Statistics
| Branch: | Revision:

root / hw / mcf_fec.c @ b946a153

History | View | Annotate | Download (12 kB)

1
/*
2
 * ColdFire Fast Ethernet Controller emulation.
3
 *
4
 * Copyright (c) 2007 CodeSourcery.
5
 *
6
 * This code is licenced under the GPL
7
 */
8
#include "hw.h"
9
#include "net.h"
10
#include "mcf.h"
11
/* For crc32 */
12
#include <zlib.h>
13

    
14
//#define DEBUG_FEC 1
15

    
16
#ifdef DEBUG_FEC
17
#define DPRINTF(fmt, args...) \
18
do { printf("mcf_fec: " fmt , ##args); } while (0)
19
#else
20
#define DPRINTF(fmt, args...) do {} while(0)
21
#endif
22

    
23
#define FEC_MAX_FRAME_SIZE 2032
24

    
25
typedef struct {
26
    qemu_irq *irq;
27
    int mmio_index;
28
    VLANClientState *vc;
29
    uint32_t irq_state;
30
    uint32_t eir;
31
    uint32_t eimr;
32
    int rx_enabled;
33
    uint32_t rx_descriptor;
34
    uint32_t tx_descriptor;
35
    uint32_t ecr;
36
    uint32_t mmfr;
37
    uint32_t mscr;
38
    uint32_t rcr;
39
    uint32_t tcr;
40
    uint32_t tfwr;
41
    uint32_t rfsr;
42
    uint32_t erdsr;
43
    uint32_t etdsr;
44
    uint32_t emrbr;
45
    uint8_t macaddr[6];
46
} mcf_fec_state;
47

    
48
#define FEC_INT_HB   0x80000000
49
#define FEC_INT_BABR 0x40000000
50
#define FEC_INT_BABT 0x20000000
51
#define FEC_INT_GRA  0x10000000
52
#define FEC_INT_TXF  0x08000000
53
#define FEC_INT_TXB  0x04000000
54
#define FEC_INT_RXF  0x02000000
55
#define FEC_INT_RXB  0x01000000
56
#define FEC_INT_MII  0x00800000
57
#define FEC_INT_EB   0x00400000
58
#define FEC_INT_LC   0x00200000
59
#define FEC_INT_RL   0x00100000
60
#define FEC_INT_UN   0x00080000
61

    
62
#define FEC_EN      2
63
#define FEC_RESET   1
64

    
65
/* Map interrupt flags onto IRQ lines.  */
66
#define FEC_NUM_IRQ 13
67
static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
68
    FEC_INT_TXF,
69
    FEC_INT_TXB,
70
    FEC_INT_UN,
71
    FEC_INT_RL,
72
    FEC_INT_RXF,
73
    FEC_INT_RXB,
74
    FEC_INT_MII,
75
    FEC_INT_LC,
76
    FEC_INT_HB,
77
    FEC_INT_GRA,
78
    FEC_INT_EB,
79
    FEC_INT_BABT,
80
    FEC_INT_BABR
81
};
82

    
83
/* Buffer Descriptor.  */
84
typedef struct {
85
    uint16_t flags;
86
    uint16_t length;
87
    uint32_t data;
88
} mcf_fec_bd;
89

    
90
#define FEC_BD_R    0x8000
91
#define FEC_BD_E    0x8000
92
#define FEC_BD_O1   0x4000
93
#define FEC_BD_W    0x2000
94
#define FEC_BD_O2   0x1000
95
#define FEC_BD_L    0x0800
96
#define FEC_BD_TC   0x0400
97
#define FEC_BD_ABC  0x0200
98
#define FEC_BD_M    0x0100
99
#define FEC_BD_BC   0x0080
100
#define FEC_BD_MC   0x0040
101
#define FEC_BD_LG   0x0020
102
#define FEC_BD_NO   0x0010
103
#define FEC_BD_CR   0x0004
104
#define FEC_BD_OV   0x0002
105
#define FEC_BD_TR   0x0001
106

    
107
static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
108
{
109
    cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
110
    be16_to_cpus(&bd->flags);
111
    be16_to_cpus(&bd->length);
112
    be32_to_cpus(&bd->data);
113
}
114

    
115
static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
116
{
117
    mcf_fec_bd tmp;
118
    tmp.flags = cpu_to_be16(bd->flags);
119
    tmp.length = cpu_to_be16(bd->length);
120
    tmp.data = cpu_to_be32(bd->data);
121
    cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
122
}
123

    
124
static void mcf_fec_update(mcf_fec_state *s)
125
{
126
    uint32_t active;
127
    uint32_t changed;
128
    uint32_t mask;
129
    int i;
130

    
131
    active = s->eir & s->eimr;
132
    changed = active ^s->irq_state;
133
    for (i = 0; i < FEC_NUM_IRQ; i++) {
134
        mask = mcf_fec_irq_map[i];
135
        if (changed & mask) {
136
            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
137
            qemu_set_irq(s->irq[i], (active & mask) != 0);
138
        }
139
    }
140
    s->irq_state = active;
141
}
142

    
143
static void mcf_fec_do_tx(mcf_fec_state *s)
144
{
145
    uint32_t addr;
146
    mcf_fec_bd bd;
147
    int frame_size;
148
    int len;
149
    uint8_t frame[FEC_MAX_FRAME_SIZE];
150
    uint8_t *ptr;
151

    
152
    DPRINTF("do_tx\n");
153
    ptr = frame;
154
    frame_size = 0;
155
    addr = s->tx_descriptor;
156
    while (1) {
157
        mcf_fec_read_bd(&bd, addr);
158
        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
159
                addr, bd.flags, bd.length, bd.data);
160
        if ((bd.flags & FEC_BD_R) == 0) {
161
            /* Run out of descriptors to transmit.  */
162
            break;
163
        }
164
        len = bd.length;
165
        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
166
            len = FEC_MAX_FRAME_SIZE - frame_size;
167
            s->eir |= FEC_INT_BABT;
168
        }
169
        cpu_physical_memory_read(bd.data, ptr, len);
170
        ptr += len;
171
        frame_size += len;
172
        if (bd.flags & FEC_BD_L) {
173
            /* Last buffer in frame.  */
174
            DPRINTF("Sending packet\n");
175
            qemu_send_packet(s->vc, frame, len);
176
            ptr = frame;
177
            frame_size = 0;
178
            s->eir |= FEC_INT_TXF;
179
        }
180
        s->eir |= FEC_INT_TXB;
181
        bd.flags &= ~FEC_BD_R;
182
        /* Write back the modified descriptor.  */
183
        mcf_fec_write_bd(&bd, addr);
184
        /* Advance to the next descriptor.  */
185
        if ((bd.flags & FEC_BD_W) != 0) {
186
            addr = s->etdsr;
187
        } else {
188
            addr += 8;
189
        }
190
    }
191
    s->tx_descriptor = addr;
192
}
193

    
194
static void mcf_fec_enable_rx(mcf_fec_state *s)
195
{
196
    mcf_fec_bd bd;
197

    
198
    mcf_fec_read_bd(&bd, s->rx_descriptor);
199
    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
200
    if (!s->rx_enabled)
201
        DPRINTF("RX buffer full\n");
202
}
203

    
204
static void mcf_fec_reset(mcf_fec_state *s)
205
{
206
    s->eir = 0;
207
    s->eimr = 0;
208
    s->rx_enabled = 0;
209
    s->ecr = 0;
210
    s->mscr = 0;
211
    s->rcr = 0x05ee0001;
212
    s->tcr = 0;
213
    s->tfwr = 0;
214
    s->rfsr = 0x500;
215
}
216

    
217
static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
218
{
219
    mcf_fec_state *s = (mcf_fec_state *)opaque;
220
    switch (addr & 0x3ff) {
221
    case 0x004: return s->eir;
222
    case 0x008: return s->eimr;
223
    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
224
    case 0x014: return 0; /* TDAR */
225
    case 0x024: return s->ecr;
226
    case 0x040: return s->mmfr;
227
    case 0x044: return s->mscr;
228
    case 0x064: return 0; /* MIBC */
229
    case 0x084: return s->rcr;
230
    case 0x0c4: return s->tcr;
231
    case 0x0e4: /* PALR */
232
        return (s->macaddr[0] << 24) | (s->macaddr[1] << 16)
233
              | (s->macaddr[2] << 8) | s->macaddr[3];
234
        break;
235
    case 0x0e8: /* PAUR */
236
        return (s->macaddr[4] << 24) | (s->macaddr[5] << 16) | 0x8808;
237
    case 0x0ec: return 0x10000; /* OPD */
238
    case 0x118: return 0;
239
    case 0x11c: return 0;
240
    case 0x120: return 0;
241
    case 0x124: return 0;
242
    case 0x144: return s->tfwr;
243
    case 0x14c: return 0x600;
244
    case 0x150: return s->rfsr;
245
    case 0x180: return s->erdsr;
246
    case 0x184: return s->etdsr;
247
    case 0x188: return s->emrbr;
248
    default:
249
        cpu_abort(cpu_single_env, "mcf_fec_read: Bad address 0x%x\n",
250
                  (int)addr);
251
        return 0;
252
    }
253
}
254

    
255
static void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
256
{
257
    mcf_fec_state *s = (mcf_fec_state *)opaque;
258
    switch (addr & 0x3ff) {
259
    case 0x004:
260
        s->eir &= ~value;
261
        break;
262
    case 0x008:
263
        s->eimr = value;
264
        break;
265
    case 0x010: /* RDAR */
266
        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
267
            DPRINTF("RX enable\n");
268
            mcf_fec_enable_rx(s);
269
        }
270
        break;
271
    case 0x014: /* TDAR */
272
        if (s->ecr & FEC_EN) {
273
            mcf_fec_do_tx(s);
274
        }
275
        break;
276
    case 0x024:
277
        s->ecr = value;
278
        if (value & FEC_RESET) {
279
            DPRINTF("Reset\n");
280
            mcf_fec_reset(s);
281
        }
282
        if ((s->ecr & FEC_EN) == 0) {
283
            s->rx_enabled = 0;
284
        }
285
        break;
286
    case 0x040:
287
        /* TODO: Implement MII.  */
288
        s->mmfr = value;
289
        break;
290
    case 0x044:
291
        s->mscr = value & 0xfe;
292
        break;
293
    case 0x064:
294
        /* TODO: Implement MIB.  */
295
        break;
296
    case 0x084:
297
        s->rcr = value & 0x07ff003f;
298
        /* TODO: Implement LOOP mode.  */
299
        break;
300
    case 0x0c4: /* TCR */
301
        /* We transmit immediately, so raise GRA immediately.  */
302
        s->tcr = value;
303
        if (value & 1)
304
            s->eir |= FEC_INT_GRA;
305
        break;
306
    case 0x0e4: /* PALR */
307
        s->macaddr[0] = value >> 24;
308
        s->macaddr[1] = value >> 16;
309
        s->macaddr[2] = value >> 8;
310
        s->macaddr[3] = value;
311
        break;
312
    case 0x0e8: /* PAUR */
313
        s->macaddr[4] = value >> 24;
314
        s->macaddr[5] = value >> 16;
315
        break;
316
    case 0x0ec:
317
        /* OPD */
318
        break;
319
    case 0x118:
320
    case 0x11c:
321
    case 0x120:
322
    case 0x124:
323
        /* TODO: implement MAC hash filtering.  */
324
        break;
325
    case 0x144:
326
        s->tfwr = value & 3;
327
        break;
328
    case 0x14c:
329
        /* FRBR writes ignored.  */
330
        break;
331
    case 0x150:
332
        s->rfsr = (value & 0x3fc) | 0x400;
333
        break;
334
    case 0x180:
335
        s->erdsr = value & ~3;
336
        s->rx_descriptor = s->erdsr;
337
        break;
338
    case 0x184:
339
        s->etdsr = value & ~3;
340
        s->tx_descriptor = s->etdsr;
341
        break;
342
    case 0x188:
343
        s->emrbr = value & 0x7f0;
344
        break;
345
    default:
346
        cpu_abort(cpu_single_env, "mcf_fec_write Bad address 0x%x\n",
347
                  (int)addr);
348
    }
349
    mcf_fec_update(s);
350
}
351

    
352
static int mcf_fec_can_receive(void *opaque)
353
{
354
    mcf_fec_state *s = (mcf_fec_state *)opaque;
355
    return s->rx_enabled;
356
}
357

    
358
static void mcf_fec_receive(void *opaque, const uint8_t *buf, int size)
359
{
360
    mcf_fec_state *s = (mcf_fec_state *)opaque;
361
    mcf_fec_bd bd;
362
    uint32_t flags = 0;
363
    uint32_t addr;
364
    uint32_t crc;
365
    uint32_t buf_addr;
366
    uint8_t *crc_ptr;
367
    unsigned int buf_len;
368

    
369
    DPRINTF("do_rx len %d\n", size);
370
    if (!s->rx_enabled) {
371
        fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
372
    }
373
    /* 4 bytes for the CRC.  */
374
    size += 4;
375
    crc = cpu_to_be32(crc32(~0, buf, size));
376
    crc_ptr = (uint8_t *)&crc;
377
    /* Huge frames are truncted.  */
378
    if (size > FEC_MAX_FRAME_SIZE) {
379
        size = FEC_MAX_FRAME_SIZE;
380
        flags |= FEC_BD_TR | FEC_BD_LG;
381
    }
382
    /* Frames larger than the user limit just set error flags.  */
383
    if (size > (s->rcr >> 16)) {
384
        flags |= FEC_BD_LG;
385
    }
386
    addr = s->rx_descriptor;
387
    while (size > 0) {
388
        mcf_fec_read_bd(&bd, addr);
389
        if ((bd.flags & FEC_BD_E) == 0) {
390
            /* No descriptors available.  Bail out.  */
391
            /* FIXME: This is wrong.  We should probably either save the
392
               remainder for when more RX buffers are available, or
393
               flag an error.  */
394
            fprintf(stderr, "mcf_fec: Lost end of frame\n");
395
            break;
396
        }
397
        buf_len = (size <= s->emrbr) ? size: s->emrbr;
398
        bd.length = buf_len;
399
        size -= buf_len;
400
        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
401
        /* The last 4 bytes are the CRC.  */
402
        if (size < 4)
403
            buf_len += size - 4;
404
        buf_addr = bd.data;
405
        cpu_physical_memory_write(buf_addr, buf, buf_len);
406
        buf += buf_len;
407
        if (size < 4) {
408
            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
409
            crc_ptr += 4 - size;
410
        }
411
        bd.flags &= ~FEC_BD_E;
412
        if (size == 0) {
413
            /* Last buffer in frame.  */
414
            bd.flags |= flags | FEC_BD_L;
415
            DPRINTF("rx frame flags %04x\n", bd.flags);
416
            s->eir |= FEC_INT_RXF;
417
        } else {
418
            s->eir |= FEC_INT_RXB;
419
        }
420
        mcf_fec_write_bd(&bd, addr);
421
        /* Advance to the next descriptor.  */
422
        if ((bd.flags & FEC_BD_W) != 0) {
423
            addr = s->erdsr;
424
        } else {
425
            addr += 8;
426
        }
427
    }
428
    s->rx_descriptor = addr;
429
    mcf_fec_enable_rx(s);
430
    mcf_fec_update(s);
431
}
432

    
433
static CPUReadMemoryFunc *mcf_fec_readfn[] = {
434
   mcf_fec_read,
435
   mcf_fec_read,
436
   mcf_fec_read
437
};
438

    
439
static CPUWriteMemoryFunc *mcf_fec_writefn[] = {
440
   mcf_fec_write,
441
   mcf_fec_write,
442
   mcf_fec_write
443
};
444

    
445
static void mcf_fec_cleanup(VLANClientState *vc)
446
{
447
    mcf_fec_state *s = vc->opaque;
448

    
449
    cpu_unregister_io_memory(s->mmio_index);
450

    
451
    qemu_free(s);
452
}
453

    
454
void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
455
{
456
    mcf_fec_state *s;
457

    
458
    qemu_check_nic_model(nd, "mcf_fec");
459

    
460
    s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
461
    s->irq = irq;
462
    s->mmio_index = cpu_register_io_memory(0, mcf_fec_readfn,
463
                                           mcf_fec_writefn, s);
464
    cpu_register_physical_memory(base, 0x400, s->mmio_index);
465

    
466
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
467
                                 mcf_fec_receive, mcf_fec_can_receive,
468
                                 mcf_fec_cleanup, s);
469
    memcpy(s->macaddr, nd->macaddr, 6);
470
    qemu_format_nic_info_str(s->vc, s->macaddr);
471
}