Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ ba3c64fb

History | View | Annotate | Download (10.8 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
//#define DEBUG_IRQ_COUNT
26
//#define DEBUG_IRQ
27

    
28
#ifdef DEBUG_IRQ
29
#define DPRINTF(fmt, args...) \
30
do { printf("IRQ: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of interrupt controller in sun4m.
37
 *
38
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 *
42
 * There is a system master controller and one for each cpu.
43
 * 
44
 */
45

    
46
#define MAX_CPUS 16
47

    
48
typedef struct SLAVIO_INTCTLState {
49
    uint32_t intreg_pending[MAX_CPUS];
50
    uint32_t intregm_pending;
51
    uint32_t intregm_disabled;
52
    uint32_t target_cpu;
53
#ifdef DEBUG_IRQ_COUNT
54
    uint64_t irq_count[32];
55
#endif
56
    CPUState *cpu_envs[MAX_CPUS];
57
} SLAVIO_INTCTLState;
58

    
59
#define INTCTL_MAXADDR 0xf
60
#define INTCTLM_MAXADDR 0xf
61
static void slavio_check_interrupts(void *opaque);
62

    
63
// per-cpu interrupt controller
64
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
65
{
66
    SLAVIO_INTCTLState *s = opaque;
67
    uint32_t saddr;
68
    int cpu;
69

    
70
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
71
    saddr = (addr & INTCTL_MAXADDR) >> 2;
72
    switch (saddr) {
73
    case 0:
74
        return s->intreg_pending[cpu];
75
    default:
76
        break;
77
    }
78
    return 0;
79
}
80

    
81
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
82
{
83
    SLAVIO_INTCTLState *s = opaque;
84
    uint32_t saddr;
85
    int cpu;
86

    
87
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
88
    saddr = (addr & INTCTL_MAXADDR) >> 2;
89
    switch (saddr) {
90
    case 1: // clear pending softints
91
        if (val & 0x4000)
92
            val |= 80000000;
93
        val &= 0xfffe0000;
94
        s->intreg_pending[cpu] &= ~val;
95
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
96
        break;
97
    case 2: // set softint
98
        val &= 0xfffe0000;
99
        s->intreg_pending[cpu] |= val;
100
        slavio_check_interrupts(s);
101
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
102
        break;
103
    default:
104
        break;
105
    }
106
}
107

    
108
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
109
    slavio_intctl_mem_readl,
110
    slavio_intctl_mem_readl,
111
    slavio_intctl_mem_readl,
112
};
113

    
114
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
115
    slavio_intctl_mem_writel,
116
    slavio_intctl_mem_writel,
117
    slavio_intctl_mem_writel,
118
};
119

    
120
// master system interrupt controller
121
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
122
{
123
    SLAVIO_INTCTLState *s = opaque;
124
    uint32_t saddr;
125

    
126
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
127
    switch (saddr) {
128
    case 0:
129
        return s->intregm_pending & 0x7fffffff;
130
    case 1:
131
        return s->intregm_disabled;
132
    case 4:
133
        return s->target_cpu;
134
    default:
135
        break;
136
    }
137
    return 0;
138
}
139

    
140
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
141
{
142
    SLAVIO_INTCTLState *s = opaque;
143
    uint32_t saddr;
144

    
145
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
146
    switch (saddr) {
147
    case 2: // clear (enable)
148
        // Force clear unused bits
149
        val &= ~0x4fb2007f;
150
        s->intregm_disabled &= ~val;
151
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
152
        slavio_check_interrupts(s);
153
        break;
154
    case 3: // set (disable, clear pending)
155
        // Force clear unused bits
156
        val &= ~0x4fb2007f;
157
        s->intregm_disabled |= val;
158
        s->intregm_pending &= ~val;
159
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
160
        break;
161
    case 4:
162
        s->target_cpu = val & (MAX_CPUS - 1);
163
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
164
        break;
165
    default:
166
        break;
167
    }
168
}
169

    
170
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
171
    slavio_intctlm_mem_readl,
172
    slavio_intctlm_mem_readl,
173
    slavio_intctlm_mem_readl,
174
};
175

    
176
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
177
    slavio_intctlm_mem_writel,
178
    slavio_intctlm_mem_writel,
179
    slavio_intctlm_mem_writel,
180
};
181

    
182
void slavio_pic_info(void *opaque)
183
{
184
    SLAVIO_INTCTLState *s = opaque;
185
    int i;
186

    
187
    for (i = 0; i < MAX_CPUS; i++) {
188
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
189
    }
190
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
191
}
192

    
193
void slavio_irq_info(void *opaque)
194
{
195
#ifndef DEBUG_IRQ_COUNT
196
    term_printf("irq statistic code not compiled.\n");
197
#else
198
    SLAVIO_INTCTLState *s = opaque;
199
    int i;
200
    int64_t count;
201

    
202
    term_printf("IRQ statistics:\n");
203
    for (i = 0; i < 32; i++) {
204
        count = s->irq_count[i];
205
        if (count > 0)
206
            term_printf("%2d: %lld\n", i, count);
207
    }
208
#endif
209
}
210

    
211
static const uint32_t intbit_to_level[32] = {
212
    2, 3, 5, 7, 9, 11, 0, 14,        3, 5, 7, 9, 11, 13, 12, 12,
213
    6, 0, 4, 10, 8, 0, 11, 0,        0, 0, 0, 0, 15, 0, 15, 0,
214
};
215

    
216
static void slavio_check_interrupts(void *opaque)
217
{
218
    CPUState *env;
219
    SLAVIO_INTCTLState *s = opaque;
220
    uint32_t pending = s->intregm_pending;
221
    unsigned int i, j, max = 0;
222

    
223
    pending &= ~s->intregm_disabled;
224

    
225
    if (pending && !(s->intregm_disabled & 0x80000000)) {
226
        for (i = 0; i < 32; i++) {
227
            if (pending & (1 << i)) {
228
                if (max < intbit_to_level[i])
229
                    max = intbit_to_level[i];
230
            }
231
        }
232
        env = s->cpu_envs[s->target_cpu];
233
        if (!env) {
234
            DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending);
235
        }
236
        else {
237
            if (env->halted)
238
                env->halted = 0;
239
            if (env->interrupt_index == 0) {
240
                DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max);
241
#ifdef DEBUG_IRQ_COUNT
242
                s->irq_count[max]++;
243
#endif
244
                env->interrupt_index = TT_EXTINT | max;
245
                cpu_interrupt(env, CPU_INTERRUPT_HARD);
246
            }
247
            else
248
                DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
249
        }
250
    }
251
    else
252
        DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
253
    
254
    for (i = 0; i < MAX_CPUS; i++) {
255
        max = 0;
256
        env = s->cpu_envs[i];
257
        if (!env)
258
            continue;
259
        for (j = 17; j < 32; j++) {
260
            if (s->intreg_pending[i] & (1 << j)) {
261
                if (max < j - 16)
262
                    max = j - 16;
263
            }
264
        }
265
        if (max > 0) {
266
            if (env->halted)
267
                env->halted = 0;
268
            if (env->interrupt_index == 0) {
269
                DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending);
270
#ifdef DEBUG_IRQ_COUNT
271
                s->irq_count[max]++;
272
#endif
273
                env->interrupt_index = TT_EXTINT | max;
274
                cpu_interrupt(env, CPU_INTERRUPT_HARD);
275
            }
276
        }
277
    }
278
}
279

    
280
/*
281
 * "irq" here is the bit number in the system interrupt register to
282
 * separate serial and keyboard interrupts sharing a level.
283
 */
284
void slavio_pic_set_irq(void *opaque, int irq, int level)
285
{
286
    SLAVIO_INTCTLState *s = opaque;
287

    
288
    DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level);
289
    if (irq < 32) {
290
        uint32_t mask = 1 << irq;
291
        uint32_t pil = intbit_to_level[irq];
292
        if (pil > 0) {
293
            if (level) {
294
                s->intregm_pending |= mask;
295
                s->intreg_pending[s->target_cpu] |= 1 << pil;
296
            }
297
            else {
298
                s->intregm_pending &= ~mask;
299
                s->intreg_pending[s->target_cpu] &= ~(1 << pil);
300
            }
301
        }
302
    }
303
    slavio_check_interrupts(s);
304
}
305

    
306
void slavio_pic_set_irq_cpu(void *opaque, int irq, int level, unsigned int cpu)
307
{
308
    SLAVIO_INTCTLState *s = opaque;
309

    
310
    DPRINTF("Set cpu %d local irq %d level %d\n", cpu, irq, level);
311
    if (cpu == (unsigned int)-1) {
312
        slavio_pic_set_irq(opaque, irq, level);
313
        return;
314
    }
315
    if (irq < 32) {
316
        uint32_t pil = intbit_to_level[irq];
317
            if (pil > 0) {
318
            if (level) {
319
                s->intreg_pending[cpu] |= 1 << pil;
320
            }
321
            else {
322
                s->intreg_pending[cpu] &= ~(1 << pil);
323
            }
324
        }
325
    }
326
    slavio_check_interrupts(s);
327
}
328

    
329
static void slavio_intctl_save(QEMUFile *f, void *opaque)
330
{
331
    SLAVIO_INTCTLState *s = opaque;
332
    int i;
333
    
334
    for (i = 0; i < MAX_CPUS; i++) {
335
        qemu_put_be32s(f, &s->intreg_pending[i]);
336
    }
337
    qemu_put_be32s(f, &s->intregm_pending);
338
    qemu_put_be32s(f, &s->intregm_disabled);
339
    qemu_put_be32s(f, &s->target_cpu);
340
}
341

    
342
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
343
{
344
    SLAVIO_INTCTLState *s = opaque;
345
    int i;
346

    
347
    if (version_id != 1)
348
        return -EINVAL;
349

    
350
    for (i = 0; i < MAX_CPUS; i++) {
351
        qemu_get_be32s(f, &s->intreg_pending[i]);
352
    }
353
    qemu_get_be32s(f, &s->intregm_pending);
354
    qemu_get_be32s(f, &s->intregm_disabled);
355
    qemu_get_be32s(f, &s->target_cpu);
356
    return 0;
357
}
358

    
359
static void slavio_intctl_reset(void *opaque)
360
{
361
    SLAVIO_INTCTLState *s = opaque;
362
    int i;
363

    
364
    for (i = 0; i < MAX_CPUS; i++) {
365
        s->intreg_pending[i] = 0;
366
    }
367
    s->intregm_disabled = ~0xffb2007f;
368
    s->intregm_pending = 0;
369
    s->target_cpu = 0;
370
}
371

    
372
void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env)
373
{
374
    SLAVIO_INTCTLState *s = opaque;
375
    s->cpu_envs[cpu] = env;
376
}
377

    
378
void *slavio_intctl_init(uint32_t addr, uint32_t addrg)
379
{
380
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
381
    SLAVIO_INTCTLState *s;
382

    
383
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
384
    if (!s)
385
        return NULL;
386

    
387
    for (i = 0; i < MAX_CPUS; i++) {
388
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
389
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
390
    }
391

    
392
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
393
    cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
394

    
395
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
396
    qemu_register_reset(slavio_intctl_reset, s);
397
    slavio_intctl_reset(s);
398
    return s;
399
}
400