Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ b827df58

History | View | Annotate | Download (24.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26

    
27
//#define DEBUG_KVM
28

    
29
#ifdef DEBUG_KVM
30
#define dprintf(fmt, ...) \
31
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32
#else
33
#define dprintf(fmt, ...) \
34
    do { } while (0)
35
#endif
36

    
37
#ifdef KVM_CAP_EXT_CPUID
38

    
39
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
40
{
41
    struct kvm_cpuid2 *cpuid;
42
    int r, size;
43

    
44
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
45
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
46
    cpuid->nent = max;
47
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
48
    if (r < 0) {
49
        if (r == -E2BIG) {
50
            qemu_free(cpuid);
51
            return NULL;
52
        } else {
53
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
54
                    strerror(-r));
55
            exit(1);
56
        }
57
    }
58
    return cpuid;
59
}
60

    
61
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
62
{
63
    struct kvm_cpuid2 *cpuid;
64
    int i, max;
65
    uint32_t ret = 0;
66
    uint32_t cpuid_1_edx;
67

    
68
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
69
        return -1U;
70
    }
71

    
72
    max = 1;
73
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
74
        max *= 2;
75
    }
76

    
77
    for (i = 0; i < cpuid->nent; ++i) {
78
        if (cpuid->entries[i].function == function) {
79
            switch (reg) {
80
            case R_EAX:
81
                ret = cpuid->entries[i].eax;
82
                break;
83
            case R_EBX:
84
                ret = cpuid->entries[i].ebx;
85
                break;
86
            case R_ECX:
87
                ret = cpuid->entries[i].ecx;
88
                break;
89
            case R_EDX:
90
                ret = cpuid->entries[i].edx;
91
                if (function == 0x80000001) {
92
                    /* On Intel, kvm returns cpuid according to the Intel spec,
93
                     * so add missing bits according to the AMD spec:
94
                     */
95
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
96
                    ret |= cpuid_1_edx & 0xdfeff7ff;
97
                }
98
                break;
99
            }
100
        }
101
    }
102

    
103
    qemu_free(cpuid);
104

    
105
    return ret;
106
}
107

    
108
#else
109

    
110
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
111
{
112
    return -1U;
113
}
114

    
115
#endif
116

    
117
int kvm_arch_init_vcpu(CPUState *env)
118
{
119
    struct {
120
        struct kvm_cpuid2 cpuid;
121
        struct kvm_cpuid_entry2 entries[100];
122
    } __attribute__((packed)) cpuid_data;
123
    uint32_t limit, i, j, cpuid_i;
124
    uint32_t unused;
125

    
126
    cpuid_i = 0;
127

    
128
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
129

    
130
    for (i = 0; i <= limit; i++) {
131
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
132

    
133
        switch (i) {
134
        case 2: {
135
            /* Keep reading function 2 till all the input is received */
136
            int times;
137

    
138
            c->function = i;
139
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
140
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
141
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
142
            times = c->eax & 0xff;
143

    
144
            for (j = 1; j < times; ++j) {
145
                c = &cpuid_data.entries[cpuid_i++];
146
                c->function = i;
147
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
148
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
149
            }
150
            break;
151
        }
152
        case 4:
153
        case 0xb:
154
        case 0xd:
155
            for (j = 0; ; j++) {
156
                c->function = i;
157
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
158
                c->index = j;
159
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
160

    
161
                if (i == 4 && c->eax == 0)
162
                    break;
163
                if (i == 0xb && !(c->ecx & 0xff00))
164
                    break;
165
                if (i == 0xd && c->eax == 0)
166
                    break;
167

    
168
                c = &cpuid_data.entries[cpuid_i++];
169
            }
170
            break;
171
        default:
172
            c->function = i;
173
            c->flags = 0;
174
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
175
            break;
176
        }
177
    }
178
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
179

    
180
    for (i = 0x80000000; i <= limit; i++) {
181
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
182

    
183
        c->function = i;
184
        c->flags = 0;
185
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
186
    }
187

    
188
    cpuid_data.cpuid.nent = cpuid_i;
189

    
190
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
191
}
192

    
193
static int kvm_has_msr_star(CPUState *env)
194
{
195
    static int has_msr_star;
196
    int ret;
197

    
198
    /* first time */
199
    if (has_msr_star == 0) {        
200
        struct kvm_msr_list msr_list, *kvm_msr_list;
201

    
202
        has_msr_star = -1;
203

    
204
        /* Obtain MSR list from KVM.  These are the MSRs that we must
205
         * save/restore */
206
        msr_list.nmsrs = 0;
207
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
208
        if (ret < 0)
209
            return 0;
210

    
211
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
212
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
213

    
214
        kvm_msr_list->nmsrs = msr_list.nmsrs;
215
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
216
        if (ret >= 0) {
217
            int i;
218

    
219
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
220
                if (kvm_msr_list->indices[i] == MSR_STAR) {
221
                    has_msr_star = 1;
222
                    break;
223
                }
224
            }
225
        }
226

    
227
        free(kvm_msr_list);
228
    }
229

    
230
    if (has_msr_star == 1)
231
        return 1;
232
    return 0;
233
}
234

    
235
int kvm_arch_init(KVMState *s, int smp_cpus)
236
{
237
    int ret;
238

    
239
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
240
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
241
     * must be part of guest physical memory, we need to allocate it.  Older
242
     * versions of KVM just assumed that it would be at the end of physical
243
     * memory but that doesn't work with more than 4GB of memory.  We simply
244
     * refuse to work with those older versions of KVM. */
245
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
246
    if (ret <= 0) {
247
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
248
        return ret;
249
    }
250

    
251
    /* this address is 3 pages before the bios, and the bios should present
252
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
253
     * this?
254
     */
255
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
256
}
257
                    
258
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
259
{
260
    lhs->selector = rhs->selector;
261
    lhs->base = rhs->base;
262
    lhs->limit = rhs->limit;
263
    lhs->type = 3;
264
    lhs->present = 1;
265
    lhs->dpl = 3;
266
    lhs->db = 0;
267
    lhs->s = 1;
268
    lhs->l = 0;
269
    lhs->g = 0;
270
    lhs->avl = 0;
271
    lhs->unusable = 0;
272
}
273

    
274
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
275
{
276
    unsigned flags = rhs->flags;
277
    lhs->selector = rhs->selector;
278
    lhs->base = rhs->base;
279
    lhs->limit = rhs->limit;
280
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
281
    lhs->present = (flags & DESC_P_MASK) != 0;
282
    lhs->dpl = rhs->selector & 3;
283
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
284
    lhs->s = (flags & DESC_S_MASK) != 0;
285
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
286
    lhs->g = (flags & DESC_G_MASK) != 0;
287
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
288
    lhs->unusable = 0;
289
}
290

    
291
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
292
{
293
    lhs->selector = rhs->selector;
294
    lhs->base = rhs->base;
295
    lhs->limit = rhs->limit;
296
    lhs->flags =
297
        (rhs->type << DESC_TYPE_SHIFT)
298
        | (rhs->present * DESC_P_MASK)
299
        | (rhs->dpl << DESC_DPL_SHIFT)
300
        | (rhs->db << DESC_B_SHIFT)
301
        | (rhs->s * DESC_S_MASK)
302
        | (rhs->l << DESC_L_SHIFT)
303
        | (rhs->g * DESC_G_MASK)
304
        | (rhs->avl * DESC_AVL_MASK);
305
}
306

    
307
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
308
{
309
    if (set)
310
        *kvm_reg = *qemu_reg;
311
    else
312
        *qemu_reg = *kvm_reg;
313
}
314

    
315
static int kvm_getput_regs(CPUState *env, int set)
316
{
317
    struct kvm_regs regs;
318
    int ret = 0;
319

    
320
    if (!set) {
321
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
322
        if (ret < 0)
323
            return ret;
324
    }
325

    
326
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
327
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
328
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
329
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
330
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
331
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
332
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
333
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
334
#ifdef TARGET_X86_64
335
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
336
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
337
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
338
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
339
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
340
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
341
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
342
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
343
#endif
344

    
345
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
346
    kvm_getput_reg(&regs.rip, &env->eip, set);
347

    
348
    if (set)
349
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
350

    
351
    return ret;
352
}
353

    
354
static int kvm_put_fpu(CPUState *env)
355
{
356
    struct kvm_fpu fpu;
357
    int i;
358

    
359
    memset(&fpu, 0, sizeof fpu);
360
    fpu.fsw = env->fpus & ~(7 << 11);
361
    fpu.fsw |= (env->fpstt & 7) << 11;
362
    fpu.fcw = env->fpuc;
363
    for (i = 0; i < 8; ++i)
364
        fpu.ftwx |= (!env->fptags[i]) << i;
365
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
366
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
367
    fpu.mxcsr = env->mxcsr;
368

    
369
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
370
}
371

    
372
static int kvm_put_sregs(CPUState *env)
373
{
374
    struct kvm_sregs sregs;
375

    
376
    memcpy(sregs.interrupt_bitmap,
377
           env->interrupt_bitmap,
378
           sizeof(sregs.interrupt_bitmap));
379

    
380
    if ((env->eflags & VM_MASK)) {
381
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
382
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
383
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
384
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
385
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
386
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
387
    } else {
388
            set_seg(&sregs.cs, &env->segs[R_CS]);
389
            set_seg(&sregs.ds, &env->segs[R_DS]);
390
            set_seg(&sregs.es, &env->segs[R_ES]);
391
            set_seg(&sregs.fs, &env->segs[R_FS]);
392
            set_seg(&sregs.gs, &env->segs[R_GS]);
393
            set_seg(&sregs.ss, &env->segs[R_SS]);
394

    
395
            if (env->cr[0] & CR0_PE_MASK) {
396
                /* force ss cpl to cs cpl */
397
                sregs.ss.selector = (sregs.ss.selector & ~3) |
398
                        (sregs.cs.selector & 3);
399
                sregs.ss.dpl = sregs.ss.selector & 3;
400
            }
401
    }
402

    
403
    set_seg(&sregs.tr, &env->tr);
404
    set_seg(&sregs.ldt, &env->ldt);
405

    
406
    sregs.idt.limit = env->idt.limit;
407
    sregs.idt.base = env->idt.base;
408
    sregs.gdt.limit = env->gdt.limit;
409
    sregs.gdt.base = env->gdt.base;
410

    
411
    sregs.cr0 = env->cr[0];
412
    sregs.cr2 = env->cr[2];
413
    sregs.cr3 = env->cr[3];
414
    sregs.cr4 = env->cr[4];
415

    
416
    sregs.cr8 = cpu_get_apic_tpr(env);
417
    sregs.apic_base = cpu_get_apic_base(env);
418

    
419
    sregs.efer = env->efer;
420

    
421
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
422
}
423

    
424
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
425
                              uint32_t index, uint64_t value)
426
{
427
    entry->index = index;
428
    entry->data = value;
429
}
430

    
431
static int kvm_put_msrs(CPUState *env)
432
{
433
    struct {
434
        struct kvm_msrs info;
435
        struct kvm_msr_entry entries[100];
436
    } msr_data;
437
    struct kvm_msr_entry *msrs = msr_data.entries;
438
    int n = 0;
439

    
440
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
441
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
442
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
443
    if (kvm_has_msr_star(env))
444
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
445
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
446
#ifdef TARGET_X86_64
447
    /* FIXME if lm capable */
448
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
449
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
450
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
451
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
452
#endif
453
    msr_data.info.nmsrs = n;
454

    
455
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
456

    
457
}
458

    
459

    
460
static int kvm_get_fpu(CPUState *env)
461
{
462
    struct kvm_fpu fpu;
463
    int i, ret;
464

    
465
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
466
    if (ret < 0)
467
        return ret;
468

    
469
    env->fpstt = (fpu.fsw >> 11) & 7;
470
    env->fpus = fpu.fsw;
471
    env->fpuc = fpu.fcw;
472
    for (i = 0; i < 8; ++i)
473
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
474
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
475
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
476
    env->mxcsr = fpu.mxcsr;
477

    
478
    return 0;
479
}
480

    
481
static int kvm_get_sregs(CPUState *env)
482
{
483
    struct kvm_sregs sregs;
484
    uint32_t hflags;
485
    int ret;
486

    
487
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
488
    if (ret < 0)
489
        return ret;
490

    
491
    memcpy(env->interrupt_bitmap, 
492
           sregs.interrupt_bitmap,
493
           sizeof(sregs.interrupt_bitmap));
494

    
495
    get_seg(&env->segs[R_CS], &sregs.cs);
496
    get_seg(&env->segs[R_DS], &sregs.ds);
497
    get_seg(&env->segs[R_ES], &sregs.es);
498
    get_seg(&env->segs[R_FS], &sregs.fs);
499
    get_seg(&env->segs[R_GS], &sregs.gs);
500
    get_seg(&env->segs[R_SS], &sregs.ss);
501

    
502
    get_seg(&env->tr, &sregs.tr);
503
    get_seg(&env->ldt, &sregs.ldt);
504

    
505
    env->idt.limit = sregs.idt.limit;
506
    env->idt.base = sregs.idt.base;
507
    env->gdt.limit = sregs.gdt.limit;
508
    env->gdt.base = sregs.gdt.base;
509

    
510
    env->cr[0] = sregs.cr0;
511
    env->cr[2] = sregs.cr2;
512
    env->cr[3] = sregs.cr3;
513
    env->cr[4] = sregs.cr4;
514

    
515
    cpu_set_apic_base(env, sregs.apic_base);
516

    
517
    env->efer = sregs.efer;
518
    //cpu_set_apic_tpr(env, sregs.cr8);
519

    
520
#define HFLAG_COPY_MASK ~( \
521
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
522
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
523
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
524
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
525

    
526

    
527

    
528
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
529
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
530
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
531
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
532
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
533
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
534
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
535

    
536
    if (env->efer & MSR_EFER_LMA) {
537
        hflags |= HF_LMA_MASK;
538
    }
539

    
540
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
541
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
542
    } else {
543
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
544
                (DESC_B_SHIFT - HF_CS32_SHIFT);
545
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
546
                (DESC_B_SHIFT - HF_SS32_SHIFT);
547
        if (!(env->cr[0] & CR0_PE_MASK) ||
548
                   (env->eflags & VM_MASK) ||
549
                   !(hflags & HF_CS32_MASK)) {
550
                hflags |= HF_ADDSEG_MASK;
551
            } else {
552
                hflags |= ((env->segs[R_DS].base |
553
                                env->segs[R_ES].base |
554
                                env->segs[R_SS].base) != 0) <<
555
                    HF_ADDSEG_SHIFT;
556
            }
557
    }
558
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
559

    
560
    return 0;
561
}
562

    
563
static int kvm_get_msrs(CPUState *env)
564
{
565
    struct {
566
        struct kvm_msrs info;
567
        struct kvm_msr_entry entries[100];
568
    } msr_data;
569
    struct kvm_msr_entry *msrs = msr_data.entries;
570
    int ret, i, n;
571

    
572
    n = 0;
573
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
574
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
575
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
576
    if (kvm_has_msr_star(env))
577
        msrs[n++].index = MSR_STAR;
578
    msrs[n++].index = MSR_IA32_TSC;
579
#ifdef TARGET_X86_64
580
    /* FIXME lm_capable_kernel */
581
    msrs[n++].index = MSR_CSTAR;
582
    msrs[n++].index = MSR_KERNELGSBASE;
583
    msrs[n++].index = MSR_FMASK;
584
    msrs[n++].index = MSR_LSTAR;
585
#endif
586
    msr_data.info.nmsrs = n;
587
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
588
    if (ret < 0)
589
        return ret;
590

    
591
    for (i = 0; i < ret; i++) {
592
        switch (msrs[i].index) {
593
        case MSR_IA32_SYSENTER_CS:
594
            env->sysenter_cs = msrs[i].data;
595
            break;
596
        case MSR_IA32_SYSENTER_ESP:
597
            env->sysenter_esp = msrs[i].data;
598
            break;
599
        case MSR_IA32_SYSENTER_EIP:
600
            env->sysenter_eip = msrs[i].data;
601
            break;
602
        case MSR_STAR:
603
            env->star = msrs[i].data;
604
            break;
605
#ifdef TARGET_X86_64
606
        case MSR_CSTAR:
607
            env->cstar = msrs[i].data;
608
            break;
609
        case MSR_KERNELGSBASE:
610
            env->kernelgsbase = msrs[i].data;
611
            break;
612
        case MSR_FMASK:
613
            env->fmask = msrs[i].data;
614
            break;
615
        case MSR_LSTAR:
616
            env->lstar = msrs[i].data;
617
            break;
618
#endif
619
        case MSR_IA32_TSC:
620
            env->tsc = msrs[i].data;
621
            break;
622
        }
623
    }
624

    
625
    return 0;
626
}
627

    
628
int kvm_arch_put_registers(CPUState *env)
629
{
630
    int ret;
631

    
632
    ret = kvm_getput_regs(env, 1);
633
    if (ret < 0)
634
        return ret;
635

    
636
    ret = kvm_put_fpu(env);
637
    if (ret < 0)
638
        return ret;
639

    
640
    ret = kvm_put_sregs(env);
641
    if (ret < 0)
642
        return ret;
643

    
644
    ret = kvm_put_msrs(env);
645
    if (ret < 0)
646
        return ret;
647

    
648
    return 0;
649
}
650

    
651
int kvm_arch_get_registers(CPUState *env)
652
{
653
    int ret;
654

    
655
    ret = kvm_getput_regs(env, 0);
656
    if (ret < 0)
657
        return ret;
658

    
659
    ret = kvm_get_fpu(env);
660
    if (ret < 0)
661
        return ret;
662

    
663
    ret = kvm_get_sregs(env);
664
    if (ret < 0)
665
        return ret;
666

    
667
    ret = kvm_get_msrs(env);
668
    if (ret < 0)
669
        return ret;
670

    
671
    return 0;
672
}
673

    
674
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
675
{
676
    /* Try to inject an interrupt if the guest can accept it */
677
    if (run->ready_for_interrupt_injection &&
678
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
679
        (env->eflags & IF_MASK)) {
680
        int irq;
681

    
682
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
683
        irq = cpu_get_pic_interrupt(env);
684
        if (irq >= 0) {
685
            struct kvm_interrupt intr;
686
            intr.irq = irq;
687
            /* FIXME: errors */
688
            dprintf("injected interrupt %d\n", irq);
689
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
690
        }
691
    }
692

    
693
    /* If we have an interrupt but the guest is not ready to receive an
694
     * interrupt, request an interrupt window exit.  This will
695
     * cause a return to userspace as soon as the guest is ready to
696
     * receive interrupts. */
697
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
698
        run->request_interrupt_window = 1;
699
    else
700
        run->request_interrupt_window = 0;
701

    
702
    dprintf("setting tpr\n");
703
    run->cr8 = cpu_get_apic_tpr(env);
704

    
705
    return 0;
706
}
707

    
708
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
709
{
710
    if (run->if_flag)
711
        env->eflags |= IF_MASK;
712
    else
713
        env->eflags &= ~IF_MASK;
714
    
715
    cpu_set_apic_tpr(env, run->cr8);
716
    cpu_set_apic_base(env, run->apic_base);
717

    
718
    return 0;
719
}
720

    
721
static int kvm_handle_halt(CPUState *env)
722
{
723
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
724
          (env->eflags & IF_MASK)) &&
725
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
726
        env->halted = 1;
727
        env->exception_index = EXCP_HLT;
728
        return 0;
729
    }
730

    
731
    return 1;
732
}
733

    
734
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
735
{
736
    int ret = 0;
737

    
738
    switch (run->exit_reason) {
739
    case KVM_EXIT_HLT:
740
        dprintf("handle_hlt\n");
741
        ret = kvm_handle_halt(env);
742
        break;
743
    }
744

    
745
    return ret;
746
}
747

    
748
#ifdef KVM_CAP_SET_GUEST_DEBUG
749
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
750
{
751
    const static uint8_t int3 = 0xcc;
752

    
753
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
754
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
755
        return -EINVAL;
756
    return 0;
757
}
758

    
759
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
760
{
761
    uint8_t int3;
762

    
763
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
764
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
765
        return -EINVAL;
766
    return 0;
767
}
768

    
769
static struct {
770
    target_ulong addr;
771
    int len;
772
    int type;
773
} hw_breakpoint[4];
774

    
775
static int nb_hw_breakpoint;
776

    
777
static int find_hw_breakpoint(target_ulong addr, int len, int type)
778
{
779
    int n;
780

    
781
    for (n = 0; n < nb_hw_breakpoint; n++)
782
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
783
            (hw_breakpoint[n].len == len || len == -1))
784
            return n;
785
    return -1;
786
}
787

    
788
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
789
                                  target_ulong len, int type)
790
{
791
    switch (type) {
792
    case GDB_BREAKPOINT_HW:
793
        len = 1;
794
        break;
795
    case GDB_WATCHPOINT_WRITE:
796
    case GDB_WATCHPOINT_ACCESS:
797
        switch (len) {
798
        case 1:
799
            break;
800
        case 2:
801
        case 4:
802
        case 8:
803
            if (addr & (len - 1))
804
                return -EINVAL;
805
            break;
806
        default:
807
            return -EINVAL;
808
        }
809
        break;
810
    default:
811
        return -ENOSYS;
812
    }
813

    
814
    if (nb_hw_breakpoint == 4)
815
        return -ENOBUFS;
816

    
817
    if (find_hw_breakpoint(addr, len, type) >= 0)
818
        return -EEXIST;
819

    
820
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
821
    hw_breakpoint[nb_hw_breakpoint].len = len;
822
    hw_breakpoint[nb_hw_breakpoint].type = type;
823
    nb_hw_breakpoint++;
824

    
825
    return 0;
826
}
827

    
828
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
829
                                  target_ulong len, int type)
830
{
831
    int n;
832

    
833
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
834
    if (n < 0)
835
        return -ENOENT;
836

    
837
    nb_hw_breakpoint--;
838
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
839

    
840
    return 0;
841
}
842

    
843
void kvm_arch_remove_all_hw_breakpoints(void)
844
{
845
    nb_hw_breakpoint = 0;
846
}
847

    
848
static CPUWatchpoint hw_watchpoint;
849

    
850
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
851
{
852
    int handle = 0;
853
    int n;
854

    
855
    if (arch_info->exception == 1) {
856
        if (arch_info->dr6 & (1 << 14)) {
857
            if (cpu_single_env->singlestep_enabled)
858
                handle = 1;
859
        } else {
860
            for (n = 0; n < 4; n++)
861
                if (arch_info->dr6 & (1 << n))
862
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
863
                    case 0x0:
864
                        handle = 1;
865
                        break;
866
                    case 0x1:
867
                        handle = 1;
868
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
869
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
870
                        hw_watchpoint.flags = BP_MEM_WRITE;
871
                        break;
872
                    case 0x3:
873
                        handle = 1;
874
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
875
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
876
                        hw_watchpoint.flags = BP_MEM_ACCESS;
877
                        break;
878
                    }
879
        }
880
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
881
        handle = 1;
882

    
883
    if (!handle)
884
        kvm_update_guest_debug(cpu_single_env,
885
                        (arch_info->exception == 1) ?
886
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
887

    
888
    return handle;
889
}
890

    
891
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
892
{
893
    const uint8_t type_code[] = {
894
        [GDB_BREAKPOINT_HW] = 0x0,
895
        [GDB_WATCHPOINT_WRITE] = 0x1,
896
        [GDB_WATCHPOINT_ACCESS] = 0x3
897
    };
898
    const uint8_t len_code[] = {
899
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
900
    };
901
    int n;
902

    
903
    if (kvm_sw_breakpoints_active(env))
904
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
905

    
906
    if (nb_hw_breakpoint > 0) {
907
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
908
        dbg->arch.debugreg[7] = 0x0600;
909
        for (n = 0; n < nb_hw_breakpoint; n++) {
910
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
911
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
912
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
913
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
914
        }
915
    }
916
}
917
#endif /* KVM_CAP_SET_GUEST_DEBUG */