Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ b946a153

History | View | Annotate | Download (13.2 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw.h"
27
#include "net.h"
28
#include "etraxfs.h"
29

    
30
#define D(x)
31

    
32
/* Advertisement control register. */
33
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
34
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
35
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
36
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
37

    
38
/* 
39
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
40
 * linux driver (PHYID and Diagnostics reg).
41
 * TODO: Add friendly names for the register nums.
42
 */
43
struct qemu_phy
44
{
45
        uint32_t regs[32];
46

    
47
        int link;
48

    
49
        unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
50
        void (*write)(struct qemu_phy *phy, unsigned int req, 
51
                      unsigned int data);
52
};
53

    
54
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
55
{
56
        int regnum;
57
        unsigned r = 0;
58

    
59
        regnum = req & 0x1f;
60

    
61
        switch (regnum) {
62
                case 1:
63
                        if (!phy->link)
64
                                break;
65
                        /* MR1.         */
66
                        /* Speeds and modes.  */
67
                        r |= (1 << 13) | (1 << 14);
68
                        r |= (1 << 11) | (1 << 12);
69
                        r |= (1 << 5); /* Autoneg complete.  */
70
                        r |= (1 << 3); /* Autoneg able.         */
71
                        r |= (1 << 2); /* link.         */
72
                        break;
73
                case 5:
74
                        /* Link partner ability.
75
                           We are kind; always agree with whatever best mode
76
                           the guest advertises.  */
77
                        r = 1 << 14; /* Success.  */
78
                        /* Copy advertised modes.  */
79
                        r |= phy->regs[4] & (15 << 5);
80
                        /* Autoneg support.  */
81
                        r |= 1;
82
                        break;
83
                case 18:
84
                {
85
                        /* Diagnostics reg.  */
86
                        int duplex = 0;
87
                        int speed_100 = 0;
88

    
89
                        if (!phy->link)
90
                                break;
91

    
92
                        /* Are we advertising 100 half or 100 duplex ? */
93
                        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
94
                        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
95

    
96
                        /* Are we advertising 10 duplex or 100 duplex ? */
97
                        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
98
                        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
99
                        r = (speed_100 << 10) | (duplex << 11);
100
                }
101
                break;
102

    
103
                default:
104
                        r = phy->regs[regnum];
105
                        break;
106
        }
107
        D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
108
        return r;
109
}
110

    
111
static void 
112
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
113
{
114
        int regnum;
115

    
116
        regnum = req & 0x1f;
117
        D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
118
        switch (regnum) {
119
                default:
120
                        phy->regs[regnum] = data;
121
                        break;
122
        }
123
}
124

    
125
static void 
126
tdk_init(struct qemu_phy *phy)
127
{
128
        phy->regs[0] = 0x3100;
129
        /* PHY Id.  */
130
        phy->regs[2] = 0x0300;
131
        phy->regs[3] = 0xe400;
132
        /* Autonegotiation advertisement reg.  */
133
        phy->regs[4] = 0x01E1;
134
        phy->link = 1;
135

    
136
        phy->read = tdk_read;
137
        phy->write = tdk_write;
138
}
139

    
140
struct qemu_mdio
141
{
142
        /* bus.         */
143
        int mdc;
144
        int mdio;
145

    
146
        /* decoder.  */
147
        enum {
148
                PREAMBLE,
149
                SOF,
150
                OPC,
151
                ADDR,
152
                REQ,
153
                TURNAROUND,
154
                DATA
155
        } state;
156
        unsigned int drive;
157

    
158
        unsigned int cnt;
159
        unsigned int addr;
160
        unsigned int opc;
161
        unsigned int req;
162
        unsigned int data;
163

    
164
        struct qemu_phy *devs[32];
165
};
166

    
167
static void 
168
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169
{
170
        bus->devs[addr & 0x1f] = phy;
171
}
172

    
173
#ifdef USE_THIS_DEAD_CODE
174
static void 
175
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
176
{
177
        bus->devs[addr & 0x1f] = NULL;        
178
}
179
#endif
180

    
181
static void mdio_read_req(struct qemu_mdio *bus)
182
{
183
        struct qemu_phy *phy;
184

    
185
        phy = bus->devs[bus->addr];
186
        if (phy && phy->read)
187
                bus->data = phy->read(phy, bus->req);
188
        else 
189
                bus->data = 0xffff;
190
}
191

    
192
static void mdio_write_req(struct qemu_mdio *bus)
193
{
194
        struct qemu_phy *phy;
195

    
196
        phy = bus->devs[bus->addr];
197
        if (phy && phy->write)
198
                phy->write(phy, bus->req, bus->data);
199
}
200

    
201
static void mdio_cycle(struct qemu_mdio *bus)
202
{
203
        bus->cnt++;
204

    
205
        D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
206
                bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
207
#if 0
208
        if (bus->mdc)
209
                printf("%d", bus->mdio);
210
#endif
211
        switch (bus->state)
212
        {
213
                case PREAMBLE:
214
                        if (bus->mdc) {
215
                                if (bus->cnt >= (32 * 2) && !bus->mdio) {
216
                                        bus->cnt = 0;
217
                                        bus->state = SOF;
218
                                        bus->data = 0;
219
                                }
220
                        }
221
                        break;
222
                case SOF:
223
                        if (bus->mdc) {
224
                                if (bus->mdio != 1)
225
                                        printf("WARNING: no SOF\n");
226
                                if (bus->cnt == 1*2) {
227
                                        bus->cnt = 0;
228
                                        bus->opc = 0;
229
                                        bus->state = OPC;
230
                                }
231
                        }
232
                        break;
233
                case OPC:
234
                        if (bus->mdc) {
235
                                bus->opc <<= 1;
236
                                bus->opc |= bus->mdio & 1;
237
                                if (bus->cnt == 2*2) {
238
                                        bus->cnt = 0;
239
                                        bus->addr = 0;
240
                                        bus->state = ADDR;
241
                                }
242
                        }
243
                        break;
244
                case ADDR:
245
                        if (bus->mdc) {
246
                                bus->addr <<= 1;
247
                                bus->addr |= bus->mdio & 1;
248

    
249
                                if (bus->cnt == 5*2) {
250
                                        bus->cnt = 0;
251
                                        bus->req = 0;
252
                                        bus->state = REQ;
253
                                }
254
                        }
255
                        break;
256
                case REQ:
257
                        if (bus->mdc) {
258
                                bus->req <<= 1;
259
                                bus->req |= bus->mdio & 1;
260
                                if (bus->cnt == 5*2) {
261
                                        bus->cnt = 0;
262
                                        bus->state = TURNAROUND;
263
                                }
264
                        }
265
                        break;
266
                case TURNAROUND:
267
                        if (bus->mdc && bus->cnt == 2*2) {
268
                                bus->mdio = 0;
269
                                bus->cnt = 0;
270

    
271
                                if (bus->opc == 2) {
272
                                        bus->drive = 1;
273
                                        mdio_read_req(bus);
274
                                        bus->mdio = bus->data & 1;
275
                                }
276
                                bus->state = DATA;
277
                        }
278
                        break;
279
                case DATA:                        
280
                        if (!bus->mdc) {
281
                                if (bus->drive) {
282
                                        bus->mdio = !!(bus->data & (1 << 15));
283
                                        bus->data <<= 1;
284
                                }
285
                        } else {
286
                                if (!bus->drive) {
287
                                        bus->data <<= 1;
288
                                        bus->data |= bus->mdio;
289
                                }
290
                                if (bus->cnt == 16 * 2) {
291
                                        bus->cnt = 0;
292
                                        bus->state = PREAMBLE;
293
                                        if (!bus->drive)
294
                                                mdio_write_req(bus);
295
                                        bus->drive = 0;
296
                                }
297
                        }
298
                        break;
299
                default:
300
                        break;
301
        }
302
}
303

    
304
/* ETRAX-FS Ethernet MAC block starts here.  */
305

    
306
#define RW_MA0_LO          0x00
307
#define RW_MA0_HI          0x01
308
#define RW_MA1_LO          0x02
309
#define RW_MA1_HI          0x03
310
#define RW_GA_LO          0x04
311
#define RW_GA_HI          0x05
312
#define RW_GEN_CTRL          0x06
313
#define RW_REC_CTRL          0x07
314
#define RW_TR_CTRL          0x08
315
#define RW_CLR_ERR          0x09
316
#define RW_MGM_CTRL          0x0a
317
#define R_STAT                  0x0b
318
#define FS_ETH_MAX_REGS          0x17
319

    
320
struct fs_eth
321
{
322
        CPUState *env;
323
        qemu_irq *irq;
324
        VLANClientState *vc;
325
        int ethregs;
326

    
327
        /* Two addrs in the filter.  */
328
        uint8_t macaddr[2][6];
329
        uint32_t regs[FS_ETH_MAX_REGS];
330

    
331
        struct etraxfs_dma_client *dma_out;
332
        struct etraxfs_dma_client *dma_in;
333

    
334
        /* MDIO bus.  */
335
        struct qemu_mdio mdio_bus;
336
        unsigned int phyaddr;
337
        int duplex_mismatch;
338

    
339
        /* PHY.         */
340
        struct qemu_phy phy;
341
};
342

    
343
static void eth_validate_duplex(struct fs_eth *eth)
344
{
345
        struct qemu_phy *phy;
346
        unsigned int phy_duplex;
347
        unsigned int mac_duplex;
348
        int new_mm = 0;
349

    
350
        phy = eth->mdio_bus.devs[eth->phyaddr];
351
        phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
352
        mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
353

    
354
        if (mac_duplex != phy_duplex)
355
                new_mm = 1;
356

    
357
        if (eth->regs[RW_GEN_CTRL] & 1) {
358
                if (new_mm != eth->duplex_mismatch) {
359
                        if (new_mm)
360
                                printf("HW: WARNING "
361
                                       "ETH duplex mismatch MAC=%d PHY=%d\n",
362
                                       mac_duplex, phy_duplex);
363
                        else
364
                                printf("HW: ETH duplex ok.\n");
365
                }
366
                eth->duplex_mismatch = new_mm;
367
        }
368
}
369

    
370
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
371
{
372
        struct fs_eth *eth = opaque;
373
        uint32_t r = 0;
374

    
375
        addr >>= 2;
376

    
377
        switch (addr) {
378
                case R_STAT:
379
                        r = eth->mdio_bus.mdio & 1;
380
                        break;
381
        default:
382
                r = eth->regs[addr];
383
                D(printf ("%s %x\n", __func__, addr * 4));
384
                break;
385
        }
386
        return r;
387
}
388

    
389
static void eth_update_ma(struct fs_eth *eth, int ma)
390
{
391
        int reg;
392
        int i = 0;
393

    
394
        ma &= 1;
395

    
396
        reg = RW_MA0_LO;
397
        if (ma)
398
                reg = RW_MA1_LO;
399

    
400
        eth->macaddr[ma][i++] = eth->regs[reg];
401
        eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
402
        eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
403
        eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
404
        eth->macaddr[ma][i++] = eth->regs[reg + 4];
405
        eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
406

    
407
        D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
408
                 eth->macaddr[ma][0], eth->macaddr[ma][1],
409
                 eth->macaddr[ma][2], eth->macaddr[ma][3],
410
                 eth->macaddr[ma][4], eth->macaddr[ma][5]));
411
}
412

    
413
static void
414
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
415
{
416
        struct fs_eth *eth = opaque;
417

    
418
        addr >>= 2;
419
        switch (addr)
420
        {
421
                case RW_MA0_LO:
422
                case RW_MA0_HI:
423
                        eth->regs[addr] = value;
424
                        eth_update_ma(eth, 0);
425
                        break;
426
                case RW_MA1_LO:
427
                case RW_MA1_HI:
428
                        eth->regs[addr] = value;
429
                        eth_update_ma(eth, 1);
430
                        break;
431

    
432
                case RW_MGM_CTRL:
433
                        /* Attach an MDIO/PHY abstraction.  */
434
                        if (value & 2)
435
                                eth->mdio_bus.mdio = value & 1;
436
                        if (eth->mdio_bus.mdc != (value & 4)) {
437
                                mdio_cycle(&eth->mdio_bus);
438
                                eth_validate_duplex(eth);
439
                        }
440
                        eth->mdio_bus.mdc = !!(value & 4);
441
                        break;
442

    
443
                case RW_REC_CTRL:
444
                        eth->regs[addr] = value;
445
                        eth_validate_duplex(eth);
446
                        break;
447

    
448
                default:
449
                        eth->regs[addr] = value;
450
                        D(printf ("%s %x %x\n",
451
                                  __func__, addr, value));
452
                        break;
453
        }
454
}
455

    
456
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
457
   filter dropping group addresses we have not joined.        The filter has 64
458
   bits (m). The has function is a simple nible xor of the group addr.        */
459
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
460
{
461
        unsigned int hsh;
462
        int m_individual = eth->regs[RW_REC_CTRL] & 4;
463
        int match;
464

    
465
        /* First bit on the wire of a MAC address signals multicast or
466
           physical address.  */
467
        if (!m_individual && !sa[0] & 1)
468
                return 0;
469

    
470
        /* Calculate the hash index for the GA registers. */
471
        hsh = 0;
472
        hsh ^= (*sa) & 0x3f;
473
        hsh ^= ((*sa) >> 6) & 0x03;
474
        ++sa;
475
        hsh ^= ((*sa) << 2) & 0x03c;
476
        hsh ^= ((*sa) >> 4) & 0xf;
477
        ++sa;
478
        hsh ^= ((*sa) << 4) & 0x30;
479
        hsh ^= ((*sa) >> 2) & 0x3f;
480
        ++sa;
481
        hsh ^= (*sa) & 0x3f;
482
        hsh ^= ((*sa) >> 6) & 0x03;
483
        ++sa;
484
        hsh ^= ((*sa) << 2) & 0x03c;
485
        hsh ^= ((*sa) >> 4) & 0xf;
486
        ++sa;
487
        hsh ^= ((*sa) << 4) & 0x30;
488
        hsh ^= ((*sa) >> 2) & 0x3f;
489

    
490
        hsh &= 63;
491
        if (hsh > 31)
492
                match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
493
        else
494
                match = eth->regs[RW_GA_LO] & (1 << hsh);
495
        D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
496
                 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
497
        return match;
498
}
499

    
500
static int eth_can_receive(void *opaque)
501
{
502
        return 1;
503
}
504

    
505
static void eth_receive(void *opaque, const uint8_t *buf, int size)
506
{
507
        unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
508
        struct fs_eth *eth = opaque;
509
        int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
510
        int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
511
        int r_bcast = eth->regs[RW_REC_CTRL] & 8;
512

    
513
        if (size < 12)
514
                return;
515

    
516
        D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
517
                 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
518
                 use_ma0, use_ma1, r_bcast));
519
               
520
        /* Does the frame get through the address filters?  */
521
        if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
522
            && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
523
            && (!r_bcast || memcmp(buf, sa_bcast, 6))
524
            && !eth_match_groupaddr(eth, buf))
525
                return;
526

    
527
        /* FIXME: Find another way to pass on the fake csum.  */
528
        etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
529
}
530

    
531
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
532
{
533
        struct fs_eth *eth = opaque;
534

    
535
        D(printf("%s buf=%p len=%d\n", __func__, buf, len));
536
        qemu_send_packet(eth->vc, buf, len);
537
        return len;
538
}
539

    
540
static void eth_set_link(VLANClientState *vc)
541
{
542
        struct fs_eth *eth = vc->opaque;
543
        D(printf("%s %d\n", __func__, vc->link_down));
544
        eth->phy.link = !vc->link_down;
545
}
546

    
547
static CPUReadMemoryFunc *eth_read[] = {
548
        NULL, NULL,
549
        &eth_readl,
550
};
551

    
552
static CPUWriteMemoryFunc *eth_write[] = {
553
        NULL, NULL,
554
        &eth_writel,
555
};
556

    
557
static void eth_cleanup(VLANClientState *vc)
558
{
559
        struct fs_eth *eth = vc->opaque;
560

    
561
        cpu_unregister_io_memory(eth->ethregs);
562

    
563
        qemu_free(eth->dma_out);
564
        qemu_free(eth);
565
}
566

    
567
void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
568
                       qemu_irq *irq, target_phys_addr_t base, int phyaddr)
569
{
570
        struct etraxfs_dma_client *dma = NULL;        
571
        struct fs_eth *eth = NULL;
572

    
573
        qemu_check_nic_model(nd, "fseth");
574

    
575
        dma = qemu_mallocz(sizeof *dma * 2);
576

    
577
        eth = qemu_mallocz(sizeof *eth);
578

    
579
        dma[0].client.push = eth_tx_push;
580
        dma[0].client.opaque = eth;
581
        dma[1].client.opaque = eth;
582
        dma[1].client.pull = NULL;
583

    
584
        eth->env = env;
585
        eth->irq = irq;
586
        eth->dma_out = dma;
587
        eth->dma_in = dma + 1;
588

    
589
        /* Connect the phy.  */
590
        eth->phyaddr = phyaddr & 0x1f;
591
        tdk_init(&eth->phy);
592
        mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
593

    
594
        eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
595
        cpu_register_physical_memory (base, 0x5c, eth->ethregs);
596

    
597
        eth->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
598
                                       eth_receive, eth_can_receive,
599
                                       eth_cleanup, eth);
600
        eth->vc->opaque = eth;
601
        eth->vc->link_status_changed = eth_set_link;
602

    
603
        return dma;
604
}