Statistics
| Branch: | Revision:

root / target-i386 / exec.h @ b8b6a50b

History | View | Annotate | Download (10.9 kB)

1
/*
2
 *  i386 execution defines
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "dyngen-exec.h"
22

    
23
/* XXX: factorize this mess */
24
#ifdef TARGET_X86_64
25
#define TARGET_LONG_BITS 64
26
#else
27
#define TARGET_LONG_BITS 32
28
#endif
29

    
30
#include "cpu-defs.h"
31

    
32
/* at least 4 register variables are defined */
33
register struct CPUX86State *env asm(AREG0);
34

    
35
#ifndef CPU_NO_GLOBAL_REGS
36

    
37
#if TARGET_LONG_BITS > HOST_LONG_BITS
38

    
39
/* no registers can be used */
40
#define T0 (env->t0)
41
#define T1 (env->t1)
42
#define T2 (env->t2)
43

    
44
#else
45

    
46
/* XXX: use unsigned long instead of target_ulong - better code will
47
   be generated for 64 bit CPUs */
48
register target_ulong T0 asm(AREG1);
49
register target_ulong T1 asm(AREG2);
50
register target_ulong T2 asm(AREG3);
51

    
52
#endif /* ! (TARGET_LONG_BITS > HOST_LONG_BITS) */
53

    
54
#endif /* ! CPU_NO_GLOBAL_REGS */
55

    
56
#define A0 T2
57

    
58
extern FILE *logfile;
59
extern int loglevel;
60

    
61
#ifndef reg_EAX
62
#define EAX (env->regs[R_EAX])
63
#endif
64
#ifndef reg_ECX
65
#define ECX (env->regs[R_ECX])
66
#endif
67
#ifndef reg_EDX
68
#define EDX (env->regs[R_EDX])
69
#endif
70
#ifndef reg_EBX
71
#define EBX (env->regs[R_EBX])
72
#endif
73
#ifndef reg_ESP
74
#define ESP (env->regs[R_ESP])
75
#endif
76
#ifndef reg_EBP
77
#define EBP (env->regs[R_EBP])
78
#endif
79
#ifndef reg_ESI
80
#define ESI (env->regs[R_ESI])
81
#endif
82
#ifndef reg_EDI
83
#define EDI (env->regs[R_EDI])
84
#endif
85
#define EIP  (env->eip)
86
#define DF  (env->df)
87

    
88
#define CC_SRC (env->cc_src)
89
#define CC_DST (env->cc_dst)
90
#define CC_OP  (env->cc_op)
91

    
92
/* float macros */
93
#define FT0    (env->ft0)
94
#define ST0    (env->fpregs[env->fpstt].d)
95
#define ST(n)  (env->fpregs[(env->fpstt + (n)) & 7].d)
96
#define ST1    ST(1)
97

    
98
#include "cpu.h"
99
#include "exec-all.h"
100

    
101
typedef struct CCTable {
102
    int (*compute_all)(void); /* return all the flags */
103
    int (*compute_c)(void);  /* return the C flag */
104
} CCTable;
105

    
106
extern CCTable cc_table[];
107

    
108
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
109
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
110
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
111
void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr);
112
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
113
                             int is_write, int mmu_idx, int is_softmmu);
114
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
115
              void *retaddr);
116
void __hidden cpu_lock(void);
117
void __hidden cpu_unlock(void);
118
void do_interrupt(int intno, int is_int, int error_code,
119
                  target_ulong next_eip, int is_hw);
120
void do_interrupt_user(int intno, int is_int, int error_code,
121
                       target_ulong next_eip);
122
void raise_interrupt(int intno, int is_int, int error_code,
123
                     int next_eip_addend);
124
void raise_exception_err(int exception_index, int error_code);
125
void raise_exception(int exception_index);
126
void do_smm_enter(void);
127
void __hidden cpu_loop_exit(void);
128

    
129
void OPPROTO op_movl_eflags_T0(void);
130
void OPPROTO op_movl_T0_eflags(void);
131

    
132
#include "helper.h"
133

    
134
static inline void svm_check_intercept(uint32_t type)
135
{
136
    helper_svm_check_intercept_param(type, 0);
137
}
138

    
139
#if !defined(CONFIG_USER_ONLY)
140

    
141
#include "softmmu_exec.h"
142

    
143
#endif /* !defined(CONFIG_USER_ONLY) */
144

    
145
#ifdef USE_X86LDOUBLE
146
/* use long double functions */
147
#define floatx_to_int32 floatx80_to_int32
148
#define floatx_to_int64 floatx80_to_int64
149
#define floatx_to_int32_round_to_zero floatx80_to_int32_round_to_zero
150
#define floatx_to_int64_round_to_zero floatx80_to_int64_round_to_zero
151
#define int32_to_floatx int32_to_floatx80
152
#define int64_to_floatx int64_to_floatx80
153
#define float32_to_floatx float32_to_floatx80
154
#define float64_to_floatx float64_to_floatx80
155
#define floatx_to_float32 floatx80_to_float32
156
#define floatx_to_float64 floatx80_to_float64
157
#define floatx_abs floatx80_abs
158
#define floatx_chs floatx80_chs
159
#define floatx_round_to_int floatx80_round_to_int
160
#define floatx_compare floatx80_compare
161
#define floatx_compare_quiet floatx80_compare_quiet
162
#define sin sinl
163
#define cos cosl
164
#define sqrt sqrtl
165
#define pow powl
166
#define log logl
167
#define tan tanl
168
#define atan2 atan2l
169
#define floor floorl
170
#define ceil ceill
171
#define ldexp ldexpl
172
#else
173
#define floatx_to_int32 float64_to_int32
174
#define floatx_to_int64 float64_to_int64
175
#define floatx_to_int32_round_to_zero float64_to_int32_round_to_zero
176
#define floatx_to_int64_round_to_zero float64_to_int64_round_to_zero
177
#define int32_to_floatx int32_to_float64
178
#define int64_to_floatx int64_to_float64
179
#define float32_to_floatx float32_to_float64
180
#define float64_to_floatx(x, e) (x)
181
#define floatx_to_float32 float64_to_float32
182
#define floatx_to_float64(x, e) (x)
183
#define floatx_abs float64_abs
184
#define floatx_chs float64_chs
185
#define floatx_round_to_int float64_round_to_int
186
#define floatx_compare float64_compare
187
#define floatx_compare_quiet float64_compare_quiet
188
#endif
189

    
190
extern CPU86_LDouble sin(CPU86_LDouble x);
191
extern CPU86_LDouble cos(CPU86_LDouble x);
192
extern CPU86_LDouble sqrt(CPU86_LDouble x);
193
extern CPU86_LDouble pow(CPU86_LDouble, CPU86_LDouble);
194
extern CPU86_LDouble log(CPU86_LDouble x);
195
extern CPU86_LDouble tan(CPU86_LDouble x);
196
extern CPU86_LDouble atan2(CPU86_LDouble, CPU86_LDouble);
197
extern CPU86_LDouble floor(CPU86_LDouble x);
198
extern CPU86_LDouble ceil(CPU86_LDouble x);
199

    
200
#define RC_MASK         0xc00
201
#define RC_NEAR                0x000
202
#define RC_DOWN                0x400
203
#define RC_UP                0x800
204
#define RC_CHOP                0xc00
205

    
206
#define MAXTAN 9223372036854775808.0
207

    
208
#ifdef USE_X86LDOUBLE
209

    
210
/* only for x86 */
211
typedef union {
212
    long double d;
213
    struct {
214
        unsigned long long lower;
215
        unsigned short upper;
216
    } l;
217
} CPU86_LDoubleU;
218

    
219
/* the following deal with x86 long double-precision numbers */
220
#define MAXEXPD 0x7fff
221
#define EXPBIAS 16383
222
#define EXPD(fp)        (fp.l.upper & 0x7fff)
223
#define SIGND(fp)        ((fp.l.upper) & 0x8000)
224
#define MANTD(fp)       (fp.l.lower)
225
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
226

    
227
#else
228

    
229
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
230
typedef union {
231
    double d;
232
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
233
    struct {
234
        uint32_t lower;
235
        int32_t upper;
236
    } l;
237
#else
238
    struct {
239
        int32_t upper;
240
        uint32_t lower;
241
    } l;
242
#endif
243
#ifndef __arm__
244
    int64_t ll;
245
#endif
246
} CPU86_LDoubleU;
247

    
248
/* the following deal with IEEE double-precision numbers */
249
#define MAXEXPD 0x7ff
250
#define EXPBIAS 1023
251
#define EXPD(fp)        (((fp.l.upper) >> 20) & 0x7FF)
252
#define SIGND(fp)        ((fp.l.upper) & 0x80000000)
253
#ifdef __arm__
254
#define MANTD(fp)        (fp.l.lower | ((uint64_t)(fp.l.upper & ((1 << 20) - 1)) << 32))
255
#else
256
#define MANTD(fp)        (fp.ll & ((1LL << 52) - 1))
257
#endif
258
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7ff << 20)) | (EXPBIAS << 20)
259
#endif
260

    
261
static inline void fpush(void)
262
{
263
    env->fpstt = (env->fpstt - 1) & 7;
264
    env->fptags[env->fpstt] = 0; /* validate stack entry */
265
}
266

    
267
static inline void fpop(void)
268
{
269
    env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
270
    env->fpstt = (env->fpstt + 1) & 7;
271
}
272

    
273
#ifndef USE_X86LDOUBLE
274
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
275
{
276
    CPU86_LDoubleU temp;
277
    int upper, e;
278
    uint64_t ll;
279

    
280
    /* mantissa */
281
    upper = lduw(ptr + 8);
282
    /* XXX: handle overflow ? */
283
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
284
    e |= (upper >> 4) & 0x800; /* sign */
285
    ll = (ldq(ptr) >> 11) & ((1LL << 52) - 1);
286
#ifdef __arm__
287
    temp.l.upper = (e << 20) | (ll >> 32);
288
    temp.l.lower = ll;
289
#else
290
    temp.ll = ll | ((uint64_t)e << 52);
291
#endif
292
    return temp.d;
293
}
294

    
295
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
296
{
297
    CPU86_LDoubleU temp;
298
    int e;
299

    
300
    temp.d = f;
301
    /* mantissa */
302
    stq(ptr, (MANTD(temp) << 11) | (1LL << 63));
303
    /* exponent + sign */
304
    e = EXPD(temp) - EXPBIAS + 16383;
305
    e |= SIGND(temp) >> 16;
306
    stw(ptr + 8, e);
307
}
308
#else
309

    
310
/* we use memory access macros */
311

    
312
static inline CPU86_LDouble helper_fldt(target_ulong ptr)
313
{
314
    CPU86_LDoubleU temp;
315

    
316
    temp.l.lower = ldq(ptr);
317
    temp.l.upper = lduw(ptr + 8);
318
    return temp.d;
319
}
320

    
321
static inline void helper_fstt(CPU86_LDouble f, target_ulong ptr)
322
{
323
    CPU86_LDoubleU temp;
324

    
325
    temp.d = f;
326
    stq(ptr, temp.l.lower);
327
    stw(ptr + 8, temp.l.upper);
328
}
329

    
330
#endif /* USE_X86LDOUBLE */
331

    
332
#define FPUS_IE (1 << 0)
333
#define FPUS_DE (1 << 1)
334
#define FPUS_ZE (1 << 2)
335
#define FPUS_OE (1 << 3)
336
#define FPUS_UE (1 << 4)
337
#define FPUS_PE (1 << 5)
338
#define FPUS_SF (1 << 6)
339
#define FPUS_SE (1 << 7)
340
#define FPUS_B  (1 << 15)
341

    
342
#define FPUC_EM 0x3f
343

    
344
extern const CPU86_LDouble f15rk[7];
345

    
346
void fpu_raise_exception(void);
347
void restore_native_fp_state(CPUState *env);
348
void save_native_fp_state(CPUState *env);
349

    
350
extern const uint8_t parity_table[256];
351
extern const uint8_t rclw_table[32];
352
extern const uint8_t rclb_table[32];
353

    
354
static inline uint32_t compute_eflags(void)
355
{
356
    return env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
357
}
358

    
359
/* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
360
static inline void load_eflags(int eflags, int update_mask)
361
{
362
    CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
363
    DF = 1 - (2 * ((eflags >> 10) & 1));
364
    env->eflags = (env->eflags & ~update_mask) |
365
        (eflags & update_mask);
366
}
367

    
368
static inline void env_to_regs(void)
369
{
370
#ifdef reg_EAX
371
    EAX = env->regs[R_EAX];
372
#endif
373
#ifdef reg_ECX
374
    ECX = env->regs[R_ECX];
375
#endif
376
#ifdef reg_EDX
377
    EDX = env->regs[R_EDX];
378
#endif
379
#ifdef reg_EBX
380
    EBX = env->regs[R_EBX];
381
#endif
382
#ifdef reg_ESP
383
    ESP = env->regs[R_ESP];
384
#endif
385
#ifdef reg_EBP
386
    EBP = env->regs[R_EBP];
387
#endif
388
#ifdef reg_ESI
389
    ESI = env->regs[R_ESI];
390
#endif
391
#ifdef reg_EDI
392
    EDI = env->regs[R_EDI];
393
#endif
394
}
395

    
396
static inline void regs_to_env(void)
397
{
398
#ifdef reg_EAX
399
    env->regs[R_EAX] = EAX;
400
#endif
401
#ifdef reg_ECX
402
    env->regs[R_ECX] = ECX;
403
#endif
404
#ifdef reg_EDX
405
    env->regs[R_EDX] = EDX;
406
#endif
407
#ifdef reg_EBX
408
    env->regs[R_EBX] = EBX;
409
#endif
410
#ifdef reg_ESP
411
    env->regs[R_ESP] = ESP;
412
#endif
413
#ifdef reg_EBP
414
    env->regs[R_EBP] = EBP;
415
#endif
416
#ifdef reg_ESI
417
    env->regs[R_ESI] = ESI;
418
#endif
419
#ifdef reg_EDI
420
    env->regs[R_EDI] = EDI;
421
#endif
422
}
423

    
424
static inline int cpu_halted(CPUState *env) {
425
    /* handle exit of HALTED state */
426
    if (!(env->hflags & HF_HALTED_MASK))
427
        return 0;
428
    /* disable halt condition */
429
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
430
         (env->eflags & IF_MASK)) ||
431
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
432
        env->hflags &= ~HF_HALTED_MASK;
433
        return 0;
434
    }
435
    return EXCP_HALTED;
436
}
437