Statistics
| Branch: | Revision:

root / hw / wdt_i6300esb.c @ b80d4a98

History | View | Annotate | Download (13.8 kB)

1
/*
2
 * Virtual hardware watchdog.
3
 *
4
 * Copyright (C) 2009 Red Hat Inc.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 *
19
 * By Richard W.M. Jones (rjones@redhat.com).
20
 */
21

    
22
#include <inttypes.h>
23

    
24
#include "qemu-common.h"
25
#include "qemu-timer.h"
26
#include "watchdog.h"
27
#include "hw.h"
28
#include "pci.h"
29

    
30
/*#define I6300ESB_DEBUG 1*/
31

    
32
#ifdef I6300ESB_DEBUG
33
#define i6300esb_debug(fs,...) \
34
    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35
#else
36
#define i6300esb_debug(fs,...)
37
#endif
38

    
39
/* PCI configuration registers */
40
#define ESB_CONFIG_REG  0x60            /* Config register                   */
41
#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
42

    
43
/* Memory mapped registers (offset from base address) */
44
#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
45
#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
46
#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
47
#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
48

    
49
/* Lock register bits */
50
#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
51
#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
52
#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
53

    
54
/* Config register bits */
55
#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
56
#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
57
#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
58

    
59
/* Reload register bits */
60
#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
61

    
62
/* Magic constants */
63
#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
64
#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
65

    
66
/* Device state. */
67
struct I6300State {
68
    PCIDevice dev;
69

    
70
    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
71
                                 * performed depends on the -watchdog-action
72
                                 * param passed on QEMU command line.
73
                                 */
74
    int clock_scale;            /* Clock scale. */
75
#define CLOCK_SCALE_1KHZ 0
76
#define CLOCK_SCALE_1MHZ 1
77

    
78
    int int_type;               /* Interrupt type generated. */
79
#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
80
#define INT_TYPE_SMI 2
81
#define INT_TYPE_DISABLED 3
82

    
83
    int free_run;               /* If true, reload timer on expiry. */
84
    int locked;                 /* If true, enabled field cannot be changed. */
85
    int enabled;                /* If true, watchdog is enabled. */
86

    
87
    QEMUTimer *timer;           /* The actual watchdog timer. */
88

    
89
    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
90
    uint32_t timer2_preload;
91
    int stage;                  /* Stage (1 or 2). */
92

    
93
    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
94
                                 * registers, and we transition through
95
                                 * states 0 -> 1 -> 2 when this happens.
96
                                 */
97

    
98
    int previous_reboot_flag;   /* If the watchdog caused the previous
99
                                 * reboot, this flag will be set.
100
                                 */
101
};
102

    
103
typedef struct I6300State I6300State;
104

    
105
/* This function is called when the watchdog has either been enabled
106
 * (hence it starts counting down) or has been keep-alived.
107
 */
108
static void i6300esb_restart_timer(I6300State *d, int stage)
109
{
110
    int64_t timeout;
111

    
112
    if (!d->enabled)
113
        return;
114

    
115
    d->stage = stage;
116

    
117
    if (d->stage <= 1)
118
        timeout = d->timer1_preload;
119
    else
120
        timeout = d->timer2_preload;
121

    
122
    if (d->clock_scale == CLOCK_SCALE_1KHZ)
123
        timeout <<= 15;
124
    else
125
        timeout <<= 5;
126

    
127
    /* Get the timeout in units of ticks_per_sec. */
128
    timeout = get_ticks_per_sec() * timeout / 33000000;
129

    
130
    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
131

    
132
    qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
133
}
134

    
135
/* This is called when the guest disables the watchdog. */
136
static void i6300esb_disable_timer(I6300State *d)
137
{
138
    i6300esb_debug("timer disabled\n");
139

    
140
    qemu_del_timer(d->timer);
141
}
142

    
143
static void i6300esb_reset(I6300State *d)
144
{
145
    /* XXX We should probably reset other parts of the state here,
146
     * but we should also reset our state on general machine reset
147
     * too.  For now just disable the timer so it doesn't fire
148
     * again after the reboot.
149
     */
150
    i6300esb_disable_timer(d);
151
}
152

    
153
/* This function is called when the watchdog expires.  Note that
154
 * the hardware has two timers, and so expiry happens in two stages.
155
 * If d->stage == 1 then we perform the first stage action (usually,
156
 * sending an interrupt) and then restart the timer again for the
157
 * second stage.  If the second stage expires then the watchdog
158
 * really has run out.
159
 */
160
static void i6300esb_timer_expired(void *vp)
161
{
162
    I6300State *d = vp;
163

    
164
    i6300esb_debug("stage %d\n", d->stage);
165

    
166
    if (d->stage == 1) {
167
        /* What to do at the end of stage 1? */
168
        switch (d->int_type) {
169
        case INT_TYPE_IRQ:
170
            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
171
            break;
172
        case INT_TYPE_SMI:
173
            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
174
            break;
175
        }
176

    
177
        /* Start the second stage. */
178
        i6300esb_restart_timer(d, 2);
179
    } else {
180
        /* Second stage expired, reboot for real. */
181
        if (d->reboot_enabled) {
182
            d->previous_reboot_flag = 1;
183
            watchdog_perform_action(); /* This reboots, exits, etc */
184
            i6300esb_reset(d);
185
        }
186

    
187
        /* In "free running mode" we start stage 1 again. */
188
        if (d->free_run)
189
            i6300esb_restart_timer(d, 1);
190
    }
191
}
192

    
193
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
194
                                  uint32_t data, int len)
195
{
196
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
197
    int old;
198

    
199
    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
200

    
201
    if (addr == ESB_CONFIG_REG && len == 2) {
202
        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
203
        d->clock_scale =
204
            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
205
        d->int_type = (data & ESB_WDT_INTTYPE);
206
    } else if (addr == ESB_LOCK_REG && len == 1) {
207
        if (!d->locked) {
208
            d->locked = (data & ESB_WDT_LOCK) != 0;
209
            d->free_run = (data & ESB_WDT_FUNC) != 0;
210
            old = d->enabled;
211
            d->enabled = (data & ESB_WDT_ENABLE) != 0;
212
            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
213
                i6300esb_restart_timer(d, 1);
214
            else if (!d->enabled)
215
                i6300esb_disable_timer(d);
216
        }
217
    } else {
218
        pci_default_write_config(dev, addr, data, len);
219
    }
220
}
221

    
222
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
223
{
224
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
225
    uint32_t data;
226

    
227
    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
228

    
229
    if (addr == ESB_CONFIG_REG && len == 2) {
230
        data =
231
            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
232
            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
233
            d->int_type;
234
        return data;
235
    } else if (addr == ESB_LOCK_REG && len == 1) {
236
        data =
237
            (d->free_run ? ESB_WDT_FUNC : 0) |
238
            (d->locked ? ESB_WDT_LOCK : 0) |
239
            (d->enabled ? ESB_WDT_ENABLE : 0);
240
        return data;
241
    } else {
242
        return pci_default_read_config(dev, addr, len);
243
    }
244
}
245

    
246
static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
247
{
248
    i6300esb_debug ("addr = %x\n", (int) addr);
249

    
250
    return 0;
251
}
252

    
253
static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
254
{
255
    uint32_t data = 0;
256
    I6300State *d = vp;
257

    
258
    i6300esb_debug("addr = %x\n", (int) addr);
259

    
260
    if (addr == 0xc) {
261
        /* The previous reboot flag is really bit 9, but there is
262
         * a bug in the Linux driver where it thinks it's bit 12.
263
         * Set both.
264
         */
265
        data = d->previous_reboot_flag ? 0x1200 : 0;
266
    }
267

    
268
    return data;
269
}
270

    
271
static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
272
{
273
    i6300esb_debug("addr = %x\n", (int) addr);
274

    
275
    return 0;
276
}
277

    
278
static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
279
{
280
    I6300State *d = vp;
281

    
282
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
283

    
284
    if (addr == 0xc && val == 0x80)
285
        d->unlock_state = 1;
286
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
287
        d->unlock_state = 2;
288
}
289

    
290
static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
291
{
292
    I6300State *d = vp;
293

    
294
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
295

    
296
    if (addr == 0xc && val == 0x80)
297
        d->unlock_state = 1;
298
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
299
        d->unlock_state = 2;
300
    else {
301
        if (d->unlock_state == 2) {
302
            if (addr == 0xc) {
303
                if ((val & 0x100) != 0)
304
                    /* This is the "ping" from the userspace watchdog in
305
                     * the guest ...
306
                     */
307
                    i6300esb_restart_timer(d, 1);
308

    
309
                /* Setting bit 9 resets the previous reboot flag.
310
                 * There's a bug in the Linux driver where it sets
311
                 * bit 12 instead.
312
                 */
313
                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
314
                    d->previous_reboot_flag = 0;
315
                }
316
            }
317

    
318
            d->unlock_state = 0;
319
        }
320
    }
321
}
322

    
323
static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
324
{
325
    I6300State *d = vp;
326

    
327
    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
328

    
329
    if (addr == 0xc && val == 0x80)
330
        d->unlock_state = 1;
331
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
332
        d->unlock_state = 2;
333
    else {
334
        if (d->unlock_state == 2) {
335
            if (addr == 0)
336
                d->timer1_preload = val & 0xfffff;
337
            else if (addr == 4)
338
                d->timer2_preload = val & 0xfffff;
339

    
340
            d->unlock_state = 0;
341
        }
342
    }
343
}
344

    
345
static void i6300esb_map(PCIDevice *dev, int region_num,
346
                         pcibus_t addr, pcibus_t size, int type)
347
{
348
    static CPUReadMemoryFunc * const mem_read[3] = {
349
        i6300esb_mem_readb,
350
        i6300esb_mem_readw,
351
        i6300esb_mem_readl,
352
    };
353
    static CPUWriteMemoryFunc * const mem_write[3] = {
354
        i6300esb_mem_writeb,
355
        i6300esb_mem_writew,
356
        i6300esb_mem_writel,
357
    };
358
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
359
    int io_mem;
360

    
361
    i6300esb_debug("addr = %"FMT_PCIBUS", size = %"FMT_PCIBUS", type = %d\n",
362
                   addr, size, type);
363

    
364
    io_mem = cpu_register_io_memory(mem_read, mem_write, d);
365
    cpu_register_physical_memory (addr, 0x10, io_mem);
366
    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
367
}
368

    
369
static const VMStateDescription vmstate_i6300esb = {
370
    .name = "i6300esb_wdt",
371
    .version_id = sizeof(I6300State),
372
    .minimum_version_id = sizeof(I6300State),
373
    .minimum_version_id_old = sizeof(I6300State),
374
    .fields      = (VMStateField []) {
375
        VMSTATE_PCI_DEVICE(dev, I6300State),
376
        VMSTATE_INT32(reboot_enabled, I6300State),
377
        VMSTATE_INT32(clock_scale, I6300State),
378
        VMSTATE_INT32(int_type, I6300State),
379
        VMSTATE_INT32(free_run, I6300State),
380
        VMSTATE_INT32(locked, I6300State),
381
        VMSTATE_INT32(enabled, I6300State),
382
        VMSTATE_TIMER(timer, I6300State),
383
        VMSTATE_UINT32(timer1_preload, I6300State),
384
        VMSTATE_UINT32(timer2_preload, I6300State),
385
        VMSTATE_INT32(stage, I6300State),
386
        VMSTATE_INT32(unlock_state, I6300State),
387
        VMSTATE_INT32(previous_reboot_flag, I6300State),
388
        VMSTATE_END_OF_LIST()
389
    }
390
};
391

    
392
static int i6300esb_init(PCIDevice *dev)
393
{
394
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
395
    uint8_t *pci_conf;
396

    
397
    d->reboot_enabled = 1;
398
    d->clock_scale = CLOCK_SCALE_1KHZ;
399
    d->int_type = INT_TYPE_IRQ;
400
    d->free_run = 0;
401
    d->locked = 0;
402
    d->enabled = 0;
403
    d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
404
    d->timer1_preload = 0xfffff;
405
    d->timer2_preload = 0xfffff;
406
    d->stage = 1;
407
    d->unlock_state = 0;
408
    d->previous_reboot_flag = 0;
409

    
410
    pci_conf = d->dev.config;
411
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
412
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
413
    pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
414

    
415
    pci_register_bar(&d->dev, 0, 0x10,
416
                            PCI_BASE_ADDRESS_SPACE_MEMORY, i6300esb_map);
417

    
418
    return 0;
419
}
420

    
421
static WatchdogTimerModel model = {
422
    .wdt_name = "i6300esb",
423
    .wdt_description = "Intel 6300ESB",
424
};
425

    
426
static PCIDeviceInfo i6300esb_info = {
427
    .qdev.name    = "i6300esb",
428
    .qdev.size    = sizeof(I6300State),
429
    .qdev.vmsd    = &vmstate_i6300esb,
430
    .config_read  = i6300esb_config_read,
431
    .config_write = i6300esb_config_write,
432
    .init         = i6300esb_init,
433
};
434

    
435
static void i6300esb_register_devices(void)
436
{
437
    watchdog_add_model(&model);
438
    pci_qdev_register(&i6300esb_info);
439
}
440

    
441
device_init(i6300esb_register_devices);