
    }
881
}
882

    
883
int qemu_timer_pending(QEMUTimer *ts)
884
{
885
    QEMUTimer *t;
886
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
887
        if (t == ts)
888
            return 1;
889
    }
890
    return 0;
891
}
892

    
893
int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
894
{
895
    if (!timer_head)
896
        return 0;
897
    return (timer_head->expire_time <= current_time);
898
}
899

    
900
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
901
{
902
    QEMUTimer *ts;
903

    
904
    for(;;) {
905
        ts = *ptimer_head;
906
        if (!ts || ts->expire_time > current_time)
907
            break;
908
        /* remove timer from the list before calling the callback */
909
        *ptimer_head = ts->next;
910
        ts->next = NULL;
911

    
912
        /* run the callback (the timer list can be modified) */
913
        ts->cb(ts->opaque);
914
    }
915
}
916

    
917
int64_t qemu_get_clock(QEMUClock *clock)
918
{
919
    switch(clock->type) {
920
    case QEMU_CLOCK_REALTIME:
921
        return get_clock() / 1000000;
922
    default:
923
    case QEMU_CLOCK_VIRTUAL:
924
        if (use_icount) {
925
            return cpu_get_icount();
926
        } else {
927
            return cpu_get_clock();
928
        }
929
    case QEMU_CLOCK_HOST:
930
        return get_clock_realtime();
931
    }
932
}
933

    
934
int64_t qemu_get_clock_ns(QEMUClock *clock)
935
{
936
    switch(clock->type) {
937
    case QEMU_CLOCK_REALTIME:
938
        return get_clock();
939
    default:
940
    case QEMU_CLOCK_VIRTUAL:
941
        if (use_icount) {
942
            return cpu_get_icount();
943
        } else {
944
            return cpu_get_clock();
945
        }
946
    case QEMU_CLOCK_HOST:
947
        return get_clock_realtime();
948
    }
949
}
950

    
951
static void init_clocks(void)
952
{
953
    init_get_clock();
954
    rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
955
    vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
956
    host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
957

    
958
    rtc_clock = host_clock;
959
}
960

    
961
/* save a timer */
962
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
963
{
964
    uint64_t expire_time;
965

    
966
    if (qemu_timer_pending(ts)) {
967
        expire_time = ts->expire_time;
968
    } else {
969
        expire_time = -1;
970
    }
971
    qemu_put_be64(f, expire_time);
972
}
973

    
974
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
975
{
976
    uint64_t expire_time;
977

    
978
    expire_time = qemu_get_be64(f);
979
    if (expire_time != -1) {
980
        qemu_mod_timer(ts, expire_time);
981
    } else {
982
        qemu_del_timer(ts);
983
    }
984
}
985

    
986
static const VMStateDescription vmstate_timers = {
987
    .name = "timer",
988
    .version_id = 2,
989
    .minimum_version_id = 1,
990
    .minimum_version_id_old = 1,
991
    .fields      = (VMStateField []) {
992
        VMSTATE_INT64(cpu_ticks_offset, TimersState),
993
        VMSTATE_INT64(dummy, TimersState),
994
        VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
995
        VMSTATE_END_OF_LIST()
996
    }
997
};
998

    
999
static void qemu_event_increment(void);
1000

    
1001
#ifdef _WIN32
1002
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1003
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
1004
                                        DWORD_PTR dw2)
1005
#else
1006
static void host_alarm_handler(int host_signum)
1007
#endif
1008
{
1009
#if 0
1010
#define DISP_FREQ 1000
1011
    {
1012
        static int64_t delta_min = INT64_MAX;
1013
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1014
        static int count;
1015
        ti = qemu_get_clock(vm_clock);
1016
        if (last_clock != 0) {
1017
            delta = ti - last_clock;
1018
            if (delta < delta_min)
1019
                delta_min = delta;
1020
            if (delta > delta_max)
1021
                delta_max = delta;
1022
            delta_cum += delta;
1023
            if (++count == DISP_FREQ) {
1024
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1025
                       muldiv64(delta_min, 1000000, get_ticks_per_sec()),
1026
                       muldiv64(delta_max, 1000000, get_ticks_per_sec()),
1027
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
1028
                       (double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
1029
                count = 0;
1030
                delta_min = INT64_MAX;
1031
                delta_max = 0;
1032
                delta_cum = 0;
1033
            }
1034
        }
1035
        last_clock = ti;
1036
    }
1037
#endif
1038
    if (alarm_has_dynticks(alarm_timer) ||
1039
        (!use_icount &&
1040
            qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
1041
                               qemu_get_clock(vm_clock))) ||
1042
        qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
1043
                           qemu_get_clock(rt_clock)) ||
1044
        qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
1045
                           qemu_get_clock(host_clock))) {
1046
        qemu_event_increment();
1047
        if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1048

    
1049
#ifndef CONFIG_IOTHREAD
1050
        if (next_cpu) {
1051
            /* stop the currently executing cpu because a timer occured */
1052
            cpu_exit(next_cpu);
1053
        }
1054
#endif
1055
        timer_alarm_pending = 1;
1056
        qemu_notify_event();
1057
    }
1058
}
1059

    
1060
static int64_t qemu_next_deadline(void)
1061
{
1062
    /* To avoid problems with overflow limit this to 2^32.  */
1063
    int64_t delta = INT32_MAX;
1064

    
1065
    if (active_timers[QEMU_CLOCK_VIRTUAL]) {
1066
        delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
1067
                     qemu_get_clock(vm_clock);
1068
    }
1069
    if (active_timers[QEMU_CLOCK_HOST]) {
1070
        int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
1071
                 qemu_get_clock(host_clock);
1072
        if (hdelta < delta)
1073
            delta = hdelta;
1074
    }
1075

    
1076
    if (delta < 0)
1077
        delta = 0;
1078

    
1079
    return delta;
1080
}
1081

    
1082
#if defined(__linux__)
1083
static uint64_t qemu_next_deadline_dyntick(void)
1084
{
1085
    int64_t delta;
1086
    int64_t rtdelta;
1087

    
1088
    if (use_icount)
1089
        delta = INT32_MAX;
1090
    else
1091
        delta = (qemu_next_deadline() + 999) / 1000;
1092

    
1093
    if (active_timers[QEMU_CLOCK_REALTIME]) {
1094
        rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
1095
                 qemu_get_clock(rt_clock))*1000;
1096
        if (rtdelta < delta)
1097
            delta = rtdelta;
1098
    }
1099

    
1100
    if (delta < MIN_TIMER_REARM_US)
1101
        delta = MIN_TIMER_REARM_US;
1102

    
1103
    return delta;
1104
}
1105
#endif
1106

    
1107
#ifndef _WIN32
1108

    
1109
/* Sets a specific flag */
1110
static int fcntl_setfl(int fd, int flag)
1111
{
1112
    int flags;
1113

    
1114
    flags = fcntl(fd, F_GETFL);
1115
    if (flags == -1)
1116
        return -errno;
1117

    
1118
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1119
        return -errno;
1120

    
1121
    return 0;
1122
}
1123

    
1124
#if defined(__linux__)
1125

    
1126
#define RTC_FREQ 1024
1127

    
1128
static void enable_sigio_timer(int fd)
1129
{
1130
    struct sigaction act;
1131

    
1132
    /* timer signal */
1133
    sigfillset(&act.sa_mask);
1134
    act.sa_flags = 0;
1135
    act.sa_handler = host_alarm_handler;
1136

    
1137
    sigaction(SIGIO, &act, NULL);
1138
    fcntl_setfl(fd, O_ASYNC);
1139
    fcntl(fd, F_SETOWN, getpid());
1140
}
1141

    
1142
static int hpet_start_timer(struct qemu_alarm_timer *t)
1143
{
1144
    struct hpet_info info;
1145
    int r, fd;
1146

    
1147
    fd = qemu_open("/dev/hpet", O_RDONLY);
1148
    if (fd < 0)
1149
        return -1;
1150

    
1151
    /* Set frequency */
1152
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1153
    if (r < 0) {
1154
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1155
                "error, but for better emulation accuracy type:\n"
1156
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1157
        goto fail;
1158
    }
1159

    
1160
    /* Check capabilities */
1161
    r = ioctl(fd, HPET_INFO, &info);
1162
    if (r < 0)
1163
        goto fail;
1164

    
1165
    /* Enable periodic mode */
1166
    r = ioctl(fd, HPET_EPI, 0);
1167
    if (info.hi_flags && (r < 0))
1168
        goto fail;
1169

    
1170
    /* Enable interrupt */
1171
    r = ioctl(fd, HPET_IE_ON, 0);
1172
    if (r < 0)
1173
        goto fail;
1174

    
1175
    enable_sigio_timer(fd);
1176
    t->priv = (void *)(long)fd;
1177

    
1178
    return 0;
1179
fail:
1180
    close(fd);
1181
    return -1;
1182
}
1183

    
1184
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1185
{
1186
    int fd = (long)t->priv;
1187

    
1188
    close(fd);
1189
}
1190

    
1191
static int rtc_start_timer(struct qemu_alarm_timer *t)
1192
{
1193
    int rtc_fd;
1194
    unsigned long current_rtc_freq = 0;
1195

    
1196
    TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
1197
    if (rtc_fd < 0)
1198
        return -1;
1199
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1200
    if (current_rtc_freq != RTC_FREQ &&
1201
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1202
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1203
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1204
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1205
        goto fail;
1206
    }
1207
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1208
    fail:
1209
        close(rtc_fd);
1210
        return -1;
1211
    }
1212

    
1213
    enable_sigio_timer(rtc_fd);
1214

    
1215
    t->priv = (void *)(long)rtc_fd;
1216

    
1217
    return 0;
1218
}
1219

    
1220
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1221
{
1222
    int rtc_fd = (long)t->priv;
1223

    
1224
    close(rtc_fd);
1225
}
1226

    
1227
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1228
{
1229
    struct sigevent ev;
1230
    timer_t host_timer;
1231
    struct sigaction act;
1232

    
1233
    sigfillset(&act.sa_mask);
1234
    act.sa_flags = 0;
1235
    act.sa_handler = host_alarm_handler;
1236

    
1237
    sigaction(SIGALRM, &act, NULL);
1238

    
1239
    /* 
1240
     * Initialize ev struct to 0 to avoid valgrind complaining
1241
     * about uninitialized data in timer_create call
1242
     */
1243
    memset(&ev, 0, sizeof(ev));
1244
    ev.sigev_value.sival_int = 0;
1245
    ev.sigev_notify = SIGEV_SIGNAL;
1246
    ev.sigev_signo = SIGALRM;
1247

    
1248
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1249
        perror("timer_create");
1250

    
1251
        /* disable dynticks */
1252
        fprintf(stderr, "Dynamic Ticks disabled\n");
1253

    
1254
        return -1;
1255
    }
1256

    
1257
    t->priv = (void *)(long)host_timer;
1258

    
1259
    return 0;
1260
}
1261

    
1262
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1263
{
1264
    timer_t host_timer = (timer_t)(long)t->priv;
1265

    
1266
    timer_delete(host_timer);
1267
}
1268

    
1269
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1270
{
1271
    timer_t host_timer = (timer_t)(long)t->priv;
1272
    struct itimerspec timeout;
1273
    int64_t nearest_delta_us = INT64_MAX;
1274
    int64_t current_us;
1275

    
1276
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
1277
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
1278
        !active_timers[QEMU_CLOCK_HOST])
1279
        return;
1280

    
1281
    nearest_delta_us = qemu_next_deadline_dyntick();
1282

    
1283
    /* check whether a timer is already running */
1284
    if (timer_gettime(host_timer, &timeout)) {
1285
        perror("gettime");
1286
        fprintf(stderr, "Internal timer error: aborting\n");
1287
        exit(1);
1288
    }
1289
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1290
    if (current_us && current_us <= nearest_delta_us)
1291
        return;
1292

    
1293
    timeout.it_interval.tv_sec = 0;
1294
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1295
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1296
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1297
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1298
        perror("settime");
1299
        fprintf(stderr, "Internal timer error: aborting\n");
1300
        exit(1);
1301
    }
1302
}
1303

    
1304
#endif /* defined(__linux__) */
1305

    
1306
static int unix_start_timer(struct qemu_alarm_timer *t)
1307
{
1308
    struct sigaction act;
1309
    struct itimerval itv;
1310
    int err;
1311

    
1312
    /* timer signal */
1313
    sigfillset(&act.sa_mask);
1314
    act.sa_flags = 0;
1315
    act.sa_handler = host_alarm_handler;
1316

    
1317
    sigaction(SIGALRM, &act, NULL);
1318

    
1319
    itv.it_interval.tv_sec = 0;
1320
    /* for i386 kernel 2.6 to get 1 ms */
1321
    itv.it_interval.tv_usec = 999;
1322
    itv.it_value.tv_sec = 0;
1323
    itv.it_value.tv_usec = 10 * 1000;
1324

    
1325
    err = setitimer(ITIMER_REAL, &itv, NULL);
1326
    if (err)
1327
        return -1;
1328

    
1329
    return 0;
1330
}
1331

    
1332
static void unix_stop_timer(struct qemu_alarm_timer *t)
1333
{
1334
    struct itimerval itv;
1335

    
1336
    memset(&itv, 0, sizeof(itv));
1337
    setitimer(ITIMER_REAL, &itv, NULL);
1338
}
1339

    
1340
#endif /* !defined(_WIN32) */
1341

    
1342

    
1343
#ifdef _WIN32
1344

    
1345
static int win32_start_timer(struct qemu_alarm_timer *t)
1346
{
1347
    TIMECAPS tc;
1348
    struct qemu_alarm_win32 *data = t->priv;
1349
    UINT flags;
1350

    
1351
    memset(&tc, 0, sizeof(tc));
1352
    timeGetDevCaps(&tc, sizeof(tc));
1353

    
1354
    if (data->period < tc.wPeriodMin)
1355
        data->period = tc.wPeriodMin;
1356

    
1357
    timeBeginPeriod(data->period);
1358

    
1359
    flags = TIME_CALLBACK_FUNCTION;
1360
    if (alarm_has_dynticks(t))
1361
        flags |= TIME_ONESHOT;
1362
    else
1363
        flags |= TIME_PERIODIC;
1364

    
1365
    data->timerId = timeSetEvent(1,         // interval (ms)
1366
                        data->period,       // resolution
1367
                        host_alarm_handler, // function
1368
                        (DWORD)t,           // parameter
1369
                        flags);
1370

    
1371
    if (!data->timerId) {
1372
        fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
1373
                GetLastError());
1374
        timeEndPeriod(data->period);
1375
        return -1;
1376
    }
1377

    
1378
    return 0;
1379
}
1380

    
1381
static void win32_stop_timer(struct qemu_alarm_timer *t)
1382
{
1383
    struct qemu_alarm_win32 *data = t->priv;
1384

    
1385
    timeKillEvent(data->timerId);
1386
    timeEndPeriod(data->period);
1387
}
1388

    
1389
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1390
{
1391
    struct qemu_alarm_win32 *data = t->priv;
1392

    
1393
    if (!active_timers[QEMU_CLOCK_REALTIME] &&
1394
        !active_timers[QEMU_CLOCK_VIRTUAL] &&
1395
        !active_timers[QEMU_CLOCK_HOST])
1396
        return;
1397

    
1398
    timeKillEvent(data->timerId);
1399

    
1400
    data->timerId = timeSetEvent(1,
1401
                        data->period,
1402
                        host_alarm_handler,
1403
                        (DWORD)t,
1404
                        TIME_ONESHOT | TIME_PERIODIC);
1405

    
1406
    if (!data->timerId) {
1407
        fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
1408
                GetLastError());
1409

    
1410
        timeEndPeriod(data->period);
1411
        exit(1);
1412
    }
1413
}
1414

    
1415
#endif /* _WIN32 */
1416

    
1417
static int init_timer_alarm(void)
1418
{
1419
    struct qemu_alarm_timer *t = NULL;
1420
    int i, err = -1;
1421

    
1422
    for (i = 0; alarm_timers[i].name; i++) {
1423
        t = &alarm_timers[i];
1424

    
1425
        err = t->start(t);
1426
        if (!err)
1427
            break;
1428
    }
1429

    
1430
    if (err) {
1431
        err = -ENOENT;
1432
        goto fail;
1433
    }
1434

    
1435
    alarm_timer = t;
1436

    
1437
    return 0;
1438

    
1439
fail:
1440
    return err;
1441
}
1442

    
1443
static void quit_timers(void)
1444
{
1445
    alarm_timer->stop(alarm_timer);
1446
    alarm_timer = NULL;
1447
}
1448

    
1449
/***********************************************************/
1450
/* host time/date access */
1451
void qemu_get_timedate(struct tm *tm, int offset)
1452
{
1453
    time_t ti;
1454
    struct tm *ret;
1455

    
1456
    time(&ti);
1457
    ti += offset;
1458
    if (rtc_date_offset == -1) {
1459
        if (rtc_utc)
1460
            ret = gmtime(&ti);
1461
        else
1462
            ret = localtime(&ti);
1463
    } else {
1464
        ti -= rtc_date_offset;
1465
        ret = gmtime(&ti);
1466
    }
1467

    
1468
    memcpy(tm, ret, sizeof(struct tm));
1469
}
1470

    
1471
int qemu_timedate_diff(struct tm *tm)
1472
{
1473
    time_t seconds;
1474

    
1475
    if (rtc_date_offset == -1)
1476
        if (rtc_utc)
1477
            seconds = mktimegm(tm);
1478
        else
1479
            seconds = mktime(tm);
1480
    else
1481
        seconds = mktimegm(tm) + rtc_date_offset;
1482

    
1483
    return seconds - time(NULL);
1484
}
1485

    
1486
static void configure_rtc_date_offset(const char *startdate, int legacy)
1487
{
1488
    time_t rtc_start_date;
1489
    struct tm tm;
1490

    
1491
    if (!strcmp(startdate, "now") && legacy) {
1492
        rtc_date_offset = -1;
1493
    } else {
1494
        if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
1495
                   &tm.tm_year,
1496
                   &tm.tm_mon,
1497
                   &tm.tm_mday,
1498
                   &tm.tm_hour,
1499
                   &tm.tm_min,
1500
                   &tm.tm_sec) == 6) {
1501
            /* OK */
1502
        } else if (sscanf(startdate, "%d-%d-%d",
1503
                          &tm.tm_year,
1504
                          &tm.tm_mon,
1505
                          &tm.tm_mday) == 3) {
1506
            tm.tm_hour = 0;
1507
            tm.tm_min = 0;
1508
            tm.tm_sec = 0;
1509
        } else {
1510
            goto date_fail;
1511
        }
1512
        tm.tm_year -= 1900;
1513
        tm.tm_mon--;
1514
        rtc_start_date = mktimegm(&tm);
1515
        if (rtc_start_date == -1) {
1516
        date_fail:
1517
            fprintf(stderr, "Invalid date format. Valid formats are:\n"
1518
                            "'2006-06-17T16:01:21' or '2006-06-17'\n");
1519
            exit(1);
1520
        }
1521
        rtc_date_offset = time(NULL) - rtc_start_date;
1522
    }
1523
}
1524

    
1525
static void configure_rtc(QemuOpts *opts)
1526
{
1527
    const char *value;
1528

    
1529
    value = qemu_opt_get(opts, "base");
1530
    if (value) {
1531
        if (!strcmp(value, "utc")) {
1532
            rtc_utc = 1;
1533
        } else if (!strcmp(value, "localtime")) {
1534
            rtc_utc = 0;
1535
        } else {
1536
            configure_rtc_date_offset(value, 0);
1537
        }
1538
    }
1539
    value = qemu_opt_get(opts, "clock");
1540
    if (value) {
1541
        if (!strcmp(value, "host")) {
1542
            rtc_clock = host_clock;
1543
        } else if (!strcmp(value, "vm")) {
1544
            rtc_clock = vm_clock;
1545
        } else {
1546
            fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1547
            exit(1);
1548
        }
1549
    }
1550
#ifdef CONFIG_TARGET_I386
1551
    value = qemu_opt_get(opts, "driftfix");
1552
    if (value) {
1553
        if (!strcmp(buf, "slew")) {
1554
            rtc_td_hack = 1;
1555
        } else if (!strcmp(buf, "none")) {
1556
            rtc_td_hack = 0;
1557
        } else {
1558
            fprintf(stderr, "qemu: invalid option value '%s'\n", value);
1559
            exit(1);
1560
        }
1561
    }
1562
#endif
1563
}
1564

    
1565
#ifdef _WIN32
1566
static void socket_cleanup(void)
1567
{
1568
    WSACleanup();
1569
}
1570

    
1571
static int socket_init(void)
1572
{
1573
    WSADATA Data;
1574
    int ret, err;
1575

    
1576
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1577
    if (ret != 0) {
1578
        err = WSAGetLastError();
1579
        fprintf(stderr, "WSAStartup: %d\n", err);
1580
        return -1;
1581
    }
1582
    atexit(socket_cleanup);
1583
    return 0;
1584
}
1585
#endif
1586

    
1587
/***********************************************************/
1588
/* Bluetooth support */
1589
static int nb_hcis;
1590
static int cur_hci;
1591
static struct HCIInfo *hci_table[MAX_NICS];
1592

    
1593
static struct bt_vlan_s {
1594
    struct bt_scatternet_s net;
1595
    int id;
1596
    struct bt_vlan_s *next;
1597
} *first_bt_vlan;
1598

    
1599
/* find or alloc a new bluetooth "VLAN" */
1600
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1601
{
1602
    struct bt_vlan_s **pvlan, *vlan;
1603
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1604
        if (vlan->id == id)
1605
            return &vlan->net;
1606
    }
1607
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1608
    vlan->id = id;
1609
    pvlan = &first_bt_vlan;
1610
    while (*pvlan != NULL)
1611
        pvlan = &(*pvlan)->next;
1612
    *pvlan = vlan;
1613
    return &vlan->net;
1614
}
1615

    
1616
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1617
{
1618
}
1619

    
1620
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1621
{
1622
    return -ENOTSUP;
1623
}
1624

    
1625
static struct HCIInfo null_hci = {
1626
    .cmd_send = null_hci_send,
1627
    .sco_send = null_hci_send,
1628
    .acl_send = null_hci_send,
1629
    .bdaddr_set = null_hci_addr_set,
1630
};
1631

    
1632
struct HCIInfo *qemu_next_hci(void)
1633
{
1634
    if (cur_hci == nb_hcis)
1635
        return &null_hci;
1636

    
1637
    return hci_table[cur_hci++];
1638
}
1639

    
1640
static struct HCIInfo *hci_init(const char *str)
1641
{
1642
    char *endp;
1643
    struct bt_scatternet_s *vlan = 0;
1644

    
1645
    if (!strcmp(str, "null"))
1646
        /* null */
1647
        return &null_hci;
1648
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1649
        /* host[:hciN] */
1650
        return bt_host_hci(str[4] ? str + 5 : "hci0");
1651
    else if (!strncmp(str, "hci", 3)) {
1652
        /* hci[,vlan=n] */
1653
        if (str[3]) {
1654
            if (!strncmp(str + 3, ",vlan=", 6)) {
1655
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1656
                if (*endp)
1657
                    vlan = 0;
1658
            }
1659
        } else
1660
            vlan = qemu_find_bt_vlan(0);
1661
        if (vlan)
1662
           return bt_new_hci(vlan);
1663
    }
1664

    
1665
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1666

    
1667
    return 0;
1668
}
1669

    
1670
static int bt_hci_parse(const char *str)
1671
{
1672
    struct HCIInfo *hci;
1673
    bdaddr_t bdaddr;
1674

    
1675
    if (nb_hcis >= MAX_NICS) {
1676
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1677
        return -1;
1678
    }
1679

    
1680
    hci = hci_init(str);
1681
    if (!hci)
1682
        return -1;
1683

    
1684
    bdaddr.b[0] = 0x52;
1685
    bdaddr.b[1] = 0x54;
1686
    bdaddr.b[2] = 0x00;
1687
    bdaddr.b[3] = 0x12;
1688
    bdaddr.b[4] = 0x34;
1689
    bdaddr.b[5] = 0x56 + nb_hcis;
1690
    hci->bdaddr_set(hci, bdaddr.b);
1691

    
1692
    hci_table[nb_hcis++] = hci;
1693

    
1694
    return 0;
1695
}
1696

    
1697
static void bt_vhci_add(int vlan_id)
1698
{
1699
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1700

    
1701
    if (!vlan->slave)
1702
        fprintf(stderr, "qemu: warning: adding a VHCI to "
1703
                        "an empty scatternet %i\n", vlan_id);
1704

    
1705
    bt_vhci_init(bt_new_hci(vlan));
1706
}
1707

    
1708
static struct bt_device_s *bt_device_add(const char *opt)
1709
{
1710
    struct bt_scatternet_s *vlan;
1711
    int vlan_id = 0;
1712
    char *endp = strstr(opt, ",vlan=");
1713
    int len = (endp ? endp - opt : strlen(opt)) + 1;
1714
    char devname[10];
1715

    
1716
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
1717

    
1718
    if (endp) {
1719
        vlan_id = strtol(endp + 6, &endp, 0);
1720
        if (*endp) {
1721
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1722
            return 0;
1723
        }
1724
    }
1725

    
1726
    vlan = qemu_find_bt_vlan(vlan_id);
1727

    
1728
    if (!vlan->slave)
1729
        fprintf(stderr, "qemu: warning: adding a slave device to "
1730
                        "an empty scatternet %i\n", vlan_id);
1731

    
1732
    if (!strcmp(devname, "keyboard"))
1733
        return bt_keyboard_init(vlan);
1734

    
1735
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1736
    return 0;
1737
}
1738

    
1739
static int bt_parse(const char *opt)
1740
{
1741
    const char *endp, *p;
1742
    int vlan;
1743

    
1744
    if (strstart(opt, "hci", &endp)) {
1745
        if (!*endp || *endp == ',') {
1746
            if (*endp)
1747
                if (!strstart(endp, ",vlan=", 0))
1748
                    opt = endp + 1;
1749

    
1750
            return bt_hci_parse(opt);
1751
       }
1752
    } else if (strstart(opt, "vhci", &endp)) {
1753
        if (!*endp || *endp == ',') {
1754
            if (*endp) {
1755
                if (strstart(endp, ",vlan=", &p)) {
1756
                    vlan = strtol(p, (char **) &endp, 0);
1757
                    if (*endp) {
1758
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1759
                        return 1;
1760
                    }
1761
                } else {
1762
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1763
                    return 1;
1764
                }
1765
            } else
1766
                vlan = 0;
1767

    
1768
            bt_vhci_add(vlan);
1769
            return 0;
1770
        }
1771
    } else if (strstart(opt, "device:", &endp))
1772
        return !bt_device_add(endp);
1773

    
1774
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1775
    return 1;
1776
}
1777

    
1778
/***********************************************************/
1779
/* QEMU Block devices */
1780

    
1781
#define HD_ALIAS "index=%d,media=disk"
1782
#define CDROM_ALIAS "index=2,media=cdrom"
1783
#define FD_ALIAS "index=%d,if=floppy"
1784
#define PFLASH_ALIAS "if=pflash"
1785
#define MTD_ALIAS "if=mtd"
1786
#define SD_ALIAS "index=0,if=sd"
1787

    
1788
QemuOpts *drive_add(const char *file, const char *fmt, ...)
1789
{
1790
    va_list ap;
1791
    char optstr[1024];
1792
    QemuOpts *opts;
1793

    
1794
    va_start(ap, fmt);
1795
    vsnprintf(optstr, sizeof(optstr), fmt, ap);
1796
    va_end(ap);
1797

    
1798
    opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1799
    if (!opts) {
1800
        fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1801
                __FUNCTION__, optstr);
1802
        return NULL;
1803
    }
1804
    if (file)
1805
        qemu_opt_set(opts, "file", file);
1806
    return opts;
1807
}
1808

    
1809
DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1810
{
1811
    DriveInfo *dinfo;
1812

    
1813
    /* seek interface, bus and unit */
1814

    
1815
    QTAILQ_FOREACH(dinfo, &drives, next) {
1816
        if (dinfo->type == type &&
1817
            dinfo->bus == bus &&
1818
            dinfo->unit == unit)
1819
            return dinfo;
1820
    }
1821

    
1822
    return NULL;
1823
}
1824

    
1825
DriveInfo *drive_get_by_id(const char *id)
1826
{
1827
    DriveInfo *dinfo;
1828

    
1829
    QTAILQ_FOREACH(dinfo, &drives, next) {
1830
        if (strcmp(id, dinfo->id))
1831
            continue;
1832
        return dinfo;
1833
    }
1834
    return NULL;
1835
}
1836

    
1837
int drive_get_max_bus(BlockInterfaceType type)
1838
{
1839
    int max_bus;
1840
    DriveInfo *dinfo;
1841

    
1842
    max_bus = -1;
1843
    QTAILQ_FOREACH(dinfo, &drives, next) {
1844
        if(dinfo->type == type &&
1845
           dinfo->bus > max_bus)
1846
            max_bus = dinfo->bus;
1847
    }
1848
    return max_bus;
1849
}
1850

    
1851
const char *drive_get_serial(BlockDriverState *bdrv)
1852
{
1853
    DriveInfo *dinfo;
1854

    
1855
    QTAILQ_FOREACH(dinfo, &drives, next) {
1856
        if (dinfo->bdrv == bdrv)
1857
            return dinfo->serial;
1858
    }
1859

    
1860
    return "\0";
1861
}
1862

    
1863
BlockInterfaceErrorAction drive_get_on_error(
1864
    BlockDriverState *bdrv, int is_read)
1865
{
1866
    DriveInfo *dinfo;
1867

    
1868
    QTAILQ_FOREACH(dinfo, &drives, next) {
1869
        if (dinfo->bdrv == bdrv)
1870
            return is_read ? dinfo->on_read_error : dinfo->on_write_error;
1871
    }
1872

    
1873
    return is_read ? BLOCK_ERR_REPORT : BLOCK_ERR_STOP_ENOSPC;
1874
}
1875

    
1876
static void bdrv_format_print(void *opaque, const char *name)
1877
{
1878
    fprintf(stderr, " %s", name);
1879
}
1880

    
1881
void drive_uninit(DriveInfo *dinfo)
1882
{
1883
    qemu_opts_del(dinfo->opts);
1884
    bdrv_delete(dinfo->bdrv);
1885
    QTAILQ_REMOVE(&drives, dinfo, next);
1886
    qemu_free(dinfo);
1887
}
1888

    
1889
static int parse_block_error_action(const char *buf, int is_read)
1890
{
1891
    if (!strcmp(buf, "ignore")) {
1892
        return BLOCK_ERR_IGNORE;
1893
    } else if (!is_read && !strcmp(buf, "enospc")) {
1894
        return BLOCK_ERR_STOP_ENOSPC;
1895
    } else if (!strcmp(buf, "stop")) {
1896
        return BLOCK_ERR_STOP_ANY;
1897
    } else if (!strcmp(buf, "report")) {
1898
        return BLOCK_ERR_REPORT;
1899
    } else {
1900
        fprintf(stderr, "qemu: '%s' invalid %s error action\n",
1901
            buf, is_read ? "read" : "write");
1902
        return -1;
1903
    }
1904
}
1905

    
1906
DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1907
                      int *fatal_error)
1908
{
1909
    const char *buf;
1910
    const char *file = NULL;
1911
    char devname[128];
1912
    const char *serial;
1913
    const char *mediastr = "";
1914
    BlockInterfaceType type;
1915
    enum { MEDIA_DISK, MEDIA_CDROM } media;
1916
    int bus_id, unit_id;
1917
    int cyls, heads, secs, translation;
1918
    BlockDriver *drv = NULL;
1919
    QEMUMachine *machine = opaque;
1920
    int max_devs;
1921
    int index;
1922
    int cache;
1923
    int aio = 0;
1924
    int ro = 0;
1925
    int bdrv_flags;
1926
    int on_read_error, on_write_error;
1927
    const char *devaddr;
1928
    DriveInfo *dinfo;
1929
    int snapshot = 0;
1930

    
1931
    *fatal_error = 1;
1932

    
1933
    translation = BIOS_ATA_TRANSLATION_AUTO;
1934
    cache = 1;
1935

    
1936
    if (machine && machine->use_scsi) {
1937
        type = IF_SCSI;
1938
        max_devs = MAX_SCSI_DEVS;
1939
        pstrcpy(devname, sizeof(devname), "scsi");
1940
    } else {
1941
        type = IF_IDE;
1942
        max_devs = MAX_IDE_DEVS;
1943
        pstrcpy(devname, sizeof(devname), "ide");
1944
    }
1945
    media = MEDIA_DISK;
1946

    
1947
    /* extract parameters */
1948
    bus_id  = qemu_opt_get_number(opts, "bus", 0);
1949
    unit_id = qemu_opt_get_number(opts, "unit", -1);
1950
    index   = qemu_opt_get_number(opts, "index", -1);
1951

    
1952
    cyls  = qemu_opt_get_number(opts, "cyls", 0);
1953
    heads = qemu_opt_get_number(opts, "heads", 0);
1954
    secs  = qemu_opt_get_number(opts, "secs", 0);
1955

    
1956
    snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1957
    ro = qemu_opt_get_bool(opts, "readonly", 0);
1958

    
1959
    file = qemu_opt_get(opts, "file");
1960
    serial = qemu_opt_get(opts, "serial");
1961

    
1962
    if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1963
        pstrcpy(devname, sizeof(devname), buf);
1964
        if (!strcmp(buf, "ide")) {
1965
            type = IF_IDE;
1966
            max_devs = MAX_IDE_DEVS;
1967
        } else if (!strcmp(buf, "scsi")) {
1968
            type = IF_SCSI;
1969
            max_devs = MAX_SCSI_DEVS;
1970
        } else if (!strcmp(buf, "floppy")) {
1971
            type = IF_FLOPPY;
1972
            max_devs = 0;
1973
        } else if (!strcmp(buf, "pflash")) {
1974
            type = IF_PFLASH;
1975
            max_devs = 0;
1976
        } else if (!strcmp(buf, "mtd")) {
1977
            type = IF_MTD;
1978
            max_devs = 0;
1979
        } else if (!strcmp(buf, "sd")) {
1980
            type = IF_SD;
1981
            max_devs = 0;
1982
        } else if (!strcmp(buf, "virtio")) {
1983
            type = IF_VIRTIO;
1984
            max_devs = 0;
1985
        } else if (!strcmp(buf, "xen")) {
1986
            type = IF_XEN;
1987
            max_devs = 0;
1988
        } else if (!strcmp(buf, "none")) {
1989
            type = IF_NONE;
1990
            max_devs = 0;
1991
        } else {
1992
            fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1993
            return NULL;
1994
        }
1995
    }
1996

    
1997
    if (cyls || heads || secs) {
1998
        if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
1999
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
2000
            return NULL;
2001
        }
2002
        if (heads < 1 || (type == IF_IDE && heads > 16)) {
2003
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
2004
            return NULL;
2005
        }
2006
        if (secs < 1 || (type == IF_IDE && secs > 63)) {
2007
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2008
            return NULL;
2009
        }
2010
    }
2011

    
2012
    if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2013
        if (!cyls) {
2014
            fprintf(stderr,
2015
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2016
                    buf);
2017
            return NULL;
2018
        }
2019
        if (!strcmp(buf, "none"))
2020
            translation = BIOS_ATA_TRANSLATION_NONE;
2021
        else if (!strcmp(buf, "lba"))
2022
            translation = BIOS_ATA_TRANSLATION_LBA;
2023
        else if (!strcmp(buf, "auto"))
2024
            translation = BIOS_ATA_TRANSLATION_AUTO;
2025
        else {
2026
            fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2027
            return NULL;
2028
        }
2029
    }
2030

    
2031
    if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2032
        if (!strcmp(buf, "disk")) {
2033
            media = MEDIA_DISK;
2034
        } else if (!strcmp(buf, "cdrom")) {
2035
            if (cyls || secs || heads) {
2036
                fprintf(stderr,
2037
                        "qemu: '%s' invalid physical CHS format\n", buf);
2038
                return NULL;
2039
            }
2040
            media = MEDIA_CDROM;
2041
        } else {
2042
            fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2043
            return NULL;
2044
        }
2045
    }
2046

    
2047
    if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2048
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2049
            cache = 0;
2050
        else if (!strcmp(buf, "writethrough"))
2051
            cache = 1;
2052
        else if (!strcmp(buf, "writeback"))
2053
            cache = 2;
2054
        else {
2055
           fprintf(stderr, "qemu: invalid cache option\n");
2056
           return NULL;
2057
        }
2058
    }
2059

    
2060
#ifdef CONFIG_LINUX_AIO
2061
    if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2062
        if (!strcmp(buf, "threads"))
2063
            aio = 0;
2064
        else if (!strcmp(buf, "native"))
2065
            aio = 1;
2066
        else {
2067
           fprintf(stderr, "qemu: invalid aio option\n");
2068
           return NULL;
2069
        }
2070
    }
2071
#endif
2072

    
2073
    if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2074
       if (strcmp(buf, "?") == 0) {
2075
            fprintf(stderr, "qemu: Supported formats:");
2076
            bdrv_iterate_format(bdrv_format_print, NULL);
2077
            fprintf(stderr, "\n");
2078
            return NULL;
2079
        }
2080
        drv = bdrv_find_whitelisted_format(buf);
2081
        if (!drv) {
2082
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2083
            return NULL;
2084
        }
2085
    }
2086

    
2087
    on_write_error = BLOCK_ERR_STOP_ENOSPC;
2088
    if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2089
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2090
            fprintf(stderr, "werror is no supported by this format\n");
2091
            return NULL;
2092
        }
2093

    
2094
        on_write_error = parse_block_error_action(buf, 0);
2095
        if (on_write_error < 0) {
2096
            return NULL;
2097
        }
2098
    }
2099

    
2100
    on_read_error = BLOCK_ERR_REPORT;
2101
    if ((buf = qemu_opt_get(opts, "rerror")) != NULL) {
2102
        if (type != IF_IDE && type != IF_VIRTIO) {
2103
            fprintf(stderr, "rerror is no supported by this format\n");
2104
            return NULL;
2105
        }
2106

    
2107
        on_read_error = parse_block_error_action(buf, 1);
2108
        if (on_read_error < 0) {
2109
            return NULL;
2110
        }
2111
    }
2112

    
2113
    if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2114
        if (type != IF_VIRTIO) {
2115
            fprintf(stderr, "addr is not supported\n");
2116
            return NULL;
2117
        }
2118
    }
2119

    
2120
    /* compute bus and unit according index */
2121

    
2122
    if (index != -1) {
2123
        if (bus_id != 0 || unit_id != -1) {
2124
            fprintf(stderr,
2125
                    "qemu: index cannot be used with bus and unit\n");
2126
            return NULL;
2127
        }
2128
        if (max_devs == 0)
2129
        {
2130
            unit_id = index;
2131
            bus_id = 0;
2132
        } else {
2133
            unit_id = index % max_devs;
2134
            bus_id = index / max_devs;
2135
        }
2136
    }
2137

    
2138
    /* if user doesn't specify a unit_id,
2139
     * try to find the first free
2140
     */
2141

    
2142
    if (unit_id == -1) {
2143
       unit_id = 0;
2144
       while (drive_get(type, bus_id, unit_id) != NULL) {
2145
           unit_id++;
2146
           if (max_devs && unit_id >= max_devs) {
2147
               unit_id -= max_devs;
2148
               bus_id++;
2149
           }
2150
       }
2151
    }
2152

    
2153
    /* check unit id */
2154

    
2155
    if (max_devs && unit_id >= max_devs) {
2156
        fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2157
                unit_id, max_devs - 1);
2158
        return NULL;
2159
    }
2160

    
2161
    /*
2162
     * ignore multiple definitions
2163
     */
2164

    
2165
    if (drive_get(type, bus_id, unit_id) != NULL) {
2166
        *fatal_error = 0;
2167
        return NULL;
2168
    }
2169

    
2170
    /* init */
2171

    
2172
    dinfo = qemu_mallocz(sizeof(*dinfo));
2173
    if ((buf = qemu_opts_id(opts)) != NULL) {
2174
        dinfo->id = qemu_strdup(buf);
2175
    } else {
2176
        /* no id supplied -> create one */
2177
        dinfo->id = qemu_mallocz(32);
2178
        if (type == IF_IDE || type == IF_SCSI)
2179
            mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2180
        if (max_devs)
2181
            snprintf(dinfo->id, 32, "%s%i%s%i",
2182
                     devname, bus_id, mediastr, unit_id);
2183
        else
2184
            snprintf(dinfo->id, 32, "%s%s%i",
2185
                     devname, mediastr, unit_id);
2186
    }
2187
    dinfo->bdrv = bdrv_new(dinfo->id);
2188
    dinfo->devaddr = devaddr;
2189
    dinfo->type = type;
2190
    dinfo->bus = bus_id;
2191
    dinfo->unit = unit_id;
2192
    dinfo->on_read_error = on_read_error;
2193
    dinfo->on_write_error = on_write_error;
2194
    dinfo->opts = opts;
2195
    if (serial)
2196
        strncpy(dinfo->serial, serial, sizeof(serial));
2197
    QTAILQ_INSERT_TAIL(&drives, dinfo, next);
2198

    
2199
    switch(type) {
2200
    case IF_IDE:
2201
    case IF_SCSI:
2202
    case IF_XEN:
2203
    case IF_NONE:
2204
        switch(media) {
2205
        case MEDIA_DISK:
2206
            if (cyls != 0) {
2207
                bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2208
                bdrv_set_translation_hint(dinfo->bdrv, translation);
2209
            }
2210
            break;
2211
        case MEDIA_CDROM:
2212
            bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2213
            break;
2214
        }
2215
        break;
2216
    case IF_SD:
2217
        /* FIXME: This isn't really a floppy, but it's a reasonable
2218
           approximation.  */
2219
    case IF_FLOPPY:
2220
        bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2221
        break;
2222
    case IF_PFLASH:
2223
    case IF_MTD:
2224
        break;
2225
    case IF_VIRTIO:
2226
        /* add virtio block device */
2227
        opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2228
        qemu_opt_set(opts, "driver", "virtio-blk-pci");
2229
        qemu_opt_set(opts, "drive", dinfo->id);
2230
        if (devaddr)
2231
            qemu_opt_set(opts, "addr", devaddr);
2232
        break;
2233
    case IF_COUNT:
2234
        abort();
2235
    }
2236
    if (!file) {
2237
        *fatal_error = 0;
2238
        return NULL;
2239
    }
2240
    bdrv_flags = 0;
2241
    if (snapshot) {
2242
        bdrv_flags |= BDRV_O_SNAPSHOT;
2243
        cache = 2; /* always use write-back with snapshot */
2244
    }
2245
    if (cache == 0) /* no caching */
2246
        bdrv_flags |= BDRV_O_NOCACHE;
2247
    else if (cache == 2) /* write-back */
2248
        bdrv_flags |= BDRV_O_CACHE_WB;
2249

    
2250
    if (aio == 1) {
2251
        bdrv_flags |= BDRV_O_NATIVE_AIO;
2252
    } else {
2253
        bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2254
    }
2255

    
2256
    if (ro == 1) {
2257
        if (type != IF_SCSI && type != IF_VIRTIO && type != IF_FLOPPY) {
2258
            fprintf(stderr, "qemu: readonly flag not supported for drive with this interface\n");
2259
            return NULL;
2260
        }
2261
    }
2262
    /* 
2263
     * cdrom is read-only. Set it now, after above interface checking
2264
     * since readonly attribute not explicitly required, so no error.
2265
     */
2266
    if (media == MEDIA_CDROM) {
2267
        ro = 1;
2268
    }
2269
    bdrv_flags |= ro ? 0 : BDRV_O_RDWR;
2270

    
2271
    if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2272
        fprintf(stderr, "qemu: could not open disk image %s: %s\n",
2273
                        file, strerror(errno));
2274
        return NULL;
2275
    }
2276

    
2277
    if (bdrv_key_required(dinfo->bdrv))
2278
        autostart = 0;
2279
    *fatal_error = 0;
2280
    return dinfo;
2281
}
2282

    
2283
static int drive_init_func(QemuOpts *opts, void *opaque)
2284
{
2285
    QEMUMachine *machine = opaque;
2286
    int fatal_error = 0;
2287

    
2288
    if (drive_init(opts, machine, &fatal_error) == NULL) {
2289
        if (fatal_error)
2290
            return 1;
2291
    }
2292
    return 0;
2293
}
2294

    
2295
static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2296
{
2297
    if (NULL == qemu_opt_get(opts, "snapshot")) {
2298
        qemu_opt_set(opts, "snapshot", "on");
2299
    }
2300
    return 0;
2301
}
2302

    
2303
void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2304
{
2305
    boot_set_handler = func;
2306
    boot_set_opaque = opaque;
2307
}
2308

    
2309
int qemu_boot_set(const char *boot_devices)
2310
{
2311
    if (!boot_set_handler) {
2312
        return -EINVAL;
2313
    }
2314
    return boot_set_handler(boot_set_opaque, boot_devices);
2315
}
2316

    
2317
static int parse_bootdevices(char *devices)
2318
{
2319
    /* We just do some generic consistency checks */
2320
    const char *p;
2321
    int bitmap = 0;
2322

    
2323
    for (p = devices; *p != '\0'; p++) {
2324
        /* Allowed boot devices are:
2325
         * a-b: floppy disk drives
2326
         * c-f: IDE disk drives
2327
         * g-m: machine implementation dependant drives
2328
         * n-p: network devices
2329
         * It's up to each machine implementation to check if the given boot
2330
         * devices match the actual hardware implementation and firmware
2331
         * features.
2332
         */
2333
        if (*p < 'a' || *p > 'p') {
2334
            fprintf(stderr, "Invalid boot device '%c'\n", *p);
2335
            exit(1);
2336
        }
2337
        if (bitmap & (1 << (*p - 'a'))) {
2338
            fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2339
            exit(1);
2340
        }
2341
        bitmap |= 1 << (*p - 'a');
2342
    }
2343
    return bitmap;
2344
}
2345

    
2346
static void restore_boot_devices(void *opaque)
2347
{
2348
    char *standard_boot_devices = opaque;
2349

    
2350
    qemu_boot_set(standard_boot_devices);
2351

    
2352
    qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2353
    qemu_free(standard_boot_devices);
2354
}
2355

    
2356
static void numa_add(const char *optarg)
2357
{
2358
    char option[128];
2359
    char *endptr;
2360
    unsigned long long value, endvalue;
2361
    int nodenr;
2362

    
2363
    optarg = get_opt_name(option, 128, optarg, ',') + 1;
2364
    if (!strcmp(option, "node")) {
2365
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2366
            nodenr = nb_numa_nodes;
2367
        } else {
2368
            nodenr = strtoull(option, NULL, 10);
2369
        }
2370

    
2371
        if (get_param_value(option, 128, "mem", optarg) == 0) {
2372
            node_mem[nodenr] = 0;
2373
        } else {
2374
            value = strtoull(option, &endptr, 0);
2375
            switch (*endptr) {
2376
            case 0: case 'M': case 'm':
2377
                value <<= 20;
2378
                break;
2379
            case 'G': case 'g':
2380
                value <<= 30;
2381
                break;
2382
            }
2383
            node_mem[nodenr] = value;
2384
        }
2385
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
2386
            node_cpumask[nodenr] = 0;
2387
        } else {
2388
            value = strtoull(option, &endptr, 10);
2389
            if (value >= 64) {
2390
                value = 63;
2391
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2392
            } else {
2393
                if (*endptr == '-') {
2394
                    endvalue = strtoull(endptr+1, &endptr, 10);
2395
                    if (endvalue >= 63) {
2396
                        endvalue = 62;
2397
                        fprintf(stderr,
2398
                            "only 63 CPUs in NUMA mode supported.\n");
2399
                    }
2400
                    value = (2ULL << endvalue) - (1ULL << value);
2401
                } else {
2402
                    value = 1ULL << value;
2403
                }
2404
            }
2405
            node_cpumask[nodenr] = value;
2406
        }
2407
        nb_numa_nodes++;
2408
    }
2409
    return;
2410
}
2411

    
2412
static void smp_parse(const char *optarg)
2413
{
2414
    int smp, sockets = 0, threads = 0, cores = 0;
2415
    char *endptr;
2416
    char option[128];
2417

    
2418
    smp = strtoul(optarg, &endptr, 10);
2419
    if (endptr != optarg) {
2420
        if (*endptr == ',') {
2421
            endptr++;
2422
        }
2423
    }
2424
    if (get_param_value(option, 128, "sockets", endptr) != 0)
2425
        sockets = strtoull(option, NULL, 10);
2426
    if (get_param_value(option, 128, "cores", endptr) != 0)
2427
        cores = strtoull(option, NULL, 10);
2428
    if (get_param_value(option, 128, "threads", endptr) != 0)
2429
        threads = strtoull(option, NULL, 10);
2430
    if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2431
        max_cpus = strtoull(option, NULL, 10);
2432

    
2433
    /* compute missing values, prefer sockets over cores over threads */
2434
    if (smp == 0 || sockets == 0) {
2435
        sockets = sockets > 0 ? sockets : 1;
2436
        cores = cores > 0 ? cores : 1;
2437
        threads = threads > 0 ? threads : 1;
2438
        if (smp == 0) {
2439
            smp = cores * threads * sockets;
2440
        }
2441
    } else {
2442
        if (cores == 0) {
2443
            threads = threads > 0 ? threads : 1;
2444
            cores = smp / (sockets * threads);
2445
        } else {
2446
            if (sockets) {
2447
                threads = smp / (cores * sockets);
2448
            }
2449
        }
2450
    }
2451
    smp_cpus = smp;
2452
    smp_cores = cores > 0 ? cores : 1;
2453
    smp_threads = threads > 0 ? threads : 1;
2454
    if (max_cpus == 0)
2455
        max_cpus = smp_cpus;
2456
}
2457

    
2458
/***********************************************************/
2459
/* USB devices */
2460

    
2461
static int usb_device_add(const char *devname, int is_hotplug)
2462
{
2463
    const char *p;
2464
    USBDevice *dev = NULL;
2465

    
2466
    if (!usb_enabled)
2467
        return -1;
2468

    
2469
    /* drivers with .usbdevice_name entry in USBDeviceInfo */
2470
    dev = usbdevice_create(devname);
2471
    if (dev)
2472
        goto done;
2473

    
2474
    /* the other ones */
2475
    if (strstart(devname, "host:", &p)) {
2476
        dev = usb_host_device_open(p);
2477
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2478
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2479
                        bt_new_hci(qemu_find_bt_vlan(0)));
2480
    } else {
2481
        return -1;
2482
    }
2483
    if (!dev)
2484
        return -1;
2485

    
2486
done:
2487
    return 0;
2488
}
2489

    
2490
static int usb_device_del(const char *devname)
2491
{
2492
    int bus_num, addr;
2493
    const char *p;
2494

    
2495
    if (strstart(devname, "host:", &p))
2496
        return usb_host_device_close(p);
2497

    
2498
    if (!usb_enabled)
2499
        return -1;
2500

    
2501
    p = strchr(devname, '.');
2502
    if (!p)
2503
        return -1;
2504
    bus_num = strtoul(devname, NULL, 0);
2505
    addr = strtoul(p + 1, NULL, 0);
2506

    
2507
    return usb_device_delete_addr(bus_num, addr);
2508
}
2509

    
2510
static int usb_parse(const char *cmdline)
2511
{
2512
    int r;
2513
    r = usb_device_add(cmdline, 0);
2514
    if (r < 0) {
2515
        fprintf(stderr, "qemu: could not add USB device '%s'\n", cmdline);
2516
    }
2517
    return r;
2518
}
2519

    
2520
void do_usb_add(Monitor *mon, const QDict *qdict)
2521
{
2522
    const char *devname = qdict_get_str(qdict, "devname");
2523
    if (usb_device_add(devname, 1) < 0) {
2524
        qemu_error("could not add USB device '%s'\n", devname);
2525
    }
2526
}
2527

    
2528
void do_usb_del(Monitor *mon, const QDict *qdict)
2529
{
2530
    const char *devname = qdict_get_str(qdict, "devname");
2531
    if (usb_device_del(devname) < 0) {
2532
        qemu_error("could not delete USB device '%s'\n", devname);
2533
    }
2534
}
2535

    
2536
/***********************************************************/
2537
/* PCMCIA/Cardbus */
2538

    
2539
static struct pcmcia_socket_entry_s {
2540
    PCMCIASocket *socket;
2541
    struct pcmcia_socket_entry_s *next;
2542
} *pcmcia_sockets = 0;
2543

    
2544
void pcmcia_socket_register(PCMCIASocket *socket)
2545
{
2546
    struct pcmcia_socket_entry_s *entry;
2547

    
2548
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2549
    entry->socket = socket;
2550
    entry->next = pcmcia_sockets;
2551
    pcmcia_sockets = entry;
2552
}
2553

    
2554
void pcmcia_socket_unregister(PCMCIASocket *socket)
2555
{
2556
    struct pcmcia_socket_entry_s *entry, **ptr;
2557

    
2558
    ptr = &pcmcia_sockets;
2559
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2560
        if (entry->socket == socket) {
2561
            *ptr = entry->next;
2562
            qemu_free(entry);
2563
        }
2564
}
2565

    
2566
void pcmcia_info(Monitor *mon)
2567
{
2568
    struct pcmcia_socket_entry_s *iter;
2569

    
2570
    if (!pcmcia_sockets)
2571
        monitor_printf(mon, "No PCMCIA sockets\n");
2572

    
2573
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2574
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2575
                       iter->socket->attached ? iter->socket->card_string :
2576
                       "Empty");
2577
}
2578

    
2579
/***********************************************************/
2580
/* register display */
2581

    
2582
struct DisplayAllocator default_allocator = {
2583
    defaultallocator_create_displaysurface,
2584
    defaultallocator_resize_displaysurface,
2585
    defaultallocator_free_displaysurface
2586
};
2587

    
2588
/* dumb display */
2589

    
2590
static void dumb_display_init(void)
2591
{
2592
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2593
    ds->allocator = &default_allocator;
2594
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
2595
    register_displaystate(ds);
2596
}
2597

    
2598
void register_displaystate(DisplayState *ds)
2599
{
2600
    DisplayState **s;
2601
    s = &display_state;
2602
    while (*s != NULL)
2603
        s = &(*s)->next;
2604
    ds->next = NULL;
2605
    *s = ds;
2606
}
2607

    
2608
DisplayState *get_displaystate(void)
2609
{
2610
    if (!display_state) {
2611
        dumb_display_init();
2612
    }
2613
    return display_state;
2614
}
2615

    
2616
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2617
{
2618
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
2619
    return ds->allocator;
2620
}
2621

    
2622
/***********************************************************/
2623
/* I/O handling */
2624

    
2625
typedef struct IOHandlerRecord {
2626
    int fd;
2627
    IOCanRWHandler *fd_read_poll;
2628
    IOHandler *fd_read;
2629
    IOHandler *fd_write;
2630
    int deleted;
2631
    void *opaque;
2632
    /* temporary data */
2633
    struct pollfd *ufd;
2634
    struct IOHandlerRecord *next;
2635
} IOHandlerRecord;
2636

    
2637
static IOHandlerRecord *first_io_handler;
2638

    
2639
/* XXX: fd_read_poll should be suppressed, but an API change is
2640
   necessary in the character devices to suppress fd_can_read(). */
2641
int qemu_set_fd_handler2(int fd,
2642
                         IOCanRWHandler *fd_read_poll,
2643
                         IOHandler *fd_read,
2644
                         IOHandler *fd_write,
2645
                         void *opaque)
2646
{
2647
    IOHandlerRecord **pioh, *ioh;
2648

    
2649
    if (!fd_read && !fd_write) {
2650
        pioh = &first_io_handler;
2651
        for(;;) {
2652
            ioh = *pioh;
2653
            if (ioh == NULL)
2654
                break;
2655
            if (ioh->fd == fd) {
2656
                ioh->deleted = 1;
2657
                break;
2658
            }
2659
            pioh = &ioh->next;
2660
        }
2661
    } else {
2662
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2663
            if (ioh->fd == fd)
2664
                goto found;
2665
        }
2666
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2667
        ioh->next = first_io_handler;
2668
        first_io_handler = ioh;
2669
    found:
2670
        ioh->fd = fd;
2671
        ioh->fd_read_poll = fd_read_poll;
2672
        ioh->fd_read = fd_read;
2673
        ioh->fd_write = fd_write;
2674
        ioh->opaque = opaque;
2675
        ioh->deleted = 0;
2676
    }
2677
    return 0;
2678
}
2679

    
2680
int qemu_set_fd_handler(int fd,
2681
                        IOHandler *fd_read,
2682
                        IOHandler *fd_write,
2683
                        void *opaque)
2684
{
2685
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2686
}
2687

    
2688
#ifdef _WIN32
2689
/***********************************************************/
2690
/* Polling handling */
2691

    
2692
typedef struct PollingEntry {
2693
    PollingFunc *func;
2694
    void *opaque;
2695
    struct PollingEntry *next;
2696
} PollingEntry;
2697

    
2698
static PollingEntry *first_polling_entry;
2699

    
2700
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2701
{
2702
    PollingEntry **ppe, *pe;
2703
    pe = qemu_mallocz(sizeof(PollingEntry));
2704
    pe->func = func;
2705
    pe->opaque = opaque;
2706
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2707
    *ppe = pe;
2708
    return 0;
2709
}
2710

    
2711
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2712
{
2713
    PollingEntry **ppe, *pe;
2714
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2715
        pe = *ppe;
2716
        if (pe->func == func && pe->opaque == opaque) {
2717
            *ppe = pe->next;
2718
            qemu_free(pe);
2719
            break;
2720
        }
2721
    }
2722
}
2723

    
2724
/***********************************************************/
2725
/* Wait objects support */
2726
typedef struct WaitObjects {
2727
    int num;
2728
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2729
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2730
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2731
} WaitObjects;
2732

    
2733
static WaitObjects wait_objects = {0};
2734

    
2735
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2736
{
2737
    WaitObjects *w = &wait_objects;
2738

    
2739
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2740
        return -1;
2741
    w->events[w->num] = handle;
2742
    w->func[w->num] = func;
2743
    w->opaque[w->num] = opaque;
2744
    w->num++;
2745
    return 0;
2746
}
2747

    
2748
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2749
{
2750
    int i, found;
2751
    WaitObjects *w = &wait_objects;
2752

    
2753
    found = 0;
2754
    for (i = 0; i < w->num; i++) {
2755
        if (w->events[i] == handle)
2756
            found = 1;
2757
        if (found) {
2758
            w->events[i] = w->events[i + 1];
2759
            w->func[i] = w->func[i + 1];
2760
            w->opaque[i] = w->opaque[i + 1];
2761
        }
2762
    }
2763
    if (found)
2764
        w->num--;
2765
}
2766
#endif
2767

    
2768
/***********************************************************/
2769
/* ram save/restore */
2770

    
2771
#define RAM_SAVE_FLAG_FULL        0x01 /* Obsolete, not used anymore */
2772
#define RAM_SAVE_FLAG_COMPRESS        0x02
2773
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
2774
#define RAM_SAVE_FLAG_PAGE        0x08
2775
#define RAM_SAVE_FLAG_EOS        0x10
2776

    
2777
static int is_dup_page(uint8_t *page, uint8_t ch)
2778
{
2779
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2780
    uint32_t *array = (uint32_t *)page;
2781
    int i;
2782

    
2783
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2784
        if (array[i] != val)
2785
            return 0;
2786
    }
2787

    
2788
    return 1;
2789
}
2790

    
2791
static int ram_save_block(QEMUFile *f)
2792
{
2793
    static ram_addr_t current_addr = 0;
2794
    ram_addr_t saved_addr = current_addr;
2795
    ram_addr_t addr = 0;
2796
    int found = 0;
2797

    
2798
    while (addr < last_ram_offset) {
2799
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2800
            uint8_t *p;
2801

    
2802
            cpu_physical_memory_reset_dirty(current_addr,
2803
                                            current_addr + TARGET_PAGE_SIZE,
2804
                                            MIGRATION_DIRTY_FLAG);
2805

    
2806
            p = qemu_get_ram_ptr(current_addr);
2807

    
2808
            if (is_dup_page(p, *p)) {
2809
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2810
                qemu_put_byte(f, *p);
2811
            } else {
2812
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2813
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2814
            }
2815

    
2816
            found = 1;
2817
            break;
2818
        }
2819
        addr += TARGET_PAGE_SIZE;
2820
        current_addr = (saved_addr + addr) % last_ram_offset;
2821
    }
2822

    
2823
    return found;
2824
}
2825

    
2826
static uint64_t bytes_transferred;
2827

    
2828
static ram_addr_t ram_save_remaining(void)
2829
{
2830
    ram_addr_t addr;
2831
    ram_addr_t count = 0;
2832

    
2833
    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2834
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2835
            count++;
2836
    }
2837

    
2838
    return count;
2839
}
2840

    
2841
uint64_t ram_bytes_remaining(void)
2842
{
2843
    return ram_save_remaining() * TARGET_PAGE_SIZE;
2844
}
2845

    
2846
uint64_t ram_bytes_transferred(void)
2847
{
2848
    return bytes_transferred;
2849
}
2850

    
2851
uint64_t ram_bytes_total(void)
2852
{
2853
    return last_ram_offset;
2854
}
2855

    
2856
static int ram_save_live(Monitor *mon, QEMUFile *f, int stage, void *opaque)
2857
{
2858
    ram_addr_t addr;
2859
    uint64_t bytes_transferred_last;
2860
    double bwidth = 0;
2861
    uint64_t expected_time = 0;
2862

    
2863
    if (stage < 0) {
2864
        cpu_physical_memory_set_dirty_tracking(0);
2865
        return 0;
2866
    }
2867

    
2868
    if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2869
        qemu_file_set_error(f);
2870
        return 0;
2871
    }
2872

    
2873
    if (stage == 1) {
2874
        bytes_transferred = 0;
2875

    
2876
        /* Make sure all dirty bits are set */
2877
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2878
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2879
                cpu_physical_memory_set_dirty(addr);
2880
        }
2881

    
2882
        /* Enable dirty memory tracking */
2883
        cpu_physical_memory_set_dirty_tracking(1);
2884

    
2885
        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2886
    }
2887

    
2888
    bytes_transferred_last = bytes_transferred;
2889
    bwidth = qemu_get_clock_ns(rt_clock);
2890

    
2891
    while (!qemu_file_rate_limit(f)) {
2892
        int ret;
2893

    
2894
        ret = ram_save_block(f);
2895
        bytes_transferred += ret * TARGET_PAGE_SIZE;
2896
        if (ret == 0) /* no more blocks */
2897
            break;
2898
    }
2899

    
2900
    bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
2901
    bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
2902

    
2903
    /* if we haven't transferred anything this round, force expected_time to a
2904
     * a very high value, but without crashing */
2905
    if (bwidth == 0)
2906
        bwidth = 0.000001;
2907

    
2908
    /* try transferring iterative blocks of memory */
2909
    if (stage == 3) {
2910
        /* flush all remaining blocks regardless of rate limiting */
2911
        while (ram_save_block(f) != 0) {
2912
            bytes_transferred += TARGET_PAGE_SIZE;
2913
        }
2914
        cpu_physical_memory_set_dirty_tracking(0);
2915
    }
2916

    
2917
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2918

    
2919
    expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
2920

    
2921
    return (stage == 2) && (expected_time <= migrate_max_downtime());
2922
}
2923

    
2924
static int ram_load(QEMUFile *f, void *opaque, int version_id)
2925
{
2926
    ram_addr_t addr;
2927
    int flags;
2928

    
2929
    if (version_id != 3)
2930
        return -EINVAL;
2931

    
2932
    do {
2933
        addr = qemu_get_be64(f);
2934

    
2935
        flags = addr & ~TARGET_PAGE_MASK;
2936
        addr &= TARGET_PAGE_MASK;
2937

    
2938
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
2939
            if (addr != last_ram_offset)
2940
                return -EINVAL;
2941
        }
2942

    
2943
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
2944
            uint8_t ch = qemu_get_byte(f);
2945
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
2946
#ifndef _WIN32
2947
            if (ch == 0 &&
2948
                (!kvm_enabled() || kvm_has_sync_mmu())) {
2949
                madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
2950
            }
2951
#endif
2952
        } else if (flags & RAM_SAVE_FLAG_PAGE) {
2953
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
2954
        }
2955
        if (qemu_file_has_error(f)) {
2956
            return -EIO;
2957
        }
2958
    } while (!(flags & RAM_SAVE_FLAG_EOS));
2959

    
2960
    return 0;
2961
}
2962

    
2963
void qemu_service_io(void)
2964
{
2965
    qemu_notify_event();
2966
}
2967

    
2968
/***********************************************************/
2969
/* machine registration */
2970

    
2971
static QEMUMachine *first_machine = NULL;
2972
QEMUMachine *current_machine = NULL;
2973

    
2974
int qemu_register_machine(QEMUMachine *m)
2975
{
2976
    QEMUMachine **pm;
2977
    pm = &first_machine;
2978
    while (*pm != NULL)
2979
        pm = &(*pm)->next;
2980
    m->next = NULL;
2981
    *pm = m;
2982
    return 0;
2983
}
2984

    
2985
static QEMUMachine *find_machine(const char *name)
2986
{
2987
    QEMUMachine *m;
2988

    
2989
    for(m = first_machine; m != NULL; m = m->next) {
2990
        if (!strcmp(m->name, name))
2991
            return m;
2992
        if (m->alias && !strcmp(m->alias, name))
2993
            return m;
2994
    }
2995
    return NULL;
2996
}
2997

    
2998
static QEMUMachine *find_default_machine(void)
2999
{
3000
    QEMUMachine *m;
3001

    
3002
    for(m = first_machine; m != NULL; m = m->next) {
3003
        if (m->is_default) {
3004
            return m;
3005
        }
3006
    }
3007
    return NULL;
3008
}
3009

    
3010
/***********************************************************/
3011
/* main execution loop */
3012

    
3013
static void gui_update(void *opaque)
3014
{
3015
    uint64_t interval = GUI_REFRESH_INTERVAL;
3016
    DisplayState *ds = opaque;
3017
    DisplayChangeListener *dcl = ds->listeners;
3018

    
3019
    qemu_flush_coalesced_mmio_buffer();
3020
    dpy_refresh(ds);
3021

    
3022
    while (dcl != NULL) {
3023
        if (dcl->gui_timer_interval &&
3024
            dcl->gui_timer_interval < interval)
3025
            interval = dcl->gui_timer_interval;
3026
        dcl = dcl->next;
3027
    }
3028
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3029
}
3030

    
3031
static void nographic_update(void *opaque)
3032
{
3033
    uint64_t interval = GUI_REFRESH_INTERVAL;
3034

    
3035
    qemu_flush_coalesced_mmio_buffer();
3036
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3037
}
3038

    
3039
struct vm_change_state_entry {
3040
    VMChangeStateHandler *cb;
3041
    void *opaque;
3042
    QLIST_ENTRY (vm_change_state_entry) entries;
3043
};
3044

    
3045
static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3046

    
3047
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3048
                                                     void *opaque)
3049
{
3050
    VMChangeStateEntry *e;
3051

    
3052
    e = qemu_mallocz(sizeof (*e));
3053

    
3054
    e->cb = cb;
3055
    e->opaque = opaque;
3056
    QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3057
    return e;
3058
}
3059

    
3060
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3061
{
3062
    QLIST_REMOVE (e, entries);
3063
    qemu_free (e);
3064
}
3065

    
3066
static void vm_state_notify(int running, int reason)
3067
{
3068
    VMChangeStateEntry *e;
3069

    
3070
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3071
        e->cb(e->opaque, running, reason);
3072
    }
3073
}
3074

    
3075
static void resume_all_vcpus(void);
3076
static void pause_all_vcpus(void);
3077

    
3078
void vm_start(void)
3079
{
3080
    if (!vm_running) {
3081
        cpu_enable_ticks();
3082
        vm_running = 1;
3083
        vm_state_notify(1, 0);
3084
        qemu_rearm_alarm_timer(alarm_timer);
3085
        resume_all_vcpus();
3086
    }
3087
}
3088

    
3089
/* reset/shutdown handler */
3090

    
3091
typedef struct QEMUResetEntry {
3092
    QTAILQ_ENTRY(QEMUResetEntry) entry;
3093
    QEMUResetHandler *func;
3094
    void *opaque;
3095
} QEMUResetEntry;
3096

    
3097
static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3098
    QTAILQ_HEAD_INITIALIZER(reset_handlers);
3099
static int reset_requested;
3100
static int shutdown_requested;
3101
static int powerdown_requested;
3102
static int debug_requested;
3103
static int vmstop_requested;
3104

    
3105
int qemu_shutdown_requested(void)
3106
{
3107
    int r = shutdown_requested;
3108
    shutdown_requested = 0;
3109
    return r;
3110
}
3111

    
3112
int qemu_reset_requested(void)
3113
{
3114
    int r = reset_requested;
3115
    reset_requested = 0;
3116
    return r;
3117
}
3118

    
3119
int qemu_powerdown_requested(void)
3120
{
3121
    int r = powerdown_requested;
3122
    powerdown_requested = 0;
3123
    return r;
3124
}
3125

    
3126
static int qemu_debug_requested(void)
3127
{
3128
    int r = debug_requested;
3129
    debug_requested = 0;
3130
    return r;
3131
}
3132

    
3133
static int qemu_vmstop_requested(void)
3134
{
3135
    int r = vmstop_requested;
3136
    vmstop_requested = 0;
3137
    return r;
3138
}
3139

    
3140
static void do_vm_stop(int reason)
3141
{
3142
    if (vm_running) {
3143
        cpu_disable_ticks();
3144
        vm_running = 0;
3145
        pause_all_vcpus();
3146
        vm_state_notify(0, reason);
3147
    }
3148
}
3149

    
3150
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3151
{
3152
    QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3153

    
3154
    re->func = func;
3155
    re->opaque = opaque;
3156
    QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3157
}
3158

    
3159
void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3160
{
3161
    QEMUResetEntry *re;
3162

    
3163
    QTAILQ_FOREACH(re, &reset_handlers, entry) {
3164
        if (re->func == func && re->opaque == opaque) {
3165
            QTAILQ_REMOVE(&reset_handlers, re, entry);
3166
            qemu_free(re);
3167
            return;
3168
        }
3169
    }
3170
}
3171

    
3172
void qemu_system_reset(void)
3173
{
3174
    QEMUResetEntry *re, *nre;
3175

    
3176
    /* reset all devices */
3177
    QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3178
        re->func(re->opaque);
3179
    }
3180
}
3181

    
3182
void qemu_system_reset_request(void)
3183
{
3184
    if (no_reboot) {
3185
        shutdown_requested = 1;
3186
    } else {
3187
        reset_requested = 1;
3188
    }
3189
    qemu_notify_event();
3190
}
3191

    
3192
void qemu_system_shutdown_request(void)
3193
{
3194
    shutdown_requested = 1;
3195
    qemu_notify_event();
3196
}
3197

    
3198
void qemu_system_powerdown_request(void)
3199
{
3200
    powerdown_requested = 1;
3201
    qemu_notify_event();
3202
}
3203

    
3204
#ifdef CONFIG_IOTHREAD
3205
static void qemu_system_vmstop_request(int reason)
3206
{
3207
    vmstop_requested = reason;
3208
    qemu_notify_event();
3209
}
3210
#endif
3211

    
3212
#ifndef _WIN32
3213
static int io_thread_fd = -1;
3214

    
3215
static void qemu_event_increment(void)
3216
{
3217
    static const char byte = 0;
3218
    ssize_t ret;
3219

    
3220
    if (io_thread_fd == -1)
3221
        return;
3222

    
3223
    do {
3224
        ret = write(io_thread_fd, &byte, sizeof(byte));
3225
    } while (ret < 0 && errno == EINTR);
3226

    
3227
    /* EAGAIN is fine, a read must be pending.  */
3228
    if (ret < 0 && errno != EAGAIN) {
3229
        fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
3230
                strerror(errno));
3231
        exit (1);
3232
    }
3233
}
3234

    
3235
static void qemu_event_read(void *opaque)
3236
{
3237
    int fd = (unsigned long)opaque;
3238
    ssize_t len;
3239
    char buffer[512];
3240

    
3241
    /* Drain the notify pipe */
3242
    do {
3243
        len = read(fd, buffer, sizeof(buffer));
3244
    } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
3245
}
3246

    
3247
static int qemu_event_init(void)
3248
{
3249
    int err;
3250
    int fds[2];
3251

    
3252
    err = qemu_pipe(fds);
3253
    if (err == -1)
3254
        return -errno;
3255

    
3256
    err = fcntl_setfl(fds[0], O_NONBLOCK);
3257
    if (err < 0)
3258
        goto fail;
3259

    
3260
    err = fcntl_setfl(fds[1], O_NONBLOCK);
3261
    if (err < 0)
3262
        goto fail;
3263

    
3264
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3265
                         (void *)(unsigned long)fds[0]);
3266

    
3267
    io_thread_fd = fds[1];
3268
    return 0;
3269

    
3270
fail:
3271
    close(fds[0]);
3272
    close(fds[1]);
3273
    return err;
3274
}
3275
#else
3276
HANDLE qemu_event_handle;
3277

    
3278
static void dummy_event_handler(void *opaque)
3279
{
3280
}
3281

    
3282
static int qemu_event_init(void)
3283
{
3284
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3285
    if (!qemu_event_handle) {
3286
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
3287
        return -1;
3288
    }
3289
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3290
    return 0;
3291
}
3292

    
3293
static void qemu_event_increment(void)
3294
{
3295
    if (!SetEvent(qemu_event_handle)) {
3296
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
3297
                GetLastError());
3298
        exit (1);
3299
    }
3300
}
3301
#endif
3302

    
3303
static int cpu_can_run(CPUState *env)
3304
{
3305
    if (env->stop)
3306
        return 0;
3307
    if (env->stopped)
3308
        return 0;
3309
    if (!vm_running)
3310
        return 0;
3311
    return 1;
3312
}
3313

    
3314
#ifndef CONFIG_IOTHREAD
3315
static int qemu_init_main_loop(void)
3316
{
3317
    return qemu_event_init();
3318
}
3319

    
3320
void qemu_init_vcpu(void *_env)
3321
{
3322
    CPUState *env = _env;
3323

    
3324
    env->nr_cores = smp_cores;
3325
    env->nr_threads = smp_threads;
3326
    if (kvm_enabled())
3327
        kvm_init_vcpu(env);
3328
    return;
3329
}
3330

    
3331
int qemu_cpu_self(void *env)
3332
{
3333
    return 1;
3334
}
3335

    
3336
static void resume_all_vcpus(void)
3337
{
3338
}
3339

    
3340
static void pause_all_vcpus(void)
3341
{
3342
}
3343

    
3344
void qemu_cpu_kick(void *env)
3345
{
3346
    return;
3347
}
3348

    
3349
void qemu_notify_event(void)
3350
{
3351
    CPUState *env = cpu_single_env;
3352

    
3353
    if (env) {
3354
        cpu_exit(env);
3355
    }
3356
}
3357

    
3358
void qemu_mutex_lock_iothread(void) {}
3359
void qemu_mutex_unlock_iothread(void) {}
3360

    
3361
void vm_stop(int reason)
3362
{
3363
    do_vm_stop(reason);
3364
}
3365

    
3366
#else /* CONFIG_IOTHREAD */
3367

    
3368
#include "qemu-thread.h"
3369

    
3370
QemuMutex qemu_global_mutex;
3371
static QemuMutex qemu_fair_mutex;
3372

    
3373
static QemuThread io_thread;
3374

    
3375
static QemuThread *tcg_cpu_thread;
3376
static QemuCond *tcg_halt_cond;
3377

    
3378
static int qemu_system_ready;
3379
/* cpu creation */
3380
static QemuCond qemu_cpu_cond;
3381
/* system init */
3382
static QemuCond qemu_system_cond;
3383
static QemuCond qemu_pause_cond;
3384

    
3385
static void block_io_signals(void);
3386
static void unblock_io_signals(void);
3387
static int tcg_has_work(void);
3388

    
3389
static int qemu_init_main_loop(void)
3390
{
3391
    int ret;
3392

    
3393
    ret = qemu_event_init();
3394
    if (ret)
3395
        return ret;
3396

    
3397
    qemu_cond_init(&qemu_pause_cond);
3398
    qemu_mutex_init(&qemu_fair_mutex);
3399
    qemu_mutex_init(&qemu_global_mutex);
3400
    qemu_mutex_lock(&qemu_global_mutex);
3401

    
3402
    unblock_io_signals();
3403
    qemu_thread_self(&io_thread);
3404

    
3405
    return 0;
3406
}
3407

    
3408
static void qemu_wait_io_event(CPUState *env)
3409
{
3410
    while (!tcg_has_work())
3411
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3412

    
3413
    qemu_mutex_unlock(&qemu_global_mutex);
3414

    
3415
    /*
3416
     * Users of qemu_global_mutex can be starved, having no chance
3417
     * to acquire it since this path will get to it first.
3418
     * So use another lock to provide fairness.
3419
     */
3420
    qemu_mutex_lock(&qemu_fair_mutex);
3421
    qemu_mutex_unlock(&qemu_fair_mutex);
3422

    
3423
    qemu_mutex_lock(&qemu_global_mutex);
3424
    if (env->stop) {
3425
        env->stop = 0;
3426
        env->stopped = 1;
3427
        qemu_cond_signal(&qemu_pause_cond);
3428
    }
3429
}
3430

    
3431
static int qemu_cpu_exec(CPUState *env);
3432

    
3433
static void *kvm_cpu_thread_fn(void *arg)
3434
{
3435
    CPUState *env = arg;
3436

    
3437
    block_io_signals();
3438
    qemu_thread_self(env->thread);
3439
    if (kvm_enabled())
3440
        kvm_init_vcpu(env);
3441

    
3442
    /* signal CPU creation */
3443
    qemu_mutex_lock(&qemu_global_mutex);
3444
    env->created = 1;
3445
    qemu_cond_signal(&qemu_cpu_cond);
3446

    
3447
    /* and wait for machine initialization */
3448
    while (!qemu_system_ready)
3449
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3450

    
3451
    while (1) {
3452
        if (cpu_can_run(env))
3453
            qemu_cpu_exec(env);
3454
        qemu_wait_io_event(env);
3455
    }
3456

    
3457
    return NULL;
3458
}
3459

    
3460
static void tcg_cpu_exec(void);
3461

    
3462
static void *tcg_cpu_thread_fn(void *arg)
3463
{
3464
    CPUState *env = arg;
3465

    
3466
    block_io_signals();
3467
    qemu_thread_self(env->thread);
3468

    
3469
    /* signal CPU creation */
3470
    qemu_mutex_lock(&qemu_global_mutex);
3471
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3472
        env->created = 1;
3473
    qemu_cond_signal(&qemu_cpu_cond);
3474

    
3475
    /* and wait for machine initialization */
3476
    while (!qemu_system_ready)
3477
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3478

    
3479
    while (1) {
3480
        tcg_cpu_exec();
3481
        qemu_wait_io_event(cur_cpu);
3482
    }
3483

    
3484
    return NULL;
3485
}
3486

    
3487
void qemu_cpu_kick(void *_env)
3488
{
3489
    CPUState *env = _env;
3490
    qemu_cond_broadcast(env->halt_cond);
3491
    if (kvm_enabled())
3492
        qemu_thread_signal(env->thread, SIGUSR1);
3493
}
3494

    
3495
int qemu_cpu_self(void *_env)
3496
{
3497
    CPUState *env = _env;
3498
    QemuThread this;
3499
 
3500
    qemu_thread_self(&this);
3501
 
3502
    return qemu_thread_equal(&this, env->thread);
3503
}
3504

    
3505
static void cpu_signal(int sig)
3506
{
3507
    if (cpu_single_env)
3508
        cpu_exit(cpu_single_env);
3509
}
3510

    
3511
static void block_io_signals(void)
3512
{
3513
    sigset_t set;
3514
    struct sigaction sigact;
3515

    
3516
    sigemptyset(&set);
3517
    sigaddset(&set, SIGUSR2);
3518
    sigaddset(&set, SIGIO);
3519
    sigaddset(&set, SIGALRM);
3520
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3521

    
3522
    sigemptyset(&set);
3523
    sigaddset(&set, SIGUSR1);
3524
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3525

    
3526
    memset(&sigact, 0, sizeof(sigact));
3527
    sigact.sa_handler = cpu_signal;
3528
    sigaction(SIGUSR1, &sigact, NULL);
3529
}
3530

    
3531
static void unblock_io_signals(void)
3532
{
3533
    sigset_t set;
3534

    
3535
    sigemptyset(&set);
3536
    sigaddset(&set, SIGUSR2);
3537
    sigaddset(&set, SIGIO);
3538
    sigaddset(&set, SIGALRM);
3539
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3540

    
3541
    sigemptyset(&set);
3542
    sigaddset(&set, SIGUSR1);
3543
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3544
}
3545

    
3546
static void qemu_signal_lock(unsigned int msecs)
3547
{
3548
    qemu_mutex_lock(&qemu_fair_mutex);
3549

    
3550
    while (qemu_mutex_trylock(&qemu_global_mutex)) {
3551
        qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3552
        if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3553
            break;
3554
    }
3555
    qemu_mutex_unlock(&qemu_fair_mutex);
3556
}
3557

    
3558
void qemu_mutex_lock_iothread(void)
3559
{
3560
    if (kvm_enabled()) {
3561
        qemu_mutex_lock(&qemu_fair_mutex);
3562
        qemu_mutex_lock(&qemu_global_mutex);
3563
        qemu_mutex_unlock(&qemu_fair_mutex);
3564
    } else
3565
        qemu_signal_lock(100);
3566
}
3567

    
3568
void qemu_mutex_unlock_iothread(void)
3569
{
3570
    qemu_mutex_unlock(&qemu_global_mutex);
3571
}
3572

    
3573
static int all_vcpus_paused(void)
3574
{
3575
    CPUState *penv = first_cpu;
3576

    
3577
    while (penv) {
3578
        if (!penv->stopped)
3579
            return 0;
3580
        penv = (CPUState *)penv->next_cpu;
3581
    }
3582

    
3583
    return 1;
3584
}
3585

    
3586
static void pause_all_vcpus(void)
3587
{
3588
    CPUState *penv = first_cpu;
3589

    
3590
    while (penv) {
3591
        penv->stop = 1;
3592
        qemu_thread_signal(penv->thread, SIGUSR1);
3593
        qemu_cpu_kick(penv);
3594
        penv = (CPUState *)penv->next_cpu;
3595
    }
3596

    
3597
    while (!all_vcpus_paused()) {
3598
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3599
        penv = first_cpu;
3600
        while (penv) {
3601
            qemu_thread_signal(penv->thread, SIGUSR1);
3602
            penv = (CPUState *)penv->next_cpu;
3603
        }
3604
    }
3605
}
3606

    
3607
static void resume_all_vcpus(void)
3608
{
3609
    CPUState *penv = first_cpu;
3610

    
3611
    while (penv) {
3612
        penv->stop = 0;
3613
        penv->stopped = 0;
3614
        qemu_thread_signal(penv->thread, SIGUSR1);
3615
        qemu_cpu_kick(penv);
3616
        penv = (CPUState *)penv->next_cpu;
3617
    }
3618
}
3619

    
3620
static void tcg_init_vcpu(void *_env)
3621
{
3622
    CPUState *env = _env;
3623
    /* share a single thread for all cpus with TCG */
3624
    if (!tcg_cpu_thread) {
3625
        env->thread = qemu_mallocz(sizeof(QemuThread));
3626
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3627
        qemu_cond_init(env->halt_cond);
3628
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3629
        while (env->created == 0)
3630
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3631
        tcg_cpu_thread = env->thread;
3632
        tcg_halt_cond = env->halt_cond;
3633
    } else {
3634
        env->thread = tcg_cpu_thread;
3635
        env->halt_cond = tcg_halt_cond;
3636
    }
3637
}
3638

    
3639
static void kvm_start_vcpu(CPUState *env)
3640
{
3641
    env->thread = qemu_mallocz(sizeof(QemuThread));
3642
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3643
    qemu_cond_init(env->halt_cond);
3644
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3645
    while (env->created == 0)
3646
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3647
}
3648

    
3649
void qemu_init_vcpu(void *_env)
3650
{
3651
    CPUState *env = _env;
3652

    
3653
    env->nr_cores = smp_cores;
3654
    env->nr_threads = smp_threads;
3655
    if (kvm_enabled())
3656
        kvm_start_vcpu(env);
3657
    else
3658
        tcg_init_vcpu(env);
3659
}
3660

    
3661
void qemu_notify_event(void)
3662
{
3663
    qemu_event_increment();
3664
}
3665

    
3666
void vm_stop(int reason)
3667
{
3668
    QemuThread me;
3669
    qemu_thread_self(&me);
3670

    
3671
    if (!qemu_thread_equal(&me, &io_thread)) {
3672
        qemu_system_vmstop_request(reason);
3673
        /*
3674
         * FIXME: should not return to device code in case
3675
         * vm_stop() has been requested.
3676
         */
3677
        if (cpu_single_env) {
3678
            cpu_exit(cpu_single_env);
3679
            cpu_single_env->stop = 1;
3680
        }
3681
        return;
3682
    }
3683
    do_vm_stop(reason);
3684
}
3685

    
3686
#endif
3687

    
3688

    
3689
#ifdef _WIN32
3690
static void host_main_loop_wait(int *timeout)
3691
{
3692
    int ret, ret2, i;
3693
    PollingEntry *pe;
3694

    
3695

    
3696
    /* XXX: need to suppress polling by better using win32 events */
3697
    ret = 0;
3698
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3699
        ret |= pe->func(pe->opaque);
3700
    }
3701
    if (ret == 0) {
3702
        int err;
3703
        WaitObjects *w = &wait_objects;
3704

    
3705
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3706
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3707
            if (w->func[ret - WAIT_OBJECT_0])
3708
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3709

    
3710
            /* Check for additional signaled events */
3711
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3712

    
3713
                /* Check if event is signaled */
3714
                ret2 = WaitForSingleObject(w->events[i], 0);
3715
                if(ret2 == WAIT_OBJECT_0) {
3716
                    if (w->func[i])
3717
                        w->func[i](w->opaque[i]);
3718
                } else if (ret2 == WAIT_TIMEOUT) {
3719
                } else {
3720
                    err = GetLastError();
3721
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3722
                }
3723
            }
3724
        } else if (ret == WAIT_TIMEOUT) {
3725
        } else {
3726
            err = GetLastError();
3727
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3728
        }
3729
    }
3730

    
3731
    *timeout = 0;
3732
}
3733
#else
3734
static void host_main_loop_wait(int *timeout)
3735
{
3736
}
3737
#endif
3738

    
3739
void main_loop_wait(int timeout)
3740
{
3741
    IOHandlerRecord *ioh;
3742
    fd_set rfds, wfds, xfds;
3743
    int ret, nfds;
3744
    struct timeval tv;
3745

    
3746
    qemu_bh_update_timeout(&timeout);
3747

    
3748
    host_main_loop_wait(&timeout);
3749

    
3750
    /* poll any events */
3751
    /* XXX: separate device handlers from system ones */
3752
    nfds = -1;
3753
    FD_ZERO(&rfds);
3754
    FD_ZERO(&wfds);
3755
    FD_ZERO(&xfds);
3756
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3757
        if (ioh->deleted)
3758
            continue;
3759
        if (ioh->fd_read &&
3760
            (!ioh->fd_read_poll ||
3761
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3762
            FD_SET(ioh->fd, &rfds);
3763
            if (ioh->fd > nfds)
3764
                nfds = ioh->fd;
3765
        }
3766
        if (ioh->fd_write) {
3767
            FD_SET(ioh->fd, &wfds);
3768
            if (ioh->fd > nfds)
3769
                nfds = ioh->fd;
3770
        }
3771
    }
3772

    
3773
    tv.tv_sec = timeout / 1000;
3774
    tv.tv_usec = (timeout % 1000) * 1000;
3775

    
3776
    slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3777

    
3778
    qemu_mutex_unlock_iothread();
3779
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3780
    qemu_mutex_lock_iothread();
3781
    if (ret > 0) {
3782
        IOHandlerRecord **pioh;
3783

    
3784
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3785
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3786
                ioh->fd_read(ioh->opaque);
3787
            }
3788
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3789
                ioh->fd_write(ioh->opaque);
3790
            }
3791
        }
3792

    
3793
        /* remove deleted IO handlers */
3794
        pioh = &first_io_handler;
3795
        while (*pioh) {
3796
            ioh = *pioh;
3797
            if (ioh->deleted) {
3798
                *pioh = ioh->next;
3799
                qemu_free(ioh);
3800
            } else
3801
                pioh = &ioh->next;
3802
        }
3803
    }
3804

    
3805
    slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
3806

    
3807
    /* rearm timer, if not periodic */
3808
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
3809
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
3810
        qemu_rearm_alarm_timer(alarm_timer);
3811
    }
3812

    
3813
    /* vm time timers */
3814
    if (vm_running) {
3815
        if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3816
            qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
3817
                            qemu_get_clock(vm_clock));
3818
    }
3819

    
3820
    /* real time timers */
3821
    qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
3822
                    qemu_get_clock(rt_clock));
3823

    
3824
    qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
3825
                    qemu_get_clock(host_clock));
3826

    
3827
    /* Check bottom-halves last in case any of the earlier events triggered
3828
       them.  */
3829
    qemu_bh_poll();
3830

    
3831
}
3832

    
3833
static int qemu_cpu_exec(CPUState *env)
3834
{
3835
    int ret;
3836
#ifdef CONFIG_PROFILER
3837
    int64_t ti;
3838
#endif
3839

    
3840
#ifdef CONFIG_PROFILER
3841
    ti = profile_getclock();
3842
#endif
3843
    if (use_icount) {
3844
        int64_t count;
3845
        int decr;
3846
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3847
        env->icount_decr.u16.low = 0;
3848
        env->icount_extra = 0;
3849
        count = qemu_next_deadline();
3850
        count = (count + (1 << icount_time_shift) - 1)
3851
                >> icount_time_shift;
3852
        qemu_icount += count;
3853
        decr = (count > 0xffff) ? 0xffff : count;
3854
        count -= decr;
3855
        env->icount_decr.u16.low = decr;
3856
        env->icount_extra = count;
3857
    }
3858
    ret = cpu_exec(env);
3859
#ifdef CONFIG_PROFILER
3860
    qemu_time += profile_getclock() - ti;
3861
#endif
3862
    if (use_icount) {
3863
        /* Fold pending instructions back into the
3864
           instruction counter, and clear the interrupt flag.  */
3865
        qemu_icount -= (env->icount_decr.u16.low
3866
                        + env->icount_extra);
3867
        env->icount_decr.u32 = 0;
3868
        env->icount_extra = 0;
3869
    }
3870
    return ret;
3871
}
3872

    
3873
static void tcg_cpu_exec(void)
3874
{
3875
    int ret = 0;
3876

    
3877
    if (next_cpu == NULL)
3878
        next_cpu = first_cpu;
3879
    for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
3880
        CPUState *env = cur_cpu = next_cpu;
3881

    
3882
        if (timer_alarm_pending) {
3883
            timer_alarm_pending = 0;
3884
            break;
3885
        }
3886
        if (cpu_can_run(env))
3887
            ret = qemu_cpu_exec(env);
3888
        else if (env->stop)
3889
            break;
3890

    
3891
        if (ret == EXCP_DEBUG) {
3892
            gdb_set_stop_cpu(env);
3893
            debug_requested = 1;
3894
            break;
3895
        }
3896
    }
3897
}
3898

    
3899
static int cpu_has_work(CPUState *env)
3900
{
3901
    if (env->stop)
3902
        return 1;
3903
    if (env->stopped)
3904
        return 0;
3905
    if (!env->halted)
3906
        return 1;
3907
    if (qemu_cpu_has_work(env))
3908
        return 1;
3909
    return 0;
3910
}
3911

    
3912
static int tcg_has_work(void)
3913
{
3914
    CPUState *env;
3915

    
3916
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3917
        if (cpu_has_work(env))
3918
            return 1;
3919
    return 0;
3920
}
3921

    
3922
static int qemu_calculate_timeout(void)
3923
{
3924
#ifndef CONFIG_IOTHREAD
3925
    int timeout;
3926

    
3927
    if (!vm_running)
3928
        timeout = 5000;
3929
    else if (tcg_has_work())
3930
        timeout = 0;
3931
    else if (!use_icount)
3932
        timeout = 5000;
3933
    else {
3934
     /* XXX: use timeout computed from timers */
3935
        int64_t add;
3936
        int64_t delta;
3937
        /* Advance virtual time to the next event.  */
3938
        if (use_icount == 1) {
3939
            /* When not using an adaptive execution frequency
3940
               we tend to get badly out of sync with real time,
3941
               so just delay for a reasonable amount of time.  */
3942
            delta = 0;
3943
        } else {
3944
            delta = cpu_get_icount() - cpu_get_clock();
3945
        }
3946
        if (delta > 0) {
3947
            /* If virtual time is ahead of real time then just
3948
               wait for IO.  */
3949
            timeout = (delta / 1000000) + 1;
3950
        } else {
3951
            /* Wait for either IO to occur or the next
3952
               timer event.  */
3953
            add = qemu_next_deadline();
3954
            /* We advance the timer before checking for IO.
3955
               Limit the amount we advance so that early IO
3956
               activity won't get the guest too far ahead.  */
3957
            if (add > 10000000)
3958
                add = 10000000;
3959
            delta += add;
3960
            add = (add + (1 << icount_time_shift) - 1)
3961
                  >> icount_time_shift;
3962
            qemu_icount += add;
3963
            timeout = delta / 1000000;
3964
            if (timeout < 0)
3965
                timeout = 0;
3966
        }
3967
    }
3968

    
3969
    return timeout;
3970
#else /* CONFIG_IOTHREAD */
3971
    return 1000;
3972
#endif
3973
}
3974

    
3975
static int vm_can_run(void)
3976
{
3977
    if (powerdown_requested)
3978
        return 0;
3979
    if (reset_requested)
3980
        return 0;
3981
    if (shutdown_requested)
3982
        return 0;
3983
    if (debug_requested)
3984
        return 0;
3985
    return 1;
3986
}
3987

    
3988
qemu_irq qemu_system_powerdown;
3989

    
3990
static void main_loop(void)
3991
{
3992
    int r;
3993

    
3994
#ifdef CONFIG_IOTHREAD
3995
    qemu_system_ready = 1;
3996
    qemu_cond_broadcast(&qemu_system_cond);
3997
#endif
3998

    
3999
    for (;;) {
4000
        do {
4001
#ifdef CONFIG_PROFILER
4002
            int64_t ti;
4003
#endif
4004
#ifndef CONFIG_IOTHREAD
4005
            tcg_cpu_exec();
4006
#endif
4007
#ifdef CONFIG_PROFILER
4008
            ti = profile_getclock();
4009
#endif
4010
            main_loop_wait(qemu_calculate_timeout());
4011
#ifdef CONFIG_PROFILER
4012
            dev_time += profile_getclock() - ti;
4013
#endif
4014
        } while (vm_can_run());
4015

    
4016
        if (qemu_debug_requested()) {
4017
            monitor_protocol_event(QEVENT_DEBUG, NULL);
4018
            vm_stop(EXCP_DEBUG);
4019
        }
4020
        if (qemu_shutdown_requested()) {
4021
            monitor_protocol_event(QEVENT_SHUTDOWN, NULL);
4022
            if (no_shutdown) {
4023
                vm_stop(0);
4024
                no_shutdown = 0;
4025
            } else
4026
                break;
4027
        }
4028
        if (qemu_reset_requested()) {
4029
            monitor_protocol_event(QEVENT_RESET, NULL);
4030
            pause_all_vcpus();
4031
            qemu_system_reset();
4032
            resume_all_vcpus();
4033
        }
4034
        if (qemu_powerdown_requested()) {
4035
            monitor_protocol_event(QEVENT_POWERDOWN, NULL);
4036
            qemu_irq_raise(qemu_system_powerdown);
4037
        }
4038
        if ((r = qemu_vmstop_requested())) {
4039
            monitor_protocol_event(QEVENT_STOP, NULL);
4040
            vm_stop(r);
4041
        }
4042
    }
4043
    pause_all_vcpus();
4044
}
4045

    
4046
static void version(void)
4047
{
4048
    printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4049
}
4050

    
4051
static void help(int exitcode)
4052
{
4053
    const char *options_help =
4054
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4055
           opt_help
4056
#define DEFHEADING(text) stringify(text) "\n"
4057
#include "qemu-options.h"
4058
#undef DEF
4059
#undef DEFHEADING
4060
#undef GEN_DOCS
4061
        ;
4062
    version();
4063
    printf("usage: %s [options] [disk_image]\n"
4064
           "\n"
4065
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4066
           "\n"
4067
           "%s\n"
4068
           "During emulation, the following keys are useful:\n"
4069
           "ctrl-alt-f      toggle full screen\n"
4070
           "ctrl-alt-n      switch to virtual console 'n'\n"
4071
           "ctrl-alt        toggle mouse and keyboard grab\n"
4072
           "\n"
4073
           "When using -nographic, press 'ctrl-a h' to get some help.\n",
4074
           "qemu",
4075
           options_help);
4076
    exit(exitcode);
4077
}
4078

    
4079
#define HAS_ARG 0x0001
4080

    
4081
enum {
4082
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4083
    opt_enum,
4084
#define DEFHEADING(text)
4085
#include "qemu-options.h"
4086
#undef DEF
4087
#undef DEFHEADING
4088
#undef GEN_DOCS
4089
};
4090

    
4091
typedef struct QEMUOption {
4092
    const char *name;
4093
    int flags;
4094
    int index;
4095
} QEMUOption;
4096

    
4097
static const QEMUOption qemu_options[] = {
4098
    { "h", 0, QEMU_OPTION_h },
4099
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4100
    { option, opt_arg, opt_enum },
4101
#define DEFHEADING(text)
4102
#include "qemu-options.h"
4103
#undef DEF
4104
#undef DEFHEADING
4105
#undef GEN_DOCS
4106
    { NULL },
4107
};
4108

    
4109
#ifdef HAS_AUDIO
4110
struct soundhw soundhw[] = {
4111
#ifdef HAS_AUDIO_CHOICE
4112
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4113
    {
4114
        "pcspk",
4115
        "PC speaker",
4116
        0,
4117
        1,
4118
        { .init_isa = pcspk_audio_init }
4119
    },
4120
#endif
4121

    
4122
#ifdef CONFIG_SB16
4123
    {
4124
        "sb16",
4125
        "Creative Sound Blaster 16",
4126
        0,
4127
        1,
4128
        { .init_isa = SB16_init }
4129
    },
4130
#endif
4131

    
4132
#ifdef CONFIG_CS4231A
4133
    {
4134
        "cs4231a",
4135
        "CS4231A",
4136
        0,
4137
        1,
4138
        { .init_isa = cs4231a_init }
4139
    },
4140
#endif
4141

    
4142
#ifdef CONFIG_ADLIB
4143
    {
4144
        "adlib",
4145
#ifdef HAS_YMF262
4146
        "Yamaha YMF262 (OPL3)",
4147
#else
4148
        "Yamaha YM3812 (OPL2)",
4149
#endif
4150
        0,
4151
        1,
4152
        { .init_isa = Adlib_init }
4153
    },
4154
#endif
4155

    
4156
#ifdef CONFIG_GUS
4157
    {
4158
        "gus",
4159
        "Gravis Ultrasound GF1",
4160
        0,
4161
        1,
4162
        { .init_isa = GUS_init }
4163
    },
4164
#endif
4165

    
4166
#ifdef CONFIG_AC97
4167
    {
4168
        "ac97",
4169
        "Intel 82801AA AC97 Audio",
4170
        0,
4171
        0,
4172
        { .init_pci = ac97_init }
4173
    },
4174
#endif
4175

    
4176
#ifdef CONFIG_ES1370
4177
    {
4178
        "es1370",
4179
        "ENSONIQ AudioPCI ES1370",
4180
        0,
4181
        0,
4182
        { .init_pci = es1370_init }
4183
    },
4184
#endif
4185

    
4186
#endif /* HAS_AUDIO_CHOICE */
4187

    
4188
    { NULL, NULL, 0, 0, { NULL } }
4189
};
4190

    
4191
static void select_soundhw (const char *optarg)
4192
{
4193
    struct soundhw *c;
4194

    
4195
    if (*optarg == '?') {
4196
    show_valid_cards:
4197

    
4198
        printf ("Valid sound card names (comma separated):\n");
4199
        for (c = soundhw; c->name; ++c) {
4200
            printf ("%-11s %s\n", c->name, c->descr);
4201
        }
4202
        printf ("\n-soundhw all will enable all of the above\n");
4203
        exit (*optarg != '?');
4204
    }
4205
    else {
4206
        size_t l;
4207
        const char *p;
4208
        char *e;
4209
        int bad_card = 0;
4210

    
4211
        if (!strcmp (optarg, "all")) {
4212
            for (c = soundhw; c->name; ++c) {
4213
                c->enabled = 1;
4214
            }
4215
            return;
4216
        }
4217

    
4218
        p = optarg;
4219
        while (*p) {
4220
            e = strchr (p, ',');
4221
            l = !e ? strlen (p) : (size_t) (e - p);
4222

    
4223
            for (c = soundhw; c->name; ++c) {
4224
                if (!strncmp (c->name, p, l) && !c->name[l]) {
4225
                    c->enabled = 1;
4226
                    break;
4227
                }
4228
            }
4229

    
4230
            if (!c->name) {
4231
                if (l > 80) {
4232
                    fprintf (stderr,
4233
                             "Unknown sound card name (too big to show)\n");
4234
                }
4235
                else {
4236
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4237
                             (int) l, p);
4238
                }
4239
                bad_card = 1;
4240
            }
4241
            p += l + (e != NULL);
4242
        }
4243

    
4244
        if (bad_card)
4245
            goto show_valid_cards;
4246
    }
4247
}
4248
#endif
4249

    
4250
static void select_vgahw (const char *p)
4251
{
4252
    const char *opts;
4253

    
4254
    default_vga = 0;
4255
    vga_interface_type = VGA_NONE;
4256
    if (strstart(p, "std", &opts)) {
4257
        vga_interface_type = VGA_STD;
4258
    } else if (strstart(p, "cirrus", &opts)) {
4259
        vga_interface_type = VGA_CIRRUS;
4260
    } else if (strstart(p, "vmware", &opts)) {
4261
        vga_interface_type = VGA_VMWARE;
4262
    } else if (strstart(p, "xenfb", &opts)) {
4263
        vga_interface_type = VGA_XENFB;
4264
    } else if (!strstart(p, "none", &opts)) {
4265
    invalid_vga:
4266
        fprintf(stderr, "Unknown vga type: %s\n", p);
4267
        exit(1);
4268
    }
4269
    while (*opts) {
4270
        const char *nextopt;
4271

    
4272
        if (strstart(opts, ",retrace=", &nextopt)) {
4273
            opts = nextopt;
4274
            if (strstart(opts, "dumb", &nextopt))
4275
                vga_retrace_method = VGA_RETRACE_DUMB;
4276
            else if (strstart(opts, "precise", &nextopt))
4277
                vga_retrace_method = VGA_RETRACE_PRECISE;
4278
            else goto invalid_vga;
4279
        } else goto invalid_vga;
4280
        opts = nextopt;
4281
    }
4282
}
4283

    
4284
#ifdef TARGET_I386
4285
static int balloon_parse(const char *arg)
4286
{
4287
    QemuOpts *opts;
4288

    
4289
    if (strcmp(arg, "none") == 0) {
4290
        return 0;
4291
    }
4292

    
4293
    if (!strncmp(arg, "virtio", 6)) {
4294
        if (arg[6] == ',') {
4295
            /* have params -> parse them */
4296
            opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4297
            if (!opts)
4298
                return  -1;
4299
        } else {
4300
            /* create empty opts */
4301
            opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4302
        }
4303
        qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4304
        return 0;
4305
    }
4306

    
4307
    return -1;
4308
}
4309
#endif
4310

    
4311
#ifdef _WIN32
4312
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4313
{
4314
    exit(STATUS_CONTROL_C_EXIT);
4315
    return TRUE;
4316
}
4317
#endif
4318

    
4319
int qemu_uuid_parse(const char *str, uint8_t *uuid)
4320
{
4321
    int ret;
4322

    
4323
    if(strlen(str) != 36)
4324
        return -1;
4325

    
4326
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4327
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4328
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4329

    
4330
    if(ret != 16)
4331
        return -1;
4332

    
4333
#ifdef TARGET_I386
4334
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4335
#endif
4336

    
4337
    return 0;
4338
}
4339

    
4340
#ifndef _WIN32
4341

    
4342
static void termsig_handler(int signal)
4343
{
4344
    qemu_system_shutdown_request();
4345
}
4346

    
4347
static void sigchld_handler(int signal)
4348
{
4349
    waitpid(-1, NULL, WNOHANG);
4350
}
4351

    
4352
static void sighandler_setup(void)
4353
{
4354
    struct sigaction act;
4355

    
4356
    memset(&act, 0, sizeof(act));
4357
    act.sa_handler = termsig_handler;
4358
    sigaction(SIGINT,  &act, NULL);
4359
    sigaction(SIGHUP,  &act, NULL);
4360
    sigaction(SIGTERM, &act, NULL);
4361

    
4362
    act.sa_handler = sigchld_handler;
4363
    act.sa_flags = SA_NOCLDSTOP;
4364
    sigaction(SIGCHLD, &act, NULL);
4365
}
4366

    
4367
#endif
4368

    
4369
#ifdef _WIN32
4370
/* Look for support files in the same directory as the executable.  */
4371
static char *find_datadir(const char *argv0)
4372
{
4373
    char *p;
4374
    char buf[MAX_PATH];
4375
    DWORD len;
4376

    
4377
    len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4378
    if (len == 0) {
4379
        return NULL;
4380
    }
4381

    
4382
    buf[len] = 0;
4383
    p = buf + len - 1;
4384
    while (p != buf && *p != '\\')
4385
        p--;
4386
    *p = 0;
4387
    if (access(buf, R_OK) == 0) {
4388
        return qemu_strdup(buf);
4389
    }
4390
    return NULL;
4391
}
4392
#else /* !_WIN32 */
4393

    
4394
/* Find a likely location for support files using the location of the binary.
4395
   For installed binaries this will be "$bindir/../share/qemu".  When
4396
   running from the build tree this will be "$bindir/../pc-bios".  */
4397
#define SHARE_SUFFIX "/share/qemu"
4398
#define BUILD_SUFFIX "/pc-bios"
4399
static char *find_datadir(const char *argv0)
4400
{
4401
    char *dir;
4402
    char *p = NULL;
4403
    char *res;
4404
    char buf[PATH_MAX];
4405
    size_t max_len;
4406

    
4407
#if defined(__linux__)
4408
    {
4409
        int len;
4410
        len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4411
        if (len > 0) {
4412
            buf[len] = 0;
4413
            p = buf;
4414
        }
4415
    }
4416
#elif defined(__FreeBSD__)
4417
    {
4418
        int len;
4419
        len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4420
        if (len > 0) {
4421
            buf[len] = 0;
4422
            p = buf;
4423
        }
4424
    }
4425
#endif
4426
    /* If we don't have any way of figuring out the actual executable
4427
       location then try argv[0].  */
4428
    if (!p) {
4429
        p = realpath(argv0, buf);
4430
        if (!p) {
4431
            return NULL;
4432
        }
4433
    }
4434
    dir = dirname(p);
4435
    dir = dirname(dir);
4436

    
4437
    max_len = strlen(dir) +
4438
        MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4439
    res = qemu_mallocz(max_len);
4440
    snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4441
    if (access(res, R_OK)) {
4442
        snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4443
        if (access(res, R_OK)) {
4444
            qemu_free(res);
4445
            res = NULL;
4446
        }
4447
    }
4448

    
4449
    return res;
4450
}
4451
#undef SHARE_SUFFIX
4452
#undef BUILD_SUFFIX
4453
#endif
4454

    
4455
char *qemu_find_file(int type, const char *name)
4456
{
4457
    int len;
4458
    const char *subdir;
4459
    char *buf;
4460

    
4461
    /* If name contains path separators then try it as a straight path.  */
4462
    if ((strchr(name, '/') || strchr(name, '\\'))
4463
        && access(name, R_OK) == 0) {
4464
        return qemu_strdup(name);
4465
    }
4466
    switch (type) {
4467
    case QEMU_FILE_TYPE_BIOS:
4468
        subdir = "";
4469
        break;
4470
    case QEMU_FILE_TYPE_KEYMAP:
4471
        subdir = "keymaps/";
4472
        break;
4473
    default:
4474
        abort();
4475
    }
4476
    len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4477
    buf = qemu_mallocz(len);
4478
    snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4479
    if (access(buf, R_OK)) {
4480
        qemu_free(buf);
4481
        return NULL;
4482
    }
4483
    return buf;
4484
}
4485

    
4486
static int device_help_func(QemuOpts *opts, void *opaque)
4487
{
4488
    return qdev_device_help(opts);
4489
}
4490

    
4491
static int device_init_func(QemuOpts *opts, void *opaque)
4492
{
4493
    DeviceState *dev;
4494

    
4495
    dev = qdev_device_add(opts);
4496
    if (!dev)
4497
        return -1;
4498
    return 0;
4499
}
4500

    
4501
static int chardev_init_func(QemuOpts *opts, void *opaque)
4502
{
4503
    CharDriverState *chr;
4504

    
4505
    chr = qemu_chr_open_opts(opts, NULL);
4506
    if (!chr)
4507
        return -1;
4508
    return 0;
4509
}
4510

    
4511
static int mon_init_func(QemuOpts *opts, void *opaque)
4512
{
4513
    CharDriverState *chr;
4514
    const char *chardev;
4515
    const char *mode;
4516
    int flags;
4517

    
4518
    mode = qemu_opt_get(opts, "mode");
4519
    if (mode == NULL) {
4520
        mode = "readline";
4521
    }
4522
    if (strcmp(mode, "readline") == 0) {
4523
        flags = MONITOR_USE_READLINE;
4524
    } else if (strcmp(mode, "control") == 0) {
4525
        flags = MONITOR_USE_CONTROL;
4526
    } else {
4527
        fprintf(stderr, "unknown monitor mode \"%s\"\n", mode);
4528
        exit(1);
4529
    }
4530

    
4531
    if (qemu_opt_get_bool(opts, "default", 0))
4532
        flags |= MONITOR_IS_DEFAULT;
4533

    
4534
    chardev = qemu_opt_get(opts, "chardev");
4535
    chr = qemu_chr_find(chardev);
4536
    if (chr == NULL) {
4537
        fprintf(stderr, "chardev \"%s\" not found\n", chardev);
4538
        exit(1);
4539
    }
4540

    
4541
    monitor_init(chr, flags);
4542
    return 0;
4543
}
4544

    
4545
static void monitor_parse(const char *optarg, const char *mode)
4546
{
4547
    static int monitor_device_index = 0;
4548
    QemuOpts *opts;
4549
    const char *p;
4550
    char label[32];
4551
    int def = 0;
4552

    
4553
    if (strstart(optarg, "chardev:", &p)) {
4554
        snprintf(label, sizeof(label), "%s", p);
4555
    } else {
4556
        if (monitor_device_index) {
4557
            snprintf(label, sizeof(label), "monitor%d",
4558
                     monitor_device_index);
4559
        } else {
4560
            snprintf(label, sizeof(label), "monitor");
4561
            def = 1;
4562
        }
4563
        opts = qemu_chr_parse_compat(label, optarg);
4564
        if (!opts) {
4565
            fprintf(stderr, "parse error: %s\n", optarg);
4566
            exit(1);
4567
        }
4568
    }
4569

    
4570
    opts = qemu_opts_create(&qemu_mon_opts, label, 1);
4571
    if (!opts) {
4572
        fprintf(stderr, "duplicate chardev: %s\n", label);
4573
        exit(1);
4574
    }
4575
    qemu_opt_set(opts, "mode", mode);
4576
    qemu_opt_set(opts, "chardev", label);
4577
    if (def)
4578
        qemu_opt_set(opts, "default", "on");
4579
    monitor_device_index++;
4580
}
4581

    
4582
struct device_config {
4583
    enum {
4584
        DEV_USB,       /* -usbdevice     */
4585
        DEV_BT,        /* -bt            */
4586
        DEV_SERIAL,    /* -serial        */
4587
        DEV_PARALLEL,  /* -parallel      */
4588
        DEV_VIRTCON,   /* -virtioconsole */
4589
        DEV_DEBUGCON,  /* -debugcon */
4590
    } type;
4591
    const char *cmdline;
4592
    QTAILQ_ENTRY(device_config) next;
4593
};
4594
QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
4595

    
4596
static void add_device_config(int type, const char *cmdline)
4597
{
4598
    struct device_config *conf;
4599

    
4600
    conf = qemu_mallocz(sizeof(*conf));
4601
    conf->type = type;
4602
    conf->cmdline = cmdline;
4603
    QTAILQ_INSERT_TAIL(&device_configs, conf, next);
4604
}
4605

    
4606
static int foreach_device_config(int type, int (*func)(const char *cmdline))
4607
{
4608
    struct device_config *conf;
4609
    int rc;
4610

    
4611
    QTAILQ_FOREACH(conf, &device_configs, next) {
4612
        if (conf->type != type)
4613
            continue;
4614
        rc = func(conf->cmdline);
4615
        if (0 != rc)
4616
            return rc;
4617
    }
4618
    return 0;
4619
}
4620

    
4621
static int serial_parse(const char *devname)
4622
{
4623
    static int index = 0;
4624
    char label[32];
4625

    
4626
    if (strcmp(devname, "none") == 0)
4627
        return 0;
4628
    if (index == MAX_SERIAL_PORTS) {
4629
        fprintf(stderr, "qemu: too many serial ports\n");
4630
        exit(1);
4631
    }
4632
    snprintf(label, sizeof(label), "serial%d", index);
4633
    serial_hds[index] = qemu_chr_open(label, devname, NULL);
4634
    if (!serial_hds[index]) {
4635
        fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
4636
                devname, strerror(errno));
4637
        return -1;
4638
    }
4639
    index++;
4640
    return 0;
4641
}
4642

    
4643
static int parallel_parse(const char *devname)
4644
{
4645
    static int index = 0;
4646
    char label[32];
4647

    
4648
    if (strcmp(devname, "none") == 0)
4649
        return 0;
4650
    if (index == MAX_PARALLEL_PORTS) {
4651
        fprintf(stderr, "qemu: too many parallel ports\n");
4652
        exit(1);
4653
    }
4654
    snprintf(label, sizeof(label), "parallel%d", index);
4655
    parallel_hds[index] = qemu_chr_open(label, devname, NULL);
4656
    if (!parallel_hds[index]) {
4657
        fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
4658
                devname, strerror(errno));
4659
        return -1;
4660
    }
4661
    index++;
4662
    return 0;
4663
}
4664

    
4665
static int virtcon_parse(const char *devname)
4666
{
4667
    static int index = 0;
4668
    char label[32];
4669
    QemuOpts *bus_opts, *dev_opts;
4670

    
4671
    if (strcmp(devname, "none") == 0)
4672
        return 0;
4673
    if (index == MAX_VIRTIO_CONSOLES) {
4674
        fprintf(stderr, "qemu: too many virtio consoles\n");
4675
        exit(1);
4676
    }
4677

    
4678
    bus_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4679
    qemu_opt_set(bus_opts, "driver", "virtio-serial");
4680

    
4681
    dev_opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4682
    qemu_opt_set(dev_opts, "driver", "virtconsole");
4683

    
4684
    snprintf(label, sizeof(label), "virtcon%d", index);
4685
    virtcon_hds[index] = qemu_chr_open(label, devname, NULL);
4686
    if (!virtcon_hds[index]) {
4687
        fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
4688
                devname, strerror(errno));
4689
        return -1;
4690
    }
4691
    qemu_opt_set(dev_opts, "chardev", label);
4692

    
4693
    index++;
4694
    return 0;
4695
}
4696

    
4697
static int debugcon_parse(const char *devname)
4698
{   
4699
    QemuOpts *opts;
4700

    
4701
    if (!qemu_chr_open("debugcon", devname, NULL)) {
4702
        exit(1);
4703
    }
4704
    opts = qemu_opts_create(&qemu_device_opts, "debugcon", 1);
4705
    if (!opts) {
4706
        fprintf(stderr, "qemu: already have a debugcon device\n");
4707
        exit(1);
4708
    }
4709
    qemu_opt_set(opts, "driver", "isa-debugcon");
4710
    qemu_opt_set(opts, "chardev", "debugcon");
4711
    return 0;
4712
}
4713

    
4714
static const QEMUOption *lookup_opt(int argc, char **argv,
4715
                                    const char **poptarg, int *poptind)
4716
{
4717
    const QEMUOption *popt;
4718
    int optind = *poptind;
4719
    char *r = argv[optind];
4720
    const char *optarg;
4721

    
4722
    optind++;
4723
    /* Treat --foo the same as -foo.  */
4724
    if (r[1] == '-')
4725
        r++;
4726
    popt = qemu_options;
4727
    for(;;) {
4728
        if (!popt->name) {
4729
            fprintf(stderr, "%s: invalid option -- '%s'\n",
4730
                    argv[0], r);
4731
            exit(1);
4732
        }
4733
        if (!strcmp(popt->name, r + 1))
4734
            break;
4735
        popt++;
4736
    }
4737
    if (popt->flags & HAS_ARG) {
4738
        if (optind >= argc) {
4739
            fprintf(stderr, "%s: option '%s' requires an argument\n",
4740
                    argv[0], r);
4741
            exit(1);
4742
        }
4743
        optarg = argv[optind++];
4744
    } else {
4745
        optarg = NULL;
4746
    }
4747

    
4748
    *poptarg = optarg;
4749
    *poptind = optind;
4750

    
4751
    return popt;
4752
}
4753

    
4754
int main(int argc, char **argv, char **envp)
4755
{
4756
    const char *gdbstub_dev = NULL;
4757
    uint32_t boot_devices_bitmap = 0;
4758
    int i;
4759
    int snapshot, linux_boot, net_boot;
4760
    const char *initrd_filename;
4761
    const char *kernel_filename, *kernel_cmdline;
4762
    char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4763
    DisplayState *ds;
4764
    DisplayChangeListener *dcl;
4765
    int cyls, heads, secs, translation;
4766
    QemuOpts *hda_opts = NULL, *opts;
4767
    int optind;
4768
    const char *optarg;
4769
    const char *loadvm = NULL;
4770
    QEMUMachine *machine;
4771
    const char *cpu_model;
4772
#ifndef _WIN32
4773
    int fds[2];
4774
#endif
4775
    int tb_size;
4776
    const char *pid_file = NULL;
4777
    const char *incoming = NULL;
4778
#ifndef _WIN32
4779
    int fd = 0;
4780
    struct passwd *pwd = NULL;
4781
    const char *chroot_dir = NULL;
4782
    const char *run_as = NULL;
4783
#endif
4784
    CPUState *env;
4785
    int show_vnc_port = 0;
4786
    int defconfig = 1;
4787

    
4788
    init_clocks();
4789

    
4790
    qemu_errors_to_file(stderr);
4791
    qemu_cache_utils_init(envp);
4792

    
4793
    QLIST_INIT (&vm_change_state_head);
4794
#ifndef _WIN32
4795
    {
4796
        struct sigaction act;
4797
        sigfillset(&act.sa_mask);
4798
        act.sa_flags = 0;
4799
        act.sa_handler = SIG_IGN;
4800
        sigaction(SIGPIPE, &act, NULL);
4801
    }
4802
#else
4803
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4804
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4805
       QEMU to run on a single CPU */
4806
    {
4807
        HANDLE h;
4808
        DWORD mask, smask;
4809
        int i;
4810
        h = GetCurrentProcess();
4811
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4812
            for(i = 0; i < 32; i++) {
4813
                if (mask & (1 << i))
4814
                    break;
4815
            }
4816
            if (i != 32) {
4817
                mask = 1 << i;
4818
                SetProcessAffinityMask(h, mask);
4819
            }
4820
        }
4821
    }
4822
#endif
4823

    
4824
    module_call_init(MODULE_INIT_MACHINE);
4825
    machine = find_default_machine();
4826
    cpu_model = NULL;
4827
    initrd_filename = NULL;
4828
    ram_size = 0;
4829
    snapshot = 0;
4830
    kernel_filename = NULL;
4831
    kernel_cmdline = "";
4832
    cyls = heads = secs = 0;
4833
    translation = BIOS_ATA_TRANSLATION_AUTO;
4834

    
4835
    for (i = 0; i < MAX_NODES; i++) {
4836
        node_mem[i] = 0;
4837
        node_cpumask[i] = 0;
4838
    }
4839

    
4840
    nb_numa_nodes = 0;
4841
    nb_nics = 0;
4842

    
4843
    tb_size = 0;
4844
    autostart= 1;
4845

    
4846
    /* first pass of option parsing */
4847
    optind = 1;
4848
    while (optind < argc) {
4849
        if (argv[optind][0] != '-') {
4850
            /* disk image */
4851
            optind++;
4852
            continue;
4853
        } else {
4854
            const QEMUOption *popt;
4855

    
4856
            popt = lookup_opt(argc, argv, &optarg, &optind);
4857
            switch (popt->index) {
4858
            case QEMU_OPTION_nodefconfig:
4859
                defconfig=0;
4860
                break;
4861
            }
4862
        }
4863
    }
4864

    
4865
    if (defconfig) {
4866
        FILE *fp;
4867
        fp = fopen(CONFIG_QEMU_CONFDIR "/qemu.conf", "r");
4868
        if (fp) {
4869
            if (qemu_config_parse(fp) != 0) {
4870
                exit(1);
4871
            }
4872
            fclose(fp);
4873
        }
4874

    
4875
        fp = fopen(CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", "r");
4876
        if (fp) {
4877
            if (qemu_config_parse(fp) != 0) {
4878
                exit(1);
4879
            }
4880
            fclose(fp);
4881
        }
4882
    }
4883

    
4884
    /* second pass of option parsing */
4885
    optind = 1;
4886
    for(;;) {
4887
        if (optind >= argc)
4888
            break;
4889
        if (argv[optind][0] != '-') {
4890
            hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4891
        } else {
4892
            const QEMUOption *popt;
4893

    
4894
            popt = lookup_opt(argc, argv, &optarg, &optind);
4895
            switch(popt->index) {
4896
            case QEMU_OPTION_M:
4897
                machine = find_machine(optarg);
4898
                if (!machine) {
4899
                    QEMUMachine *m;
4900
                    printf("Supported machines are:\n");
4901
                    for(m = first_machine; m != NULL; m = m->next) {
4902
                        if (m->alias)
4903
                            printf("%-10s %s (alias of %s)\n",
4904
                                   m->alias, m->desc, m->name);
4905
                        printf("%-10s %s%s\n",
4906
                               m->name, m->desc,
4907
                               m->is_default ? " (default)" : "");
4908
                    }
4909
                    exit(*optarg != '?');
4910
                }
4911
                break;
4912
            case QEMU_OPTION_cpu:
4913
                /* hw initialization will check this */
4914
                if (*optarg == '?') {
4915
/* XXX: implement xxx_cpu_list for targets that still miss it */
4916
#if defined(cpu_list)
4917
                    cpu_list(stdout, &fprintf);
4918
#endif
4919
                    exit(0);
4920
                } else {
4921
                    cpu_model = optarg;
4922
                }
4923
                break;
4924
            case QEMU_OPTION_initrd:
4925
                initrd_filename = optarg;
4926
                break;
4927
            case QEMU_OPTION_hda:
4928
                if (cyls == 0)
4929
                    hda_opts = drive_add(optarg, HD_ALIAS, 0);
4930
                else
4931
                    hda_opts = drive_add(optarg, HD_ALIAS
4932
                             ",cyls=%d,heads=%d,secs=%d%s",
4933
                             0, cyls, heads, secs,
4934
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4935
                                 ",trans=lba" :
4936
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4937
                                 ",trans=none" : "");
4938
                 break;
4939
            case QEMU_OPTION_hdb:
4940
            case QEMU_OPTION_hdc:
4941
            case QEMU_OPTION_hdd:
4942
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4943
                break;
4944
            case QEMU_OPTION_drive:
4945
                drive_add(NULL, "%s", optarg);
4946
                break;
4947
            case QEMU_OPTION_set:
4948
                if (qemu_set_option(optarg) != 0)
4949
                    exit(1);
4950
                break;
4951
            case QEMU_OPTION_global:
4952
                if (qemu_global_option(optarg) != 0)
4953
                    exit(1);
4954
                break;
4955
            case QEMU_OPTION_mtdblock:
4956
                drive_add(optarg, MTD_ALIAS);
4957
                break;
4958
            case QEMU_OPTION_sd:
4959
                drive_add(optarg, SD_ALIAS);
4960
                break;
4961
            case QEMU_OPTION_pflash:
4962
                drive_add(optarg, PFLASH_ALIAS);
4963
                break;
4964
            case QEMU_OPTION_snapshot:
4965
                snapshot = 1;
4966
                break;
4967
            case QEMU_OPTION_hdachs:
4968
                {
4969
                    const char *p;
4970
                    p = optarg;
4971
                    cyls = strtol(p, (char **)&p, 0);
4972
                    if (cyls < 1 || cyls > 16383)
4973
                        goto chs_fail;
4974
                    if (*p != ',')
4975
                        goto chs_fail;
4976
                    p++;
4977
                    heads = strtol(p, (char **)&p, 0);
4978
                    if (heads < 1 || heads > 16)
4979
                        goto chs_fail;
4980
                    if (*p != ',')
4981
                        goto chs_fail;
4982
                    p++;
4983
                    secs = strtol(p, (char **)&p, 0);
4984
                    if (secs < 1 || secs > 63)
4985
                        goto chs_fail;
4986
                    if (*p == ',') {
4987
                        p++;
4988
                        if (!strcmp(p, "none"))
4989
                            translation = BIOS_ATA_TRANSLATION_NONE;
4990
                        else if (!strcmp(p, "lba"))
4991
                            translation = BIOS_ATA_TRANSLATION_LBA;
4992
                        else if (!strcmp(p, "auto"))
4993
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4994
                        else
4995
                            goto chs_fail;
4996
                    } else if (*p != '\0') {
4997
                    chs_fail:
4998
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4999
                        exit(1);
5000
                    }
5001
                    if (hda_opts != NULL) {
5002
                        char num[16];
5003
                        snprintf(num, sizeof(num), "%d", cyls);
5004
                        qemu_opt_set(hda_opts, "cyls", num);
5005
                        snprintf(num, sizeof(num), "%d", heads);
5006
                        qemu_opt_set(hda_opts, "heads", num);
5007
                        snprintf(num, sizeof(num), "%d", secs);
5008
                        qemu_opt_set(hda_opts, "secs", num);
5009
                        if (translation == BIOS_ATA_TRANSLATION_LBA)
5010
                            qemu_opt_set(hda_opts, "trans", "lba");
5011
                        if (translation == BIOS_ATA_TRANSLATION_NONE)
5012
                            qemu_opt_set(hda_opts, "trans", "none");
5013
                    }
5014
                }
5015
                break;
5016
            case QEMU_OPTION_numa:
5017
                if (nb_numa_nodes >= MAX_NODES) {
5018
                    fprintf(stderr, "qemu: too many NUMA nodes\n");
5019
                    exit(1);
5020
                }
5021
                numa_add(optarg);
5022
                break;
5023
            case QEMU_OPTION_nographic:
5024
                display_type = DT_NOGRAPHIC;
5025
                break;
5026
#ifdef CONFIG_CURSES
5027
            case QEMU_OPTION_curses:
5028
                display_type = DT_CURSES;
5029
                break;
5030
#endif
5031
            case QEMU_OPTION_portrait:
5032
                graphic_rotate = 1;
5033
                break;
5034
            case QEMU_OPTION_kernel:
5035
                kernel_filename = optarg;
5036
                break;
5037
            case QEMU_OPTION_append:
5038
                kernel_cmdline = optarg;
5039
                break;
5040
            case QEMU_OPTION_cdrom:
5041
                drive_add(optarg, CDROM_ALIAS);
5042
                break;
5043
            case QEMU_OPTION_boot:
5044
                {
5045
                    static const char * const params[] = {
5046
                        "order", "once", "menu", NULL
5047
                    };
5048
                    char buf[sizeof(boot_devices)];
5049
                    char *standard_boot_devices;
5050
                    int legacy = 0;
5051

    
5052
                    if (!strchr(optarg, '=')) {
5053
                        legacy = 1;
5054
                        pstrcpy(buf, sizeof(buf), optarg);
5055
                    } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5056
                        fprintf(stderr,
5057
                                "qemu: unknown boot parameter '%s' in '%s'\n",
5058
                                buf, optarg);
5059
                        exit(1);
5060
                    }
5061

    
5062
                    if (legacy ||
5063
                        get_param_value(buf, sizeof(buf), "order", optarg)) {
5064
                        boot_devices_bitmap = parse_bootdevices(buf);
5065
                        pstrcpy(boot_devices, sizeof(boot_devices), buf);
5066
                    }
5067
                    if (!legacy) {
5068
                        if (get_param_value(buf, sizeof(buf),
5069
                                            "once", optarg)) {
5070
                            boot_devices_bitmap |= parse_bootdevices(buf);
5071
                            standard_boot_devices = qemu_strdup(boot_devices);
5072
                            pstrcpy(boot_devices, sizeof(boot_devices), buf);
5073
                            qemu_register_reset(restore_boot_devices,
5074
                                                standard_boot_devices);
5075
                        }
5076
                        if (get_param_value(buf, sizeof(buf),
5077
                                            "menu", optarg)) {
5078
                            if (!strcmp(buf, "on")) {
5079
                                boot_menu = 1;
5080
                            } else if (!strcmp(buf, "off")) {
5081
                                boot_menu = 0;
5082
                            } else {
5083
                                fprintf(stderr,
5084
                                        "qemu: invalid option value '%s'\n",
5085
                                        buf);
5086
                                exit(1);
5087
                            }
5088
                        }
5089
                    }
5090
                }
5091
                break;
5092
            case QEMU_OPTION_fda:
5093
            case QEMU_OPTION_fdb:
5094
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5095
                break;
5096
#ifdef TARGET_I386
5097
            case QEMU_OPTION_no_fd_bootchk:
5098
                fd_bootchk = 0;
5099
                break;
5100
#endif
5101
            case QEMU_OPTION_netdev:
5102
                if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
5103
                    exit(1);
5104
                }
5105
                break;
5106
            case QEMU_OPTION_net:
5107
                if (net_client_parse(&qemu_net_opts, optarg) == -1) {
5108
                    exit(1);
5109
                }
5110
                break;
5111
#ifdef CONFIG_SLIRP
5112
            case QEMU_OPTION_tftp:
5113
                legacy_tftp_prefix = optarg;
5114
                break;
5115
            case QEMU_OPTION_bootp:
5116
                legacy_bootp_filename = optarg;
5117
                break;
5118
#ifndef _WIN32
5119
            case QEMU_OPTION_smb:
5120
                if (net_slirp_smb(optarg) < 0)
5121
                    exit(1);
5122
                break;
5123
#endif
5124
            case QEMU_OPTION_redir:
5125
                if (net_slirp_redir(optarg) < 0)
5126
                    exit(1);
5127
                break;
5128
#endif
5129
            case QEMU_OPTION_bt:
5130
                add_device_config(DEV_BT, optarg);
5131
                break;
5132
#ifdef HAS_AUDIO
5133
            case QEMU_OPTION_audio_help:
5134
                AUD_help ();
5135
                exit (0);
5136
                break;
5137
            case QEMU_OPTION_soundhw:
5138
                select_soundhw (optarg);
5139
                break;
5140
#endif
5141
            case QEMU_OPTION_h:
5142
                help(0);
5143
                break;
5144
            case QEMU_OPTION_version:
5145
                version();
5146
                exit(0);
5147
                break;
5148
            case QEMU_OPTION_m: {
5149
                uint64_t value;
5150
                char *ptr;
5151

    
5152
                value = strtoul(optarg, &ptr, 10);
5153
                switch (*ptr) {
5154
                case 0: case 'M': case 'm':
5155
                    value <<= 20;
5156
                    break;
5157
                case 'G': case 'g':
5158
                    value <<= 30;
5159
                    break;
5160
                default:
5161
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5162
                    exit(1);
5163
                }
5164

    
5165
                /* On 32-bit hosts, QEMU is limited by virtual address space */
5166
                if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5167
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5168
                    exit(1);
5169
                }
5170
                if (value != (uint64_t)(ram_addr_t)value) {
5171
                    fprintf(stderr, "qemu: ram size too large\n");
5172
                    exit(1);
5173
                }
5174
                ram_size = value;
5175
                break;
5176
            }
5177
            case QEMU_OPTION_d:
5178
                {
5179
                    int mask;
5180
                    const CPULogItem *item;
5181

    
5182
                    mask = cpu_str_to_log_mask(optarg);
5183
                    if (!mask) {
5184
                        printf("Log items (comma separated):\n");
5185
                    for(item = cpu_log_items; item->mask != 0; item++) {
5186
                        printf("%-10s %s\n", item->name, item->help);
5187
                    }
5188
                    exit(1);
5189
                    }
5190
                    cpu_set_log(mask);
5191
                }
5192
                break;
5193
            case QEMU_OPTION_s:
5194
                gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5195
                break;
5196
            case QEMU_OPTION_gdb:
5197
                gdbstub_dev = optarg;
5198
                break;
5199
            case QEMU_OPTION_L:
5200
                data_dir = optarg;
5201
                break;
5202
            case QEMU_OPTION_bios:
5203
                bios_name = optarg;
5204
                break;
5205
            case QEMU_OPTION_singlestep:
5206
                singlestep = 1;
5207
                break;
5208
            case QEMU_OPTION_S:
5209
                autostart = 0;
5210
                break;
5211
            case QEMU_OPTION_k:
5212
                keyboard_layout = optarg;
5213
                break;
5214
            case QEMU_OPTION_localtime:
5215
                rtc_utc = 0;
5216
                break;
5217
            case QEMU_OPTION_vga:
5218
                select_vgahw (optarg);
5219
                break;
5220
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5221
            case QEMU_OPTION_g:
5222
                {
5223
                    const char *p;
5224
                    int w, h, depth;
5225
                    p = optarg;
5226
                    w = strtol(p, (char **)&p, 10);
5227
                    if (w <= 0) {
5228
                    graphic_error:
5229
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
5230
                        exit(1);
5231
                    }
5232
                    if (*p != 'x')
5233
                        goto graphic_error;
5234
                    p++;
5235
                    h = strtol(p, (char **)&p, 10);
5236
                    if (h <= 0)
5237
                        goto graphic_error;
5238
                    if (*p == 'x') {
5239
                        p++;
5240
                        depth = strtol(p, (char **)&p, 10);
5241
                        if (depth != 8 && depth != 15 && depth != 16 &&
5242
                            depth != 24 && depth != 32)
5243
                            goto graphic_error;
5244
                    } else if (*p == '\0') {
5245
                        depth = graphic_depth;
5246
                    } else {
5247
                        goto graphic_error;
5248
                    }
5249

    
5250
                    graphic_width = w;
5251
                    graphic_height = h;
5252
                    graphic_depth = depth;
5253
                }
5254
                break;
5255
#endif
5256
            case QEMU_OPTION_echr:
5257
                {
5258
                    char *r;
5259
                    term_escape_char = strtol(optarg, &r, 0);
5260
                    if (r == optarg)
5261
                        printf("Bad argument to echr\n");
5262
                    break;
5263
                }
5264
            case QEMU_OPTION_monitor:
5265
                monitor_parse(optarg, "readline");
5266
                default_monitor = 0;
5267
                break;
5268
            case QEMU_OPTION_qmp:
5269
                monitor_parse(optarg, "control");
5270
                default_monitor = 0;
5271
                break;
5272
            case QEMU_OPTION_mon:
5273
                opts = qemu_opts_parse(&qemu_mon_opts, optarg, "chardev");
5274
                if (!opts) {
5275
                    fprintf(stderr, "parse error: %s\n", optarg);
5276
                    exit(1);
5277
                }
5278
                default_monitor = 0;
5279
                break;
5280
            case QEMU_OPTION_chardev:
5281
                opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
5282
                if (!opts) {
5283
                    fprintf(stderr, "parse error: %s\n", optarg);
5284
                    exit(1);
5285
                }
5286
                break;
5287
            case QEMU_OPTION_serial:
5288
                add_device_config(DEV_SERIAL, optarg);
5289
                default_serial = 0;
5290
                break;
5291
            case QEMU_OPTION_watchdog:
5292
                if (watchdog) {
5293
                    fprintf(stderr,
5294
                            "qemu: only one watchdog option may be given\n");
5295
                    return 1;
5296
                }
5297
                watchdog = optarg;
5298
                break;
5299
            case QEMU_OPTION_watchdog_action:
5300
                if (select_watchdog_action(optarg) == -1) {
5301
                    fprintf(stderr, "Unknown -watchdog-action parameter\n");
5302
                    exit(1);
5303
                }
5304
                break;
5305
            case QEMU_OPTION_virtiocon:
5306
                add_device_config(DEV_VIRTCON, optarg);
5307
                default_virtcon = 0;
5308
                break;
5309
            case QEMU_OPTION_parallel:
5310
                add_device_config(DEV_PARALLEL, optarg);
5311
                default_parallel = 0;
5312
                break;
5313
            case QEMU_OPTION_debugcon:
5314
                add_device_config(DEV_DEBUGCON, optarg);
5315
                break;
5316
            case QEMU_OPTION_loadvm:
5317
                loadvm = optarg;
5318
                break;
5319
            case QEMU_OPTION_full_screen:
5320
                full_screen = 1;
5321
                break;
5322
#ifdef CONFIG_SDL
5323
            case QEMU_OPTION_no_frame:
5324
                no_frame = 1;
5325
                break;
5326
            case QEMU_OPTION_alt_grab:
5327
                alt_grab = 1;
5328
                break;
5329
            case QEMU_OPTION_ctrl_grab:
5330
                ctrl_grab = 1;
5331
                break;
5332
            case QEMU_OPTION_no_quit:
5333
                no_quit = 1;
5334
                break;
5335
            case QEMU_OPTION_sdl:
5336
                display_type = DT_SDL;
5337
                break;
5338
#endif
5339
            case QEMU_OPTION_pidfile:
5340
                pid_file = optarg;
5341
                break;
5342
#ifdef TARGET_I386
5343
            case QEMU_OPTION_win2k_hack:
5344
                win2k_install_hack = 1;
5345
                break;
5346
            case QEMU_OPTION_rtc_td_hack:
5347
                rtc_td_hack = 1;
5348
                break;
5349
            case QEMU_OPTION_acpitable:
5350
                if(acpi_table_add(optarg) < 0) {
5351
                    fprintf(stderr, "Wrong acpi table provided\n");
5352
                    exit(1);
5353
                }
5354
                break;
5355
            case QEMU_OPTION_smbios:
5356
                if(smbios_entry_add(optarg) < 0) {
5357
                    fprintf(stderr, "Wrong smbios provided\n");
5358
                    exit(1);
5359
                }
5360
                break;
5361
#endif
5362
#ifdef CONFIG_KVM
5363
            case QEMU_OPTION_enable_kvm:
5364
                kvm_allowed = 1;
5365
                break;
5366
#endif
5367
            case QEMU_OPTION_usb:
5368
                usb_enabled = 1;
5369
                break;
5370
            case QEMU_OPTION_usbdevice:
5371
                usb_enabled = 1;
5372
                add_device_config(DEV_USB, optarg);
5373
                break;
5374
            case QEMU_OPTION_device:
5375
                if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
5376
                    exit(1);
5377
                }
5378
                break;
5379
            case QEMU_OPTION_smp:
5380
                smp_parse(optarg);
5381
                if (smp_cpus < 1) {
5382
                    fprintf(stderr, "Invalid number of CPUs\n");
5383
                    exit(1);
5384
                }
5385
                if (max_cpus < smp_cpus) {
5386
                    fprintf(stderr, "maxcpus must be equal to or greater than "
5387
                            "smp\n");
5388
                    exit(1);
5389
                }
5390
                if (max_cpus > 255) {
5391
                    fprintf(stderr, "Unsupported number of maxcpus\n");
5392
                    exit(1);
5393
                }
5394
                break;
5395
            case QEMU_OPTION_vnc:
5396
                display_type = DT_VNC;
5397
                vnc_display = optarg;
5398
                break;
5399
#ifdef TARGET_I386
5400
            case QEMU_OPTION_no_acpi:
5401
                acpi_enabled = 0;
5402
                break;
5403
            case QEMU_OPTION_no_hpet:
5404
                no_hpet = 1;
5405
                break;
5406
            case QEMU_OPTION_balloon:
5407
                if (balloon_parse(optarg) < 0) {
5408
                    fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5409
                    exit(1);
5410
                }
5411
                break;
5412
#endif
5413
            case QEMU_OPTION_no_reboot:
5414
                no_reboot = 1;
5415
                break;
5416
            case QEMU_OPTION_no_shutdown:
5417
                no_shutdown = 1;
5418
                break;
5419
            case QEMU_OPTION_show_cursor:
5420
                cursor_hide = 0;
5421
                break;
5422
            case QEMU_OPTION_uuid:
5423
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5424
                    fprintf(stderr, "Fail to parse UUID string."
5425
                            " Wrong format.\n");
5426
                    exit(1);
5427
                }
5428
                break;
5429
#ifndef _WIN32
5430
            case QEMU_OPTION_daemonize:
5431
                daemonize = 1;
5432
                break;
5433
#endif
5434
            case QEMU_OPTION_option_rom:
5435
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5436
                    fprintf(stderr, "Too many option ROMs\n");
5437
                    exit(1);
5438
                }
5439
                option_rom[nb_option_roms] = optarg;
5440
                nb_option_roms++;
5441
                break;
5442
#if defined(TARGET_ARM) || defined(TARGET_M68K)
5443
            case QEMU_OPTION_semihosting:
5444
                semihosting_enabled = 1;
5445
                break;
5446
#endif
5447
            case QEMU_OPTION_name:
5448
                qemu_name = qemu_strdup(optarg);
5449
                 {
5450
                     char *p = strchr(qemu_name, ',');
5451
                     if (p != NULL) {
5452
                        *p++ = 0;
5453
                        if (strncmp(p, "process=", 8)) {
5454
                            fprintf(stderr, "Unknown subargument %s to -name", p);
5455
                            exit(1);
5456
                        }
5457
                        p += 8;
5458
                        set_proc_name(p);
5459
                     }        
5460
                 }        
5461
                break;
5462
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5463
            case QEMU_OPTION_prom_env:
5464
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5465
                    fprintf(stderr, "Too many prom variables\n");
5466
                    exit(1);
5467
                }
5468
                prom_envs[nb_prom_envs] = optarg;
5469
                nb_prom_envs++;
5470
                break;
5471
#endif
5472
#ifdef TARGET_ARM
5473
            case QEMU_OPTION_old_param:
5474
                old_param = 1;
5475
                break;
5476
#endif
5477
            case QEMU_OPTION_clock:
5478
                configure_alarms(optarg);
5479
                break;
5480
            case QEMU_OPTION_startdate:
5481
                configure_rtc_date_offset(optarg, 1);
5482
                break;
5483
            case QEMU_OPTION_rtc:
5484
                opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
5485
                if (!opts) {
5486
                    fprintf(stderr, "parse error: %s\n", optarg);
5487
                    exit(1);
5488
                }
5489
                configure_rtc(opts);
5490
                break;
5491
            case QEMU_OPTION_tb_size:
5492
                tb_size = strtol(optarg, NULL, 0);
5493
                if (tb_size < 0)
5494
                    tb_size = 0;
5495
                break;
5496
            case QEMU_OPTION_icount:
5497
                use_icount = 1;
5498
                if (strcmp(optarg, "auto") == 0) {
5499
                    icount_time_shift = -1;
5500
                } else {
5501
                    icount_time_shift = strtol(optarg, NULL, 0);
5502
                }
5503
                break;
5504
            case QEMU_OPTION_incoming:
5505
                incoming = optarg;
5506
                break;
5507
            case QEMU_OPTION_nodefaults:
5508
                default_serial = 0;
5509
                default_parallel = 0;
5510
                default_virtcon = 0;
5511
                default_monitor = 0;
5512
                default_vga = 0;
5513
                default_net = 0;
5514
                default_floppy = 0;
5515
                default_cdrom = 0;
5516
                default_sdcard = 0;
5517
                break;
5518
#ifndef _WIN32
5519
            case QEMU_OPTION_chroot:
5520
                chroot_dir = optarg;
5521
                break;
5522
            case QEMU_OPTION_runas:
5523
                run_as = optarg;
5524
                break;
5525
#endif
5526
#ifdef CONFIG_XEN
5527
            case QEMU_OPTION_xen_domid:
5528
                xen_domid = atoi(optarg);
5529
                break;
5530
            case QEMU_OPTION_xen_create:
5531
                xen_mode = XEN_CREATE;
5532
                break;
5533
            case QEMU_OPTION_xen_attach:
5534
                xen_mode = XEN_ATTACH;
5535
                break;
5536
#endif
5537
            case QEMU_OPTION_readconfig:
5538
                {
5539
                    FILE *fp;
5540
                    fp = fopen(optarg, "r");
5541
                    if (fp == NULL) {
5542
                        fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5543
                        exit(1);
5544
                    }
5545
                    if (qemu_config_parse(fp) != 0) {
5546
                        exit(1);
5547
                    }
5548
                    fclose(fp);
5549
                    break;
5550
                }
5551
            case QEMU_OPTION_writeconfig:
5552
                {
5553
                    FILE *fp;
5554
                    if (strcmp(optarg, "-") == 0) {
5555
                        fp = stdout;
5556
                    } else {
5557
                        fp = fopen(optarg, "w");
5558
                        if (fp == NULL) {
5559
                            fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
5560
                            exit(1);
5561
                        }
5562
                    }
5563
                    qemu_config_write(fp);
5564
                    fclose(fp);
5565
                    break;
5566
                }
5567
            }
5568
        }
5569
    }
5570

    
5571
    /* If no data_dir is specified then try to find it relative to the
5572
       executable path.  */
5573
    if (!data_dir) {
5574
        data_dir = find_datadir(argv[0]);
5575
    }
5576
    /* If all else fails use the install patch specified when building.  */
5577
    if (!data_dir) {
5578
        data_dir = CONFIG_QEMU_SHAREDIR;
5579
    }
5580

    
5581
    /*
5582
     * Default to max_cpus = smp_cpus, in case the user doesn't
5583
     * specify a max_cpus value.
5584
     */
5585
    if (!max_cpus)
5586
        max_cpus = smp_cpus;
5587

    
5588
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5589
    if (smp_cpus > machine->max_cpus) {
5590
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5591
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5592
                machine->max_cpus);
5593
        exit(1);
5594
    }
5595

    
5596
    qemu_opts_foreach(&qemu_device_opts, default_driver_check, NULL, 0);
5597
    qemu_opts_foreach(&qemu_global_opts, default_driver_check, NULL, 0);
5598

    
5599
    if (machine->no_serial) {
5600
        default_serial = 0;
5601
    }
5602
    if (machine->no_parallel) {
5603
        default_parallel = 0;
5604
    }
5605
    if (!machine->use_virtcon) {
5606
        default_virtcon = 0;
5607
    }
5608
    if (machine->no_vga) {
5609
        default_vga = 0;
5610
    }
5611
    if (machine->no_floppy) {
5612
        default_floppy = 0;
5613
    }
5614
    if (machine->no_cdrom) {
5615
        default_cdrom = 0;
5616
    }
5617
    if (machine->no_sdcard) {
5618
        default_sdcard = 0;
5619
    }
5620

    
5621
    if (display_type == DT_NOGRAPHIC) {
5622
        if (default_parallel)
5623
            add_device_config(DEV_PARALLEL, "null");
5624
        if (default_serial && default_monitor) {
5625
            add_device_config(DEV_SERIAL, "mon:stdio");
5626
        } else if (default_virtcon && default_monitor) {
5627
            add_device_config(DEV_VIRTCON, "mon:stdio");
5628
        } else {
5629
            if (default_serial)
5630
                add_device_config(DEV_SERIAL, "stdio");
5631
            if (default_virtcon)
5632
                add_device_config(DEV_VIRTCON, "stdio");
5633
            if (default_monitor)
5634
                monitor_parse("stdio", "readline");
5635
        }
5636
    } else {
5637
        if (default_serial)
5638
            add_device_config(DEV_SERIAL, "vc:80Cx24C");
5639
        if (default_parallel)
5640
            add_device_config(DEV_PARALLEL, "vc:80Cx24C");
5641
        if (default_monitor)
5642
            monitor_parse("vc:80Cx24C", "readline");
5643
        if (default_virtcon)
5644
            add_device_config(DEV_VIRTCON, "vc:80Cx24C");
5645
    }
5646
    if (default_vga)
5647
        vga_interface_type = VGA_CIRRUS;
5648

    
5649
    if (qemu_opts_foreach(&qemu_chardev_opts, chardev_init_func, NULL, 1) != 0)
5650
        exit(1);
5651

    
5652
#ifndef _WIN32
5653
    if (daemonize) {
5654
        pid_t pid;
5655

    
5656
        if (pipe(fds) == -1)
5657
            exit(1);
5658

    
5659
        pid = fork();
5660
        if (pid > 0) {
5661
            uint8_t status;
5662
            ssize_t len;
5663

    
5664
            close(fds[1]);
5665

    
5666
        again:
5667
            len = read(fds[0], &status, 1);
5668
            if (len == -1 && (errno == EINTR))
5669
                goto again;
5670

    
5671
            if (len != 1)
5672
                exit(1);
5673
            else if (status == 1) {
5674
                fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
5675
                exit(1);
5676
            } else
5677
                exit(0);
5678
        } else if (pid < 0)
5679
            exit(1);
5680

    
5681
        close(fds[0]);
5682
        qemu_set_cloexec(fds[1]);
5683

    
5684
        setsid();
5685

    
5686
        pid = fork();
5687
        if (pid > 0)
5688
            exit(0);
5689
        else if (pid < 0)
5690
            exit(1);
5691

    
5692
        umask(027);
5693

    
5694
        signal(SIGTSTP, SIG_IGN);
5695
        signal(SIGTTOU, SIG_IGN);
5696
        signal(SIGTTIN, SIG_IGN);
5697
    }
5698
#endif
5699

    
5700
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5701
#ifndef _WIN32
5702
        if (daemonize) {
5703
            uint8_t status = 1;
5704
            if (write(fds[1], &status, 1) != 1) {
5705
                perror("daemonize. Writing to pipe\n");
5706
            }
5707
        } else
5708
#endif
5709
            fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
5710
        exit(1);
5711
    }
5712

    
5713
    if (kvm_enabled()) {
5714
        int ret;
5715

    
5716
        ret = kvm_init(smp_cpus);
5717
        if (ret < 0) {
5718
            fprintf(stderr, "failed to initialize KVM\n");
5719
            exit(1);
5720
        }
5721
    }
5722

    
5723
    if (qemu_init_main_loop()) {
5724
        fprintf(stderr, "qemu_init_main_loop failed\n");
5725
        exit(1);
5726
    }
5727
    linux_boot = (kernel_filename != NULL);
5728

    
5729
    if (!linux_boot && *kernel_cmdline != '\0') {
5730
        fprintf(stderr, "-append only allowed with -kernel option\n");
5731
        exit(1);
5732
    }
5733

    
5734
    if (!linux_boot && initrd_filename != NULL) {
5735
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5736
        exit(1);
5737
    }
5738

    
5739
#ifndef _WIN32
5740
    /* Win32 doesn't support line-buffering and requires size >= 2 */
5741
    setvbuf(stdout, NULL, _IOLBF, 0);
5742
#endif
5743

    
5744
    if (init_timer_alarm() < 0) {
5745
        fprintf(stderr, "could not initialize alarm timer\n");
5746
        exit(1);
5747
    }
5748
    if (use_icount && icount_time_shift < 0) {
5749
        use_icount = 2;
5750
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5751
           It will be corrected fairly quickly anyway.  */
5752
        icount_time_shift = 3;
5753
        init_icount_adjust();
5754
    }
5755

    
5756
#ifdef _WIN32
5757
    socket_init();
5758
#endif
5759

    
5760
    if (net_init_clients() < 0) {
5761
        exit(1);
5762
    }
5763

    
5764
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5765
    net_set_boot_mask(net_boot);
5766

    
5767
    /* init the bluetooth world */
5768
    if (foreach_device_config(DEV_BT, bt_parse))
5769
        exit(1);
5770

    
5771
    /* init the memory */
5772
    if (ram_size == 0)
5773
        ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5774

    
5775
    /* init the dynamic translator */
5776
    cpu_exec_init_all(tb_size * 1024 * 1024);
5777

    
5778
    bdrv_init_with_whitelist();
5779

    
5780
    blk_mig_init();
5781

    
5782
    if (default_cdrom) {
5783
        /* we always create the cdrom drive, even if no disk is there */
5784
        drive_add(NULL, CDROM_ALIAS);
5785
    }
5786

    
5787
    if (default_floppy) {
5788
        /* we always create at least one floppy */
5789
        drive_add(NULL, FD_ALIAS, 0);
5790
    }
5791

    
5792
    if (default_sdcard) {
5793
        /* we always create one sd slot, even if no card is in it */
5794
        drive_add(NULL, SD_ALIAS);
5795
    }
5796

    
5797
    /* open the virtual block devices */
5798
    if (snapshot)
5799
        qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5800
    if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5801
        exit(1);
5802

    
5803
    vmstate_register(0, &vmstate_timers ,&timers_state);
5804
    register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL, 
5805
                         ram_load, NULL);
5806

    
5807
    if (nb_numa_nodes > 0) {
5808
        int i;
5809

    
5810
        if (nb_numa_nodes > smp_cpus) {
5811
            nb_numa_nodes = smp_cpus;
5812
        }
5813

    
5814
        /* If no memory size if given for any node, assume the default case
5815
         * and distribute the available memory equally across all nodes
5816
         */
5817
        for (i = 0; i < nb_numa_nodes; i++) {
5818
            if (node_mem[i] != 0)
5819
                break;
5820
        }
5821
        if (i == nb_numa_nodes) {
5822
            uint64_t usedmem = 0;
5823

    
5824
            /* On Linux, the each node's border has to be 8MB aligned,
5825
             * the final node gets the rest.
5826
             */
5827
            for (i = 0; i < nb_numa_nodes - 1; i++) {
5828
                node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5829
                usedmem += node_mem[i];
5830
            }
5831
            node_mem[i] = ram_size - usedmem;
5832
        }
5833

    
5834
        for (i = 0; i < nb_numa_nodes; i++) {
5835
            if (node_cpumask[i] != 0)
5836
                break;
5837
        }
5838
        /* assigning the VCPUs round-robin is easier to implement, guest OSes
5839
         * must cope with this anyway, because there are BIOSes out there in
5840
         * real machines which also use this scheme.
5841
         */
5842
        if (i == nb_numa_nodes) {
5843
            for (i = 0; i < smp_cpus; i++) {
5844
                node_cpumask[i % nb_numa_nodes] |= 1 << i;
5845
            }
5846
        }
5847
    }
5848

    
5849
    if (foreach_device_config(DEV_SERIAL, serial_parse) < 0)
5850
        exit(1);
5851
    if (foreach_device_config(DEV_PARALLEL, parallel_parse) < 0)
5852
        exit(1);
5853
    if (foreach_device_config(DEV_VIRTCON, virtcon_parse) < 0)
5854
        exit(1);
5855
    if (foreach_device_config(DEV_DEBUGCON, debugcon_parse) < 0)
5856
        exit(1);
5857

    
5858
    module_call_init(MODULE_INIT_DEVICE);
5859

    
5860
    if (qemu_opts_foreach(&qemu_device_opts, device_help_func, NULL, 0) != 0)
5861
        exit(0);
5862

    
5863
    if (watchdog) {
5864
        i = select_watchdog(watchdog);
5865
        if (i > 0)
5866
            exit (i == 1 ? 1 : 0);
5867
    }
5868

    
5869
    if (machine->compat_props) {
5870
        qdev_prop_register_global_list(machine->compat_props);
5871
    }
5872
    qemu_add_globals();
5873

    
5874
    machine->init(ram_size, boot_devices,
5875
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5876

    
5877

    
5878
#ifndef _WIN32
5879
    /* must be after terminal init, SDL library changes signal handlers */
5880
    sighandler_setup();
5881
#endif
5882

    
5883
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
5884
        for (i = 0; i < nb_numa_nodes; i++) {
5885
            if (node_cpumask[i] & (1 << env->cpu_index)) {
5886
                env->numa_node = i;
5887
            }
5888
        }
5889
    }
5890

    
5891
    current_machine = machine;
5892

    
5893
    /* init USB devices */
5894
    if (usb_enabled) {
5895
        if (foreach_device_config(DEV_USB, usb_parse) < 0)
5896
            exit(1);
5897
    }
5898

    
5899
    /* init generic devices */
5900
    if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5901
        exit(1);
5902

    
5903
    net_check_clients();
5904

    
5905
    /* just use the first displaystate for the moment */
5906
    ds = get_displaystate();
5907

    
5908
    if (display_type == DT_DEFAULT) {
5909
#if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5910
        display_type = DT_SDL;
5911
#else
5912
        display_type = DT_VNC;
5913
        vnc_display = "localhost:0,to=99";
5914
        show_vnc_port = 1;
5915
#endif
5916
    }
5917
        
5918

    
5919
    switch (display_type) {
5920
    case DT_NOGRAPHIC:
5921
        break;
5922
#if defined(CONFIG_CURSES)
5923
    case DT_CURSES:
5924
        curses_display_init(ds, full_screen);
5925
        break;
5926
#endif
5927
#if defined(CONFIG_SDL)
5928
    case DT_SDL:
5929
        sdl_display_init(ds, full_screen, no_frame);
5930
        break;
5931
#elif defined(CONFIG_COCOA)
5932
    case DT_SDL:
5933
        cocoa_display_init(ds, full_screen);
5934
        break;
5935
#endif
5936
    case DT_VNC:
5937
        vnc_display_init(ds);
5938
        if (vnc_display_open(ds, vnc_display) < 0)
5939
            exit(1);
5940

    
5941
        if (show_vnc_port) {
5942
            printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5943
        }
5944
        break;
5945
    default:
5946
        break;
5947
    }
5948
    dpy_resize(ds);
5949

    
5950
    dcl = ds->listeners;
5951
    while (dcl != NULL) {
5952
        if (dcl->dpy_refresh != NULL) {
5953
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5954
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5955
        }
5956
        dcl = dcl->next;
5957
    }
5958

    
5959
    if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5960
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5961
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5962
    }
5963

    
5964
    text_consoles_set_display(ds);
5965

    
5966
    if (qemu_opts_foreach(&qemu_mon_opts, mon_init_func, NULL, 1) != 0)
5967
        exit(1);
5968

    
5969
    if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
5970
        fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
5971
                gdbstub_dev);
5972
        exit(1);
5973
    }
5974

    
5975
    qdev_machine_creation_done();
5976

    
5977
    if (rom_load_all() != 0) {
5978
        fprintf(stderr, "rom loading failed\n");
5979
        exit(1);
5980
    }
5981

    
5982
    qemu_system_reset();
5983
    if (loadvm) {
5984
        if (load_vmstate(cur_mon, loadvm) < 0) {
5985
            autostart = 0;
5986
        }
5987
    }
5988

    
5989
    if (incoming) {
5990
        qemu_start_incoming_migration(incoming);
5991
    } else if (autostart) {
5992
        vm_start();
5993
    }
5994

    
5995
#ifndef _WIN32
5996
    if (daemonize) {
5997
        uint8_t status = 0;
5998
        ssize_t len;
5999

    
6000
    again1:
6001
        len = write(fds[1], &status, 1);
6002
        if (len == -1 && (errno == EINTR))
6003
            goto again1;
6004

    
6005
        if (len != 1)
6006
            exit(1);
6007

    
6008
        if (chdir("/")) {
6009
            perror("not able to chdir to /");
6010
            exit(1);
6011
        }
6012
        TFR(fd = qemu_open("/dev/null", O_RDWR));
6013
        if (fd == -1)
6014
            exit(1);
6015
    }
6016

    
6017
    if (run_as) {
6018
        pwd = getpwnam(run_as);
6019
        if (!pwd) {
6020
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6021
            exit(1);
6022
        }
6023
    }
6024

    
6025
    if (chroot_dir) {
6026
        if (chroot(chroot_dir) < 0) {
6027
            fprintf(stderr, "chroot failed\n");
6028
            exit(1);
6029
        }
6030
        if (chdir("/")) {
6031
            perror("not able to chdir to /");
6032
            exit(1);
6033
        }
6034
    }
6035

    
6036
    if (run_as) {
6037
        if (setgid(pwd->pw_gid) < 0) {
6038
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6039
            exit(1);
6040
        }
6041
        if (setuid(pwd->pw_uid) < 0) {
6042
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6043
            exit(1);
6044
        }
6045
        if (setuid(0) != -1) {
6046
            fprintf(stderr, "Dropping privileges failed\n");
6047
            exit(1);
6048
        }
6049
    }
6050

    
6051
    if (daemonize) {
6052
        dup2(fd, 0);
6053
        dup2(fd, 1);
6054
        dup2(fd, 2);
6055

    
6056
        close(fd);
6057
    }
6058
#endif
6059

    
6060
    main_loop();
6061
    quit_timers();
6062
    net_cleanup();
6063

    
6064
    return 0;
6065
}