Statistics
| Branch: | Revision:

root / hw / musicpal.c @ b946a153

History | View | Annotate | Download (41.9 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_MISC_BASE            0x80002000
24
#define MP_MISC_SIZE            0x00001000
25

    
26
#define MP_ETH_BASE             0x80008000
27
#define MP_ETH_SIZE             0x00001000
28

    
29
#define MP_WLAN_BASE            0x8000C000
30
#define MP_WLAN_SIZE            0x00000800
31

    
32
#define MP_UART1_BASE           0x8000C840
33
#define MP_UART2_BASE           0x8000C940
34

    
35
#define MP_GPIO_BASE            0x8000D000
36
#define MP_GPIO_SIZE            0x00001000
37

    
38
#define MP_FLASHCFG_BASE        0x90006000
39
#define MP_FLASHCFG_SIZE        0x00001000
40

    
41
#define MP_AUDIO_BASE           0x90007000
42
#define MP_AUDIO_SIZE           0x00001000
43

    
44
#define MP_PIC_BASE             0x90008000
45
#define MP_PIC_SIZE             0x00001000
46

    
47
#define MP_PIT_BASE             0x90009000
48
#define MP_PIT_SIZE             0x00001000
49

    
50
#define MP_LCD_BASE             0x9000c000
51
#define MP_LCD_SIZE             0x00001000
52

    
53
#define MP_SRAM_BASE            0xC0000000
54
#define MP_SRAM_SIZE            0x00020000
55

    
56
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
57
#define MP_FLASH_SIZE_MAX       32*1024*1024
58

    
59
#define MP_TIMER1_IRQ           4
60
/* ... */
61
#define MP_TIMER4_IRQ           7
62
#define MP_EHCI_IRQ             8
63
#define MP_ETH_IRQ              9
64
#define MP_UART1_IRQ            11
65
#define MP_UART2_IRQ            11
66
#define MP_GPIO_IRQ             12
67
#define MP_RTC_IRQ              28
68
#define MP_AUDIO_IRQ            30
69

    
70
static uint32_t gpio_in_state = 0xffffffff;
71
static uint32_t gpio_isr;
72
static uint32_t gpio_out_state;
73
static ram_addr_t sram_off;
74

    
75
typedef enum i2c_state {
76
    STOPPED = 0,
77
    INITIALIZING,
78
    SENDING_BIT7,
79
    SENDING_BIT6,
80
    SENDING_BIT5,
81
    SENDING_BIT4,
82
    SENDING_BIT3,
83
    SENDING_BIT2,
84
    SENDING_BIT1,
85
    SENDING_BIT0,
86
    WAITING_FOR_ACK,
87
    RECEIVING_BIT7,
88
    RECEIVING_BIT6,
89
    RECEIVING_BIT5,
90
    RECEIVING_BIT4,
91
    RECEIVING_BIT3,
92
    RECEIVING_BIT2,
93
    RECEIVING_BIT1,
94
    RECEIVING_BIT0,
95
    SENDING_ACK
96
} i2c_state;
97

    
98
typedef struct i2c_interface {
99
    i2c_bus *bus;
100
    i2c_state state;
101
    int last_data;
102
    int last_clock;
103
    uint8_t buffer;
104
    int current_addr;
105
} i2c_interface;
106

    
107
static void i2c_enter_stop(i2c_interface *i2c)
108
{
109
    if (i2c->current_addr >= 0)
110
        i2c_end_transfer(i2c->bus);
111
    i2c->current_addr = -1;
112
    i2c->state = STOPPED;
113
}
114

    
115
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
116
{
117
    if (!i2c)
118
        return;
119

    
120
    switch (i2c->state) {
121
    case STOPPED:
122
        if (data == 0 && i2c->last_data == 1 && clock == 1)
123
            i2c->state = INITIALIZING;
124
        break;
125

    
126
    case INITIALIZING:
127
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
128
            i2c->state = SENDING_BIT7;
129
        else
130
            i2c_enter_stop(i2c);
131
        break;
132

    
133
    case SENDING_BIT7 ... SENDING_BIT0:
134
        if (clock == 0 && i2c->last_clock == 1) {
135
            i2c->buffer = (i2c->buffer << 1) | data;
136
            i2c->state++; /* will end up in WAITING_FOR_ACK */
137
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
138
            i2c_enter_stop(i2c);
139
        break;
140

    
141
    case WAITING_FOR_ACK:
142
        if (clock == 0 && i2c->last_clock == 1) {
143
            if (i2c->current_addr < 0) {
144
                i2c->current_addr = i2c->buffer;
145
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
146
                                   i2c->buffer & 1);
147
            } else
148
                i2c_send(i2c->bus, i2c->buffer);
149
            if (i2c->current_addr & 1) {
150
                i2c->state = RECEIVING_BIT7;
151
                i2c->buffer = i2c_recv(i2c->bus);
152
            } else
153
                i2c->state = SENDING_BIT7;
154
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
155
            i2c_enter_stop(i2c);
156
        break;
157

    
158
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
159
        if (clock == 0 && i2c->last_clock == 1) {
160
            i2c->state++; /* will end up in SENDING_ACK */
161
            i2c->buffer <<= 1;
162
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
163
            i2c_enter_stop(i2c);
164
        break;
165

    
166
    case SENDING_ACK:
167
        if (clock == 0 && i2c->last_clock == 1) {
168
            i2c->state = RECEIVING_BIT7;
169
            if (data == 0)
170
                i2c->buffer = i2c_recv(i2c->bus);
171
            else
172
                i2c_nack(i2c->bus);
173
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
174
            i2c_enter_stop(i2c);
175
        break;
176
    }
177

    
178
    i2c->last_data = data;
179
    i2c->last_clock = clock;
180
}
181

    
182
static int i2c_get_data(i2c_interface *i2c)
183
{
184
    if (!i2c)
185
        return 0;
186

    
187
    switch (i2c->state) {
188
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
189
        return (i2c->buffer >> 7);
190

    
191
    case WAITING_FOR_ACK:
192
    default:
193
        return 0;
194
    }
195
}
196

    
197
static i2c_interface *mixer_i2c;
198

    
199
#ifdef HAS_AUDIO
200

    
201
/* Audio register offsets */
202
#define MP_AUDIO_PLAYBACK_MODE  0x00
203
#define MP_AUDIO_CLOCK_DIV      0x18
204
#define MP_AUDIO_IRQ_STATUS     0x20
205
#define MP_AUDIO_IRQ_ENABLE     0x24
206
#define MP_AUDIO_TX_START_LO    0x28
207
#define MP_AUDIO_TX_THRESHOLD   0x2C
208
#define MP_AUDIO_TX_STATUS      0x38
209
#define MP_AUDIO_TX_START_HI    0x40
210

    
211
/* Status register and IRQ enable bits */
212
#define MP_AUDIO_TX_HALF        (1 << 6)
213
#define MP_AUDIO_TX_FULL        (1 << 7)
214

    
215
/* Playback mode bits */
216
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
217
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
218
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
219
#define MP_AUDIO_MONO           (1 << 14)
220

    
221
/* Wolfson 8750 I2C address */
222
#define MP_WM_ADDR              0x34
223

    
224
static const char audio_name[] = "mv88w8618";
225

    
226
typedef struct musicpal_audio_state {
227
    qemu_irq irq;
228
    uint32_t playback_mode;
229
    uint32_t status;
230
    uint32_t irq_enable;
231
    unsigned long phys_buf;
232
    uint32_t target_buffer;
233
    unsigned int threshold;
234
    unsigned int play_pos;
235
    unsigned int last_free;
236
    uint32_t clock_div;
237
    i2c_slave *wm;
238
} musicpal_audio_state;
239

    
240
static void audio_callback(void *opaque, int free_out, int free_in)
241
{
242
    musicpal_audio_state *s = opaque;
243
    int16_t *codec_buffer;
244
    int8_t buf[4096];
245
    int8_t *mem_buffer;
246
    int pos, block_size;
247

    
248
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
249
        return;
250

    
251
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
252
        free_out <<= 1;
253

    
254
    if (!(s->playback_mode & MP_AUDIO_MONO))
255
        free_out <<= 1;
256

    
257
    block_size = s->threshold/2;
258
    if (free_out - s->last_free < block_size)
259
        return;
260

    
261
    if (block_size > 4096)
262
        return;
263

    
264
    cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
265
                             block_size);
266
    mem_buffer = buf;
267
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
268
        if (s->playback_mode & MP_AUDIO_MONO) {
269
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
270
            for (pos = 0; pos < block_size; pos += 2) {
271
                *codec_buffer++ = *(int16_t *)mem_buffer;
272
                *codec_buffer++ = *(int16_t *)mem_buffer;
273
                mem_buffer += 2;
274
            }
275
        } else
276
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
277
                   (uint32_t *)mem_buffer, block_size);
278
    } else {
279
        if (s->playback_mode & MP_AUDIO_MONO) {
280
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
281
            for (pos = 0; pos < block_size; pos++) {
282
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
283
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
284
            }
285
        } else {
286
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
287
            for (pos = 0; pos < block_size; pos += 2) {
288
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
289
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290
            }
291
        }
292
    }
293
    wm8750_dac_commit(s->wm);
294

    
295
    s->last_free = free_out - block_size;
296

    
297
    if (s->play_pos == 0) {
298
        s->status |= MP_AUDIO_TX_HALF;
299
        s->play_pos = block_size;
300
    } else {
301
        s->status |= MP_AUDIO_TX_FULL;
302
        s->play_pos = 0;
303
    }
304

    
305
    if (s->status & s->irq_enable)
306
        qemu_irq_raise(s->irq);
307
}
308

    
309
static void musicpal_audio_clock_update(musicpal_audio_state *s)
310
{
311
    int rate;
312

    
313
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
314
        rate = 24576000 / 64; /* 24.576MHz */
315
    else
316
        rate = 11289600 / 64; /* 11.2896MHz */
317

    
318
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
319

    
320
    wm8750_set_bclk_in(s->wm, rate);
321
}
322

    
323
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
324
{
325
    musicpal_audio_state *s = opaque;
326

    
327
    switch (offset) {
328
    case MP_AUDIO_PLAYBACK_MODE:
329
        return s->playback_mode;
330

    
331
    case MP_AUDIO_CLOCK_DIV:
332
        return s->clock_div;
333

    
334
    case MP_AUDIO_IRQ_STATUS:
335
        return s->status;
336

    
337
    case MP_AUDIO_IRQ_ENABLE:
338
        return s->irq_enable;
339

    
340
    case MP_AUDIO_TX_STATUS:
341
        return s->play_pos >> 2;
342

    
343
    default:
344
        return 0;
345
    }
346
}
347

    
348
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
349
                                 uint32_t value)
350
{
351
    musicpal_audio_state *s = opaque;
352

    
353
    switch (offset) {
354
    case MP_AUDIO_PLAYBACK_MODE:
355
        if (value & MP_AUDIO_PLAYBACK_EN &&
356
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
357
            s->status = 0;
358
            s->last_free = 0;
359
            s->play_pos = 0;
360
        }
361
        s->playback_mode = value;
362
        musicpal_audio_clock_update(s);
363
        break;
364

    
365
    case MP_AUDIO_CLOCK_DIV:
366
        s->clock_div = value;
367
        s->last_free = 0;
368
        s->play_pos = 0;
369
        musicpal_audio_clock_update(s);
370
        break;
371

    
372
    case MP_AUDIO_IRQ_STATUS:
373
        s->status &= ~value;
374
        break;
375

    
376
    case MP_AUDIO_IRQ_ENABLE:
377
        s->irq_enable = value;
378
        if (s->status & s->irq_enable)
379
            qemu_irq_raise(s->irq);
380
        break;
381

    
382
    case MP_AUDIO_TX_START_LO:
383
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
384
        s->target_buffer = s->phys_buf;
385
        s->play_pos = 0;
386
        s->last_free = 0;
387
        break;
388

    
389
    case MP_AUDIO_TX_THRESHOLD:
390
        s->threshold = (value + 1) * 4;
391
        break;
392

    
393
    case MP_AUDIO_TX_START_HI:
394
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
395
        s->target_buffer = s->phys_buf;
396
        s->play_pos = 0;
397
        s->last_free = 0;
398
        break;
399
    }
400
}
401

    
402
static void musicpal_audio_reset(void *opaque)
403
{
404
    musicpal_audio_state *s = opaque;
405

    
406
    s->playback_mode = 0;
407
    s->status = 0;
408
    s->irq_enable = 0;
409
}
410

    
411
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
412
    musicpal_audio_read,
413
    musicpal_audio_read,
414
    musicpal_audio_read
415
};
416

    
417
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
418
    musicpal_audio_write,
419
    musicpal_audio_write,
420
    musicpal_audio_write
421
};
422

    
423
static i2c_interface *musicpal_audio_init(qemu_irq irq)
424
{
425
    AudioState *audio;
426
    musicpal_audio_state *s;
427
    i2c_interface *i2c;
428
    int iomemtype;
429

    
430
    audio = AUD_init();
431
    if (!audio) {
432
        AUD_log(audio_name, "No audio state\n");
433
        return NULL;
434
    }
435

    
436
    s = qemu_mallocz(sizeof(musicpal_audio_state));
437
    s->irq = irq;
438

    
439
    i2c = qemu_mallocz(sizeof(i2c_interface));
440
    i2c->bus = i2c_init_bus();
441
    i2c->current_addr = -1;
442

    
443
    s->wm = wm8750_init(i2c->bus, audio);
444
    if (!s->wm)
445
        return NULL;
446
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
447
    wm8750_data_req_set(s->wm, audio_callback, s);
448

    
449
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
450
                       musicpal_audio_writefn, s);
451
    cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
452

    
453
    qemu_register_reset(musicpal_audio_reset, s);
454

    
455
    return i2c;
456
}
457
#else  /* !HAS_AUDIO */
458
static i2c_interface *musicpal_audio_init(qemu_irq irq)
459
{
460
    return NULL;
461
}
462
#endif /* !HAS_AUDIO */
463

    
464
/* Ethernet register offsets */
465
#define MP_ETH_SMIR             0x010
466
#define MP_ETH_PCXR             0x408
467
#define MP_ETH_SDCMR            0x448
468
#define MP_ETH_ICR              0x450
469
#define MP_ETH_IMR              0x458
470
#define MP_ETH_FRDP0            0x480
471
#define MP_ETH_FRDP1            0x484
472
#define MP_ETH_FRDP2            0x488
473
#define MP_ETH_FRDP3            0x48C
474
#define MP_ETH_CRDP0            0x4A0
475
#define MP_ETH_CRDP1            0x4A4
476
#define MP_ETH_CRDP2            0x4A8
477
#define MP_ETH_CRDP3            0x4AC
478
#define MP_ETH_CTDP0            0x4E0
479
#define MP_ETH_CTDP1            0x4E4
480
#define MP_ETH_CTDP2            0x4E8
481
#define MP_ETH_CTDP3            0x4EC
482

    
483
/* MII PHY access */
484
#define MP_ETH_SMIR_DATA        0x0000FFFF
485
#define MP_ETH_SMIR_ADDR        0x03FF0000
486
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
487
#define MP_ETH_SMIR_RDVALID     (1 << 27)
488

    
489
/* PHY registers */
490
#define MP_ETH_PHY1_BMSR        0x00210000
491
#define MP_ETH_PHY1_PHYSID1     0x00410000
492
#define MP_ETH_PHY1_PHYSID2     0x00610000
493

    
494
#define MP_PHY_BMSR_LINK        0x0004
495
#define MP_PHY_BMSR_AUTONEG     0x0008
496

    
497
#define MP_PHY_88E3015          0x01410E20
498

    
499
/* TX descriptor status */
500
#define MP_ETH_TX_OWN           (1 << 31)
501

    
502
/* RX descriptor status */
503
#define MP_ETH_RX_OWN           (1 << 31)
504

    
505
/* Interrupt cause/mask bits */
506
#define MP_ETH_IRQ_RX_BIT       0
507
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
508
#define MP_ETH_IRQ_TXHI_BIT     2
509
#define MP_ETH_IRQ_TXLO_BIT     3
510

    
511
/* Port config bits */
512
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
513

    
514
/* SDMA command bits */
515
#define MP_ETH_CMD_TXHI         (1 << 23)
516
#define MP_ETH_CMD_TXLO         (1 << 22)
517

    
518
typedef struct mv88w8618_tx_desc {
519
    uint32_t cmdstat;
520
    uint16_t res;
521
    uint16_t bytes;
522
    uint32_t buffer;
523
    uint32_t next;
524
} mv88w8618_tx_desc;
525

    
526
typedef struct mv88w8618_rx_desc {
527
    uint32_t cmdstat;
528
    uint16_t bytes;
529
    uint16_t buffer_size;
530
    uint32_t buffer;
531
    uint32_t next;
532
} mv88w8618_rx_desc;
533

    
534
typedef struct mv88w8618_eth_state {
535
    qemu_irq irq;
536
    uint32_t smir;
537
    uint32_t icr;
538
    uint32_t imr;
539
    int mmio_index;
540
    int vlan_header;
541
    uint32_t tx_queue[2];
542
    uint32_t rx_queue[4];
543
    uint32_t frx_queue[4];
544
    uint32_t cur_rx[4];
545
    VLANClientState *vc;
546
} mv88w8618_eth_state;
547

    
548
static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
549
{
550
    cpu_to_le32s(&desc->cmdstat);
551
    cpu_to_le16s(&desc->bytes);
552
    cpu_to_le16s(&desc->buffer_size);
553
    cpu_to_le32s(&desc->buffer);
554
    cpu_to_le32s(&desc->next);
555
    cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
556
}
557

    
558
static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
559
{
560
    cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
561
    le32_to_cpus(&desc->cmdstat);
562
    le16_to_cpus(&desc->bytes);
563
    le16_to_cpus(&desc->buffer_size);
564
    le32_to_cpus(&desc->buffer);
565
    le32_to_cpus(&desc->next);
566
}
567

    
568
static int eth_can_receive(void *opaque)
569
{
570
    return 1;
571
}
572

    
573
static void eth_receive(void *opaque, const uint8_t *buf, int size)
574
{
575
    mv88w8618_eth_state *s = opaque;
576
    uint32_t desc_addr;
577
    mv88w8618_rx_desc desc;
578
    int i;
579

    
580
    for (i = 0; i < 4; i++) {
581
        desc_addr = s->cur_rx[i];
582
        if (!desc_addr)
583
            continue;
584
        do {
585
            eth_rx_desc_get(desc_addr, &desc);
586
            if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
587
                cpu_physical_memory_write(desc.buffer + s->vlan_header,
588
                                          buf, size);
589
                desc.bytes = size + s->vlan_header;
590
                desc.cmdstat &= ~MP_ETH_RX_OWN;
591
                s->cur_rx[i] = desc.next;
592

    
593
                s->icr |= MP_ETH_IRQ_RX;
594
                if (s->icr & s->imr)
595
                    qemu_irq_raise(s->irq);
596
                eth_rx_desc_put(desc_addr, &desc);
597
                return;
598
            }
599
            desc_addr = desc.next;
600
        } while (desc_addr != s->rx_queue[i]);
601
    }
602
}
603

    
604
static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
605
{
606
    cpu_to_le32s(&desc->cmdstat);
607
    cpu_to_le16s(&desc->res);
608
    cpu_to_le16s(&desc->bytes);
609
    cpu_to_le32s(&desc->buffer);
610
    cpu_to_le32s(&desc->next);
611
    cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
612
}
613

    
614
static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
615
{
616
    cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
617
    le32_to_cpus(&desc->cmdstat);
618
    le16_to_cpus(&desc->res);
619
    le16_to_cpus(&desc->bytes);
620
    le32_to_cpus(&desc->buffer);
621
    le32_to_cpus(&desc->next);
622
}
623

    
624
static void eth_send(mv88w8618_eth_state *s, int queue_index)
625
{
626
    uint32_t desc_addr = s->tx_queue[queue_index];
627
    mv88w8618_tx_desc desc;
628
    uint8_t buf[2048];
629
    int len;
630

    
631

    
632
    do {
633
        eth_tx_desc_get(desc_addr, &desc);
634
        if (desc.cmdstat & MP_ETH_TX_OWN) {
635
            len = desc.bytes;
636
            if (len < 2048) {
637
                cpu_physical_memory_read(desc.buffer, buf, len);
638
                qemu_send_packet(s->vc, buf, len);
639
            }
640
            desc.cmdstat &= ~MP_ETH_TX_OWN;
641
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
642
            eth_tx_desc_put(desc_addr, &desc);
643
        }
644
        desc_addr = desc.next;
645
    } while (desc_addr != s->tx_queue[queue_index]);
646
}
647

    
648
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
649
{
650
    mv88w8618_eth_state *s = opaque;
651

    
652
    switch (offset) {
653
    case MP_ETH_SMIR:
654
        if (s->smir & MP_ETH_SMIR_OPCODE) {
655
            switch (s->smir & MP_ETH_SMIR_ADDR) {
656
            case MP_ETH_PHY1_BMSR:
657
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
658
                       MP_ETH_SMIR_RDVALID;
659
            case MP_ETH_PHY1_PHYSID1:
660
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
661
            case MP_ETH_PHY1_PHYSID2:
662
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
663
            default:
664
                return MP_ETH_SMIR_RDVALID;
665
            }
666
        }
667
        return 0;
668

    
669
    case MP_ETH_ICR:
670
        return s->icr;
671

    
672
    case MP_ETH_IMR:
673
        return s->imr;
674

    
675
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
676
        return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
677

    
678
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
679
        return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
680

    
681
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
682
        return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
683

    
684
    default:
685
        return 0;
686
    }
687
}
688

    
689
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
690
                                uint32_t value)
691
{
692
    mv88w8618_eth_state *s = opaque;
693

    
694
    switch (offset) {
695
    case MP_ETH_SMIR:
696
        s->smir = value;
697
        break;
698

    
699
    case MP_ETH_PCXR:
700
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
701
        break;
702

    
703
    case MP_ETH_SDCMR:
704
        if (value & MP_ETH_CMD_TXHI)
705
            eth_send(s, 1);
706
        if (value & MP_ETH_CMD_TXLO)
707
            eth_send(s, 0);
708
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
709
            qemu_irq_raise(s->irq);
710
        break;
711

    
712
    case MP_ETH_ICR:
713
        s->icr &= value;
714
        break;
715

    
716
    case MP_ETH_IMR:
717
        s->imr = value;
718
        if (s->icr & s->imr)
719
            qemu_irq_raise(s->irq);
720
        break;
721

    
722
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
723
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
724
        break;
725

    
726
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
727
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
728
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
729
        break;
730

    
731
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
732
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
733
        break;
734
    }
735
}
736

    
737
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
738
    mv88w8618_eth_read,
739
    mv88w8618_eth_read,
740
    mv88w8618_eth_read
741
};
742

    
743
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
744
    mv88w8618_eth_write,
745
    mv88w8618_eth_write,
746
    mv88w8618_eth_write
747
};
748

    
749
static void eth_cleanup(VLANClientState *vc)
750
{
751
    mv88w8618_eth_state *s = vc->opaque;
752

    
753
    cpu_unregister_io_memory(s->mmio_index);
754

    
755
    qemu_free(s);
756
}
757

    
758
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
759
{
760
    mv88w8618_eth_state *s;
761

    
762
    qemu_check_nic_model(nd, "mv88w8618");
763

    
764
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
765
    s->irq = irq;
766
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
767
                                 eth_receive, eth_can_receive,
768
                                 eth_cleanup, s);
769
    s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
770
                                           mv88w8618_eth_writefn, s);
771
    cpu_register_physical_memory(base, MP_ETH_SIZE, s->mmio_index);
772
}
773

    
774
/* LCD register offsets */
775
#define MP_LCD_IRQCTRL          0x180
776
#define MP_LCD_IRQSTAT          0x184
777
#define MP_LCD_SPICTRL          0x1ac
778
#define MP_LCD_INST             0x1bc
779
#define MP_LCD_DATA             0x1c0
780

    
781
/* Mode magics */
782
#define MP_LCD_SPI_DATA         0x00100011
783
#define MP_LCD_SPI_CMD          0x00104011
784
#define MP_LCD_SPI_INVALID      0x00000000
785

    
786
/* Commmands */
787
#define MP_LCD_INST_SETPAGE0    0xB0
788
/* ... */
789
#define MP_LCD_INST_SETPAGE7    0xB7
790

    
791
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
792

    
793
typedef struct musicpal_lcd_state {
794
    uint32_t mode;
795
    uint32_t irqctrl;
796
    int page;
797
    int page_off;
798
    DisplayState *ds;
799
    uint8_t video_ram[128*64/8];
800
} musicpal_lcd_state;
801

    
802
static uint32_t lcd_brightness;
803

    
804
static uint8_t scale_lcd_color(uint8_t col)
805
{
806
    int tmp = col;
807

    
808
    switch (lcd_brightness) {
809
    case 0x00000007: /* 0 */
810
        return 0;
811

    
812
    case 0x00020000: /* 1 */
813
        return (tmp * 1) / 7;
814

    
815
    case 0x00020001: /* 2 */
816
        return (tmp * 2) / 7;
817

    
818
    case 0x00040000: /* 3 */
819
        return (tmp * 3) / 7;
820

    
821
    case 0x00010006: /* 4 */
822
        return (tmp * 4) / 7;
823

    
824
    case 0x00020005: /* 5 */
825
        return (tmp * 5) / 7;
826

    
827
    case 0x00040003: /* 6 */
828
        return (tmp * 6) / 7;
829

    
830
    case 0x00030004: /* 7 */
831
    default:
832
        return col;
833
    }
834
}
835

    
836
#define SET_LCD_PIXEL(depth, type) \
837
static inline void glue(set_lcd_pixel, depth) \
838
        (musicpal_lcd_state *s, int x, int y, type col) \
839
{ \
840
    int dx, dy; \
841
    type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
842
\
843
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
844
        for (dx = 0; dx < 3; dx++, pixel++) \
845
            *pixel = col; \
846
}
847
SET_LCD_PIXEL(8, uint8_t)
848
SET_LCD_PIXEL(16, uint16_t)
849
SET_LCD_PIXEL(32, uint32_t)
850

    
851
#include "pixel_ops.h"
852

    
853
static void lcd_refresh(void *opaque)
854
{
855
    musicpal_lcd_state *s = opaque;
856
    int x, y, col;
857

    
858
    switch (ds_get_bits_per_pixel(s->ds)) {
859
    case 0:
860
        return;
861
#define LCD_REFRESH(depth, func) \
862
    case depth: \
863
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
864
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
865
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
866
        for (x = 0; x < 128; x++) \
867
            for (y = 0; y < 64; y++) \
868
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
869
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
870
                else \
871
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
872
        break;
873
    LCD_REFRESH(8, rgb_to_pixel8)
874
    LCD_REFRESH(16, rgb_to_pixel16)
875
    LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
876
                     rgb_to_pixel32bgr : rgb_to_pixel32))
877
    default:
878
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
879
                  ds_get_bits_per_pixel(s->ds));
880
    }
881

    
882
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
883
}
884

    
885
static void lcd_invalidate(void *opaque)
886
{
887
}
888

    
889
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
890
{
891
    musicpal_lcd_state *s = opaque;
892

    
893
    switch (offset) {
894
    case MP_LCD_IRQCTRL:
895
        return s->irqctrl;
896

    
897
    default:
898
        return 0;
899
    }
900
}
901

    
902
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
903
                               uint32_t value)
904
{
905
    musicpal_lcd_state *s = opaque;
906

    
907
    switch (offset) {
908
    case MP_LCD_IRQCTRL:
909
        s->irqctrl = value;
910
        break;
911

    
912
    case MP_LCD_SPICTRL:
913
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
914
            s->mode = value;
915
        else
916
            s->mode = MP_LCD_SPI_INVALID;
917
        break;
918

    
919
    case MP_LCD_INST:
920
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
921
            s->page = value - MP_LCD_INST_SETPAGE0;
922
            s->page_off = 0;
923
        }
924
        break;
925

    
926
    case MP_LCD_DATA:
927
        if (s->mode == MP_LCD_SPI_CMD) {
928
            if (value >= MP_LCD_INST_SETPAGE0 &&
929
                value <= MP_LCD_INST_SETPAGE7) {
930
                s->page = value - MP_LCD_INST_SETPAGE0;
931
                s->page_off = 0;
932
            }
933
        } else if (s->mode == MP_LCD_SPI_DATA) {
934
            s->video_ram[s->page*128 + s->page_off] = value;
935
            s->page_off = (s->page_off + 1) & 127;
936
        }
937
        break;
938
    }
939
}
940

    
941
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
942
    musicpal_lcd_read,
943
    musicpal_lcd_read,
944
    musicpal_lcd_read
945
};
946

    
947
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
948
    musicpal_lcd_write,
949
    musicpal_lcd_write,
950
    musicpal_lcd_write
951
};
952

    
953
static void musicpal_lcd_init(void)
954
{
955
    musicpal_lcd_state *s;
956
    int iomemtype;
957

    
958
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
959
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
960
                                       musicpal_lcd_writefn, s);
961
    cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
962

    
963
    s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
964
                                 NULL, NULL, s);
965
    qemu_console_resize(s->ds, 128*3, 64*3);
966
}
967

    
968
/* PIC register offsets */
969
#define MP_PIC_STATUS           0x00
970
#define MP_PIC_ENABLE_SET       0x08
971
#define MP_PIC_ENABLE_CLR       0x0C
972

    
973
typedef struct mv88w8618_pic_state
974
{
975
    uint32_t level;
976
    uint32_t enabled;
977
    qemu_irq parent_irq;
978
} mv88w8618_pic_state;
979

    
980
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
981
{
982
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
983
}
984

    
985
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
986
{
987
    mv88w8618_pic_state *s = opaque;
988

    
989
    if (level)
990
        s->level |= 1 << irq;
991
    else
992
        s->level &= ~(1 << irq);
993
    mv88w8618_pic_update(s);
994
}
995

    
996
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
997
{
998
    mv88w8618_pic_state *s = opaque;
999

    
1000
    switch (offset) {
1001
    case MP_PIC_STATUS:
1002
        return s->level & s->enabled;
1003

    
1004
    default:
1005
        return 0;
1006
    }
1007
}
1008

    
1009
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1010
                                uint32_t value)
1011
{
1012
    mv88w8618_pic_state *s = opaque;
1013

    
1014
    switch (offset) {
1015
    case MP_PIC_ENABLE_SET:
1016
        s->enabled |= value;
1017
        break;
1018

    
1019
    case MP_PIC_ENABLE_CLR:
1020
        s->enabled &= ~value;
1021
        s->level &= ~value;
1022
        break;
1023
    }
1024
    mv88w8618_pic_update(s);
1025
}
1026

    
1027
static void mv88w8618_pic_reset(void *opaque)
1028
{
1029
    mv88w8618_pic_state *s = opaque;
1030

    
1031
    s->level = 0;
1032
    s->enabled = 0;
1033
}
1034

    
1035
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1036
    mv88w8618_pic_read,
1037
    mv88w8618_pic_read,
1038
    mv88w8618_pic_read
1039
};
1040

    
1041
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1042
    mv88w8618_pic_write,
1043
    mv88w8618_pic_write,
1044
    mv88w8618_pic_write
1045
};
1046

    
1047
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1048
{
1049
    mv88w8618_pic_state *s;
1050
    int iomemtype;
1051
    qemu_irq *qi;
1052

    
1053
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1054
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1055
    s->parent_irq = parent_irq;
1056
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1057
                                       mv88w8618_pic_writefn, s);
1058
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1059

    
1060
    qemu_register_reset(mv88w8618_pic_reset, s);
1061

    
1062
    return qi;
1063
}
1064

    
1065
/* PIT register offsets */
1066
#define MP_PIT_TIMER1_LENGTH    0x00
1067
/* ... */
1068
#define MP_PIT_TIMER4_LENGTH    0x0C
1069
#define MP_PIT_CONTROL          0x10
1070
#define MP_PIT_TIMER1_VALUE     0x14
1071
/* ... */
1072
#define MP_PIT_TIMER4_VALUE     0x20
1073
#define MP_BOARD_RESET          0x34
1074

    
1075
/* Magic board reset value (probably some watchdog behind it) */
1076
#define MP_BOARD_RESET_MAGIC    0x10000
1077

    
1078
typedef struct mv88w8618_timer_state {
1079
    ptimer_state *timer;
1080
    uint32_t limit;
1081
    int freq;
1082
    qemu_irq irq;
1083
} mv88w8618_timer_state;
1084

    
1085
typedef struct mv88w8618_pit_state {
1086
    void *timer[4];
1087
    uint32_t control;
1088
} mv88w8618_pit_state;
1089

    
1090
static void mv88w8618_timer_tick(void *opaque)
1091
{
1092
    mv88w8618_timer_state *s = opaque;
1093

    
1094
    qemu_irq_raise(s->irq);
1095
}
1096

    
1097
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1098
{
1099
    mv88w8618_timer_state *s;
1100
    QEMUBH *bh;
1101

    
1102
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1103
    s->irq = irq;
1104
    s->freq = freq;
1105

    
1106
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1107
    s->timer = ptimer_init(bh);
1108

    
1109
    return s;
1110
}
1111

    
1112
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1113
{
1114
    mv88w8618_pit_state *s = opaque;
1115
    mv88w8618_timer_state *t;
1116

    
1117
    switch (offset) {
1118
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1119
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1120
        return ptimer_get_count(t->timer);
1121

    
1122
    default:
1123
        return 0;
1124
    }
1125
}
1126

    
1127
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1128
                                uint32_t value)
1129
{
1130
    mv88w8618_pit_state *s = opaque;
1131
    mv88w8618_timer_state *t;
1132
    int i;
1133

    
1134
    switch (offset) {
1135
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1136
        t = s->timer[offset >> 2];
1137
        t->limit = value;
1138
        ptimer_set_limit(t->timer, t->limit, 1);
1139
        break;
1140

    
1141
    case MP_PIT_CONTROL:
1142
        for (i = 0; i < 4; i++) {
1143
            if (value & 0xf) {
1144
                t = s->timer[i];
1145
                ptimer_set_limit(t->timer, t->limit, 0);
1146
                ptimer_set_freq(t->timer, t->freq);
1147
                ptimer_run(t->timer, 0);
1148
            }
1149
            value >>= 4;
1150
        }
1151
        break;
1152

    
1153
    case MP_BOARD_RESET:
1154
        if (value == MP_BOARD_RESET_MAGIC)
1155
            qemu_system_reset_request();
1156
        break;
1157
    }
1158
}
1159

    
1160
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1161
    mv88w8618_pit_read,
1162
    mv88w8618_pit_read,
1163
    mv88w8618_pit_read
1164
};
1165

    
1166
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1167
    mv88w8618_pit_write,
1168
    mv88w8618_pit_write,
1169
    mv88w8618_pit_write
1170
};
1171

    
1172
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1173
{
1174
    int iomemtype;
1175
    mv88w8618_pit_state *s;
1176

    
1177
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1178

    
1179
    /* Letting them all run at 1 MHz is likely just a pragmatic
1180
     * simplification. */
1181
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1182
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1183
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1184
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1185

    
1186
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1187
                                       mv88w8618_pit_writefn, s);
1188
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1189
}
1190

    
1191
/* Flash config register offsets */
1192
#define MP_FLASHCFG_CFGR0    0x04
1193

    
1194
typedef struct mv88w8618_flashcfg_state {
1195
    uint32_t cfgr0;
1196
} mv88w8618_flashcfg_state;
1197

    
1198
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1199
                                        target_phys_addr_t offset)
1200
{
1201
    mv88w8618_flashcfg_state *s = opaque;
1202

    
1203
    switch (offset) {
1204
    case MP_FLASHCFG_CFGR0:
1205
        return s->cfgr0;
1206

    
1207
    default:
1208
        return 0;
1209
    }
1210
}
1211

    
1212
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1213
                                     uint32_t value)
1214
{
1215
    mv88w8618_flashcfg_state *s = opaque;
1216

    
1217
    switch (offset) {
1218
    case MP_FLASHCFG_CFGR0:
1219
        s->cfgr0 = value;
1220
        break;
1221
    }
1222
}
1223

    
1224
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1225
    mv88w8618_flashcfg_read,
1226
    mv88w8618_flashcfg_read,
1227
    mv88w8618_flashcfg_read
1228
};
1229

    
1230
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1231
    mv88w8618_flashcfg_write,
1232
    mv88w8618_flashcfg_write,
1233
    mv88w8618_flashcfg_write
1234
};
1235

    
1236
static void mv88w8618_flashcfg_init(uint32_t base)
1237
{
1238
    int iomemtype;
1239
    mv88w8618_flashcfg_state *s;
1240

    
1241
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1242

    
1243
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1244
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1245
                       mv88w8618_flashcfg_writefn, s);
1246
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1247
}
1248

    
1249
/* Misc register offsets */
1250
#define MP_MISC_BOARD_REVISION  0x18
1251

    
1252
#define MP_BOARD_REVISION       0x31
1253

    
1254
static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1255
{
1256
    switch (offset) {
1257
    case MP_MISC_BOARD_REVISION:
1258
        return MP_BOARD_REVISION;
1259

    
1260
    default:
1261
        return 0;
1262
    }
1263
}
1264

    
1265
static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1266
                                uint32_t value)
1267
{
1268
}
1269

    
1270
static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1271
    musicpal_misc_read,
1272
    musicpal_misc_read,
1273
    musicpal_misc_read,
1274
};
1275

    
1276
static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1277
    musicpal_misc_write,
1278
    musicpal_misc_write,
1279
    musicpal_misc_write,
1280
};
1281

    
1282
static void musicpal_misc_init(void)
1283
{
1284
    int iomemtype;
1285

    
1286
    iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1287
                                       musicpal_misc_writefn, NULL);
1288
    cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1289
}
1290

    
1291
/* WLAN register offsets */
1292
#define MP_WLAN_MAGIC1          0x11c
1293
#define MP_WLAN_MAGIC2          0x124
1294

    
1295
static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1296
{
1297
    switch (offset) {
1298
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1299
     * from the original Freecom firmware. */
1300
    case MP_WLAN_MAGIC1:
1301
        return ~3;
1302
    case MP_WLAN_MAGIC2:
1303
        return -1;
1304

    
1305
    default:
1306
        return 0;
1307
    }
1308
}
1309

    
1310
static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1311
                                 uint32_t value)
1312
{
1313
}
1314

    
1315
static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1316
    mv88w8618_wlan_read,
1317
    mv88w8618_wlan_read,
1318
    mv88w8618_wlan_read,
1319
};
1320

    
1321
static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1322
    mv88w8618_wlan_write,
1323
    mv88w8618_wlan_write,
1324
    mv88w8618_wlan_write,
1325
};
1326

    
1327
static void mv88w8618_wlan_init(uint32_t base)
1328
{
1329
    int iomemtype;
1330

    
1331
    iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1332
                                       mv88w8618_wlan_writefn, NULL);
1333
    cpu_register_physical_memory(base, MP_WLAN_SIZE, iomemtype);
1334
}
1335

    
1336
/* GPIO register offsets */
1337
#define MP_GPIO_OE_LO           0x008
1338
#define MP_GPIO_OUT_LO          0x00c
1339
#define MP_GPIO_IN_LO           0x010
1340
#define MP_GPIO_ISR_LO          0x020
1341
#define MP_GPIO_OE_HI           0x508
1342
#define MP_GPIO_OUT_HI          0x50c
1343
#define MP_GPIO_IN_HI           0x510
1344
#define MP_GPIO_ISR_HI          0x520
1345

    
1346
/* GPIO bits & masks */
1347
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1348
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1349
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1350
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1351
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1352
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1353
#define MP_GPIO_BTN_MENU        (1 << 20)
1354
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1355
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1356
#define MP_GPIO_I2C_DATA_BIT    29
1357
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1358
#define MP_GPIO_I2C_CLOCK_BIT   30
1359

    
1360
/* LCD brightness bits in GPIO_OE_HI */
1361
#define MP_OE_LCD_BRIGHTNESS    0x0007
1362

    
1363
static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1364
{
1365
    switch (offset) {
1366
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1367
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1368

    
1369
    case MP_GPIO_OUT_LO:
1370
        return gpio_out_state & 0xFFFF;
1371
    case MP_GPIO_OUT_HI:
1372
        return gpio_out_state >> 16;
1373

    
1374
    case MP_GPIO_IN_LO:
1375
        return gpio_in_state & 0xFFFF;
1376
    case MP_GPIO_IN_HI:
1377
        /* Update received I2C data */
1378
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1379
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1380
        return gpio_in_state >> 16;
1381

    
1382
    case MP_GPIO_ISR_LO:
1383
        return gpio_isr & 0xFFFF;
1384
    case MP_GPIO_ISR_HI:
1385
        return gpio_isr >> 16;
1386

    
1387
    default:
1388
        return 0;
1389
    }
1390
}
1391

    
1392
static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1393
                                uint32_t value)
1394
{
1395
    switch (offset) {
1396
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1397
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1398
                         (value & MP_OE_LCD_BRIGHTNESS);
1399
        break;
1400

    
1401
    case MP_GPIO_OUT_LO:
1402
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1403
        break;
1404
    case MP_GPIO_OUT_HI:
1405
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1406
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1407
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1408
        i2c_state_update(mixer_i2c,
1409
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1410
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1411
        break;
1412

    
1413
    }
1414
}
1415

    
1416
static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1417
    musicpal_gpio_read,
1418
    musicpal_gpio_read,
1419
    musicpal_gpio_read,
1420
};
1421

    
1422
static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1423
    musicpal_gpio_write,
1424
    musicpal_gpio_write,
1425
    musicpal_gpio_write,
1426
};
1427

    
1428
static void musicpal_gpio_init(void)
1429
{
1430
    int iomemtype;
1431

    
1432
    iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1433
                                       musicpal_gpio_writefn, NULL);
1434
    cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1435
}
1436

    
1437
/* Keyboard codes & masks */
1438
#define KEY_RELEASED            0x80
1439
#define KEY_CODE                0x7f
1440

    
1441
#define KEYCODE_TAB             0x0f
1442
#define KEYCODE_ENTER           0x1c
1443
#define KEYCODE_F               0x21
1444
#define KEYCODE_M               0x32
1445

    
1446
#define KEYCODE_EXTENDED        0xe0
1447
#define KEYCODE_UP              0x48
1448
#define KEYCODE_DOWN            0x50
1449
#define KEYCODE_LEFT            0x4b
1450
#define KEYCODE_RIGHT           0x4d
1451

    
1452
static void musicpal_key_event(void *opaque, int keycode)
1453
{
1454
    qemu_irq irq = opaque;
1455
    uint32_t event = 0;
1456
    static int kbd_extended;
1457

    
1458
    if (keycode == KEYCODE_EXTENDED) {
1459
        kbd_extended = 1;
1460
        return;
1461
    }
1462

    
1463
    if (kbd_extended)
1464
        switch (keycode & KEY_CODE) {
1465
        case KEYCODE_UP:
1466
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1467
            break;
1468

    
1469
        case KEYCODE_DOWN:
1470
            event = MP_GPIO_WHEEL_NAV;
1471
            break;
1472

    
1473
        case KEYCODE_LEFT:
1474
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1475
            break;
1476

    
1477
        case KEYCODE_RIGHT:
1478
            event = MP_GPIO_WHEEL_VOL;
1479
            break;
1480
        }
1481
    else {
1482
        switch (keycode & KEY_CODE) {
1483
        case KEYCODE_F:
1484
            event = MP_GPIO_BTN_FAVORITS;
1485
            break;
1486

    
1487
        case KEYCODE_TAB:
1488
            event = MP_GPIO_BTN_VOLUME;
1489
            break;
1490

    
1491
        case KEYCODE_ENTER:
1492
            event = MP_GPIO_BTN_NAVIGATION;
1493
            break;
1494

    
1495
        case KEYCODE_M:
1496
            event = MP_GPIO_BTN_MENU;
1497
            break;
1498
        }
1499
        /* Do not repeat already pressed buttons */
1500
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1501
            event = 0;
1502
    }
1503

    
1504
    if (event) {
1505
        if (keycode & KEY_RELEASED) {
1506
            gpio_in_state |= event;
1507
        } else {
1508
            gpio_in_state &= ~event;
1509
            gpio_isr = event;
1510
            qemu_irq_raise(irq);
1511
        }
1512
    }
1513

    
1514
    kbd_extended = 0;
1515
}
1516

    
1517
static struct arm_boot_info musicpal_binfo = {
1518
    .loader_start = 0x0,
1519
    .board_id = 0x20e,
1520
};
1521

    
1522
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1523
               const char *boot_device,
1524
               const char *kernel_filename, const char *kernel_cmdline,
1525
               const char *initrd_filename, const char *cpu_model)
1526
{
1527
    CPUState *env;
1528
    qemu_irq *pic;
1529
    int index;
1530
    unsigned long flash_size;
1531

    
1532
    if (!cpu_model)
1533
        cpu_model = "arm926";
1534

    
1535
    env = cpu_init(cpu_model);
1536
    if (!env) {
1537
        fprintf(stderr, "Unable to find CPU definition\n");
1538
        exit(1);
1539
    }
1540
    pic = arm_pic_init_cpu(env);
1541

    
1542
    /* For now we use a fixed - the original - RAM size */
1543
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1544
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1545

    
1546
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1547
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1548

    
1549
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1550
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1551

    
1552
    if (serial_hds[0])
1553
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1554
                   serial_hds[0], 1);
1555
    if (serial_hds[1])
1556
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1557
                   serial_hds[1], 1);
1558

    
1559
    /* Register flash */
1560
    index = drive_get_index(IF_PFLASH, 0, 0);
1561
    if (index != -1) {
1562
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1563
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1564
            flash_size != 32*1024*1024) {
1565
            fprintf(stderr, "Invalid flash image size\n");
1566
            exit(1);
1567
        }
1568

    
1569
        /*
1570
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1571
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1572
         * image is smaller than 32 MB.
1573
         */
1574
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1575
                              drives_table[index].bdrv, 0x10000,
1576
                              (flash_size + 0xffff) >> 16,
1577
                              MP_FLASH_SIZE_MAX / flash_size,
1578
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1579
                              0x5555, 0x2AAA);
1580
    }
1581
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1582

    
1583
    musicpal_lcd_init();
1584

    
1585
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1586

    
1587
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1588

    
1589
    mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1590

    
1591
    mv88w8618_wlan_init(MP_WLAN_BASE);
1592

    
1593
    musicpal_misc_init();
1594
    musicpal_gpio_init();
1595

    
1596
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1597
    musicpal_binfo.kernel_filename = kernel_filename;
1598
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1599
    musicpal_binfo.initrd_filename = initrd_filename;
1600
    arm_load_kernel(env, &musicpal_binfo);
1601
}
1602

    
1603
QEMUMachine musicpal_machine = {
1604
    .name = "musicpal",
1605
    .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1606
    .init = musicpal_init,
1607
};