Statistics
| Branch: | Revision:

root / hw / arm_sysctl.c @ b50ff6f5

History | View | Annotate | Download (8.1 kB)

1
/*
2
 * Status and system control registers for ARM RealView/Versatile boards.
3
 *
4
 * Copyright (c) 2006-2007 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the GPL.
8
 */
9

    
10
#include "hw.h"
11
#include "qemu-timer.h"
12
#include "sysbus.h"
13
#include "primecell.h"
14
#include "sysemu.h"
15

    
16
#define LOCK_VALUE 0xa05f
17

    
18
typedef struct {
19
    SysBusDevice busdev;
20
    uint32_t sys_id;
21
    uint32_t leds;
22
    uint16_t lockval;
23
    uint32_t cfgdata1;
24
    uint32_t cfgdata2;
25
    uint32_t flags;
26
    uint32_t nvflags;
27
    uint32_t resetlevel;
28
    uint32_t proc_id;
29
    uint32_t sys_mci;
30
} arm_sysctl_state;
31

    
32
static const VMStateDescription vmstate_arm_sysctl = {
33
    .name = "realview_sysctl",
34
    .version_id = 1,
35
    .minimum_version_id = 1,
36
    .fields = (VMStateField[]) {
37
        VMSTATE_UINT32(leds, arm_sysctl_state),
38
        VMSTATE_UINT16(lockval, arm_sysctl_state),
39
        VMSTATE_UINT32(cfgdata1, arm_sysctl_state),
40
        VMSTATE_UINT32(cfgdata2, arm_sysctl_state),
41
        VMSTATE_UINT32(flags, arm_sysctl_state),
42
        VMSTATE_UINT32(nvflags, arm_sysctl_state),
43
        VMSTATE_UINT32(resetlevel, arm_sysctl_state),
44
        VMSTATE_END_OF_LIST()
45
    }
46
};
47

    
48
/* The PB926 actually uses a different format for
49
 * its SYS_ID register. Fortunately the bits which are
50
 * board type on later boards are distinct.
51
 */
52
#define BOARD_ID_PB926 0x100
53
#define BOARD_ID_EB 0x140
54
#define BOARD_ID_PBA8 0x178
55
#define BOARD_ID_PBX 0x182
56

    
57
static int board_id(arm_sysctl_state *s)
58
{
59
    /* Extract the board ID field from the SYS_ID register value */
60
    return (s->sys_id >> 16) & 0xfff;
61
}
62

    
63
static void arm_sysctl_reset(DeviceState *d)
64
{
65
    arm_sysctl_state *s = FROM_SYSBUS(arm_sysctl_state, sysbus_from_qdev(d));
66

    
67
    s->leds = 0;
68
    s->lockval = 0;
69
    s->cfgdata1 = 0;
70
    s->cfgdata2 = 0;
71
    s->flags = 0;
72
    s->resetlevel = 0;
73
}
74

    
75
static uint32_t arm_sysctl_read(void *opaque, target_phys_addr_t offset)
76
{
77
    arm_sysctl_state *s = (arm_sysctl_state *)opaque;
78

    
79
    switch (offset) {
80
    case 0x00: /* ID */
81
        return s->sys_id;
82
    case 0x04: /* SW */
83
        /* General purpose hardware switches.
84
           We don't have a useful way of exposing these to the user.  */
85
        return 0;
86
    case 0x08: /* LED */
87
        return s->leds;
88
    case 0x20: /* LOCK */
89
        return s->lockval;
90
    case 0x0c: /* OSC0 */
91
    case 0x10: /* OSC1 */
92
    case 0x14: /* OSC2 */
93
    case 0x18: /* OSC3 */
94
    case 0x1c: /* OSC4 */
95
    case 0x24: /* 100HZ */
96
        /* ??? Implement these.  */
97
        return 0;
98
    case 0x28: /* CFGDATA1 */
99
        return s->cfgdata1;
100
    case 0x2c: /* CFGDATA2 */
101
        return s->cfgdata2;
102
    case 0x30: /* FLAGS */
103
        return s->flags;
104
    case 0x38: /* NVFLAGS */
105
        return s->nvflags;
106
    case 0x40: /* RESETCTL */
107
        return s->resetlevel;
108
    case 0x44: /* PCICTL */
109
        return 1;
110
    case 0x48: /* MCI */
111
        return s->sys_mci;
112
    case 0x4c: /* FLASH */
113
        return 0;
114
    case 0x50: /* CLCD */
115
        return 0x1000;
116
    case 0x54: /* CLCDSER */
117
        return 0;
118
    case 0x58: /* BOOTCS */
119
        return 0;
120
    case 0x5c: /* 24MHz */
121
        return muldiv64(qemu_get_clock(vm_clock), 24000000, get_ticks_per_sec());
122
    case 0x60: /* MISC */
123
        return 0;
124
    case 0x84: /* PROCID0 */
125
        return s->proc_id;
126
    case 0x88: /* PROCID1 */
127
        return 0xff000000;
128
    case 0x64: /* DMAPSR0 */
129
    case 0x68: /* DMAPSR1 */
130
    case 0x6c: /* DMAPSR2 */
131
    case 0x70: /* IOSEL */
132
    case 0x74: /* PLDCTL */
133
    case 0x80: /* BUSID */
134
    case 0x8c: /* OSCRESET0 */
135
    case 0x90: /* OSCRESET1 */
136
    case 0x94: /* OSCRESET2 */
137
    case 0x98: /* OSCRESET3 */
138
    case 0x9c: /* OSCRESET4 */
139
    case 0xc0: /* SYS_TEST_OSC0 */
140
    case 0xc4: /* SYS_TEST_OSC1 */
141
    case 0xc8: /* SYS_TEST_OSC2 */
142
    case 0xcc: /* SYS_TEST_OSC3 */
143
    case 0xd0: /* SYS_TEST_OSC4 */
144
        return 0;
145
    default:
146
        printf ("arm_sysctl_read: Bad register offset 0x%x\n", (int)offset);
147
        return 0;
148
    }
149
}
150

    
151
static void arm_sysctl_write(void *opaque, target_phys_addr_t offset,
152
                          uint32_t val)
153
{
154
    arm_sysctl_state *s = (arm_sysctl_state *)opaque;
155

    
156
    switch (offset) {
157
    case 0x08: /* LED */
158
        s->leds = val;
159
    case 0x0c: /* OSC0 */
160
    case 0x10: /* OSC1 */
161
    case 0x14: /* OSC2 */
162
    case 0x18: /* OSC3 */
163
    case 0x1c: /* OSC4 */
164
        /* ??? */
165
        break;
166
    case 0x20: /* LOCK */
167
        if (val == LOCK_VALUE)
168
            s->lockval = val;
169
        else
170
            s->lockval = val & 0x7fff;
171
        break;
172
    case 0x28: /* CFGDATA1 */
173
        /* ??? Need to implement this.  */
174
        s->cfgdata1 = val;
175
        break;
176
    case 0x2c: /* CFGDATA2 */
177
        /* ??? Need to implement this.  */
178
        s->cfgdata2 = val;
179
        break;
180
    case 0x30: /* FLAGSSET */
181
        s->flags |= val;
182
        break;
183
    case 0x34: /* FLAGSCLR */
184
        s->flags &= ~val;
185
        break;
186
    case 0x38: /* NVFLAGSSET */
187
        s->nvflags |= val;
188
        break;
189
    case 0x3c: /* NVFLAGSCLR */
190
        s->nvflags &= ~val;
191
        break;
192
    case 0x40: /* RESETCTL */
193
        if (s->lockval == LOCK_VALUE) {
194
            s->resetlevel = val;
195
            if (val & 0x100)
196
                qemu_system_reset_request ();
197
        }
198
        break;
199
    case 0x44: /* PCICTL */
200
        /* nothing to do.  */
201
        break;
202
    case 0x4c: /* FLASH */
203
    case 0x50: /* CLCD */
204
    case 0x54: /* CLCDSER */
205
    case 0x64: /* DMAPSR0 */
206
    case 0x68: /* DMAPSR1 */
207
    case 0x6c: /* DMAPSR2 */
208
    case 0x70: /* IOSEL */
209
    case 0x74: /* PLDCTL */
210
    case 0x80: /* BUSID */
211
    case 0x84: /* PROCID0 */
212
    case 0x88: /* PROCID1 */
213
    case 0x8c: /* OSCRESET0 */
214
    case 0x90: /* OSCRESET1 */
215
    case 0x94: /* OSCRESET2 */
216
    case 0x98: /* OSCRESET3 */
217
    case 0x9c: /* OSCRESET4 */
218
        break;
219
    default:
220
        printf ("arm_sysctl_write: Bad register offset 0x%x\n", (int)offset);
221
        return;
222
    }
223
}
224

    
225
static CPUReadMemoryFunc * const arm_sysctl_readfn[] = {
226
   arm_sysctl_read,
227
   arm_sysctl_read,
228
   arm_sysctl_read
229
};
230

    
231
static CPUWriteMemoryFunc * const arm_sysctl_writefn[] = {
232
   arm_sysctl_write,
233
   arm_sysctl_write,
234
   arm_sysctl_write
235
};
236

    
237
static void arm_sysctl_gpio_set(void *opaque, int line, int level)
238
{
239
    arm_sysctl_state *s = (arm_sysctl_state *)opaque;
240
    switch (line) {
241
    case ARM_SYSCTL_GPIO_MMC_WPROT:
242
    {
243
        /* For PB926 and EB write-protect is bit 2 of SYS_MCI;
244
         * for all later boards it is bit 1.
245
         */
246
        int bit = 2;
247
        if ((board_id(s) == BOARD_ID_PB926) || (board_id(s) == BOARD_ID_EB)) {
248
            bit = 4;
249
        }
250
        s->sys_mci &= ~bit;
251
        if (level) {
252
            s->sys_mci |= bit;
253
        }
254
        break;
255
    }
256
    case ARM_SYSCTL_GPIO_MMC_CARDIN:
257
        s->sys_mci &= ~1;
258
        if (level) {
259
            s->sys_mci |= 1;
260
        }
261
        break;
262
    }
263
}
264

    
265
static int arm_sysctl_init1(SysBusDevice *dev)
266
{
267
    arm_sysctl_state *s = FROM_SYSBUS(arm_sysctl_state, dev);
268
    int iomemtype;
269

    
270
    iomemtype = cpu_register_io_memory(arm_sysctl_readfn,
271
                                       arm_sysctl_writefn, s,
272
                                       DEVICE_NATIVE_ENDIAN);
273
    sysbus_init_mmio(dev, 0x1000, iomemtype);
274
    qdev_init_gpio_in(&s->busdev.qdev, arm_sysctl_gpio_set, 2);
275
    /* ??? Save/restore.  */
276
    return 0;
277
}
278

    
279
/* Legacy helper function.  */
280
void arm_sysctl_init(uint32_t base, uint32_t sys_id, uint32_t proc_id)
281
{
282
    DeviceState *dev;
283

    
284
    dev = qdev_create(NULL, "realview_sysctl");
285
    qdev_prop_set_uint32(dev, "sys_id", sys_id);
286
    qdev_init_nofail(dev);
287
    qdev_prop_set_uint32(dev, "proc_id", proc_id);
288
    sysbus_mmio_map(sysbus_from_qdev(dev), 0, base);
289
}
290

    
291
static SysBusDeviceInfo arm_sysctl_info = {
292
    .init = arm_sysctl_init1,
293
    .qdev.name  = "realview_sysctl",
294
    .qdev.size  = sizeof(arm_sysctl_state),
295
    .qdev.vmsd = &vmstate_arm_sysctl,
296
    .qdev.reset = arm_sysctl_reset,
297
    .qdev.props = (Property[]) {
298
        DEFINE_PROP_UINT32("sys_id", arm_sysctl_state, sys_id, 0),
299
        DEFINE_PROP_UINT32("proc_id", arm_sysctl_state, proc_id, 0),
300
        DEFINE_PROP_END_OF_LIST(),
301
    }
302
};
303

    
304
static void arm_sysctl_register_devices(void)
305
{
306
    sysbus_register_withprop(&arm_sysctl_info);
307
}
308

    
309
device_init(arm_sysctl_register_devices)