Statistics
| Branch: | Revision:

root / arch_init.c @ ba6212d8

History | View | Annotate | Download (27.1 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdint.h>
25
#include <stdarg.h>
26
#include <stdlib.h>
27
#ifndef _WIN32
28
#include <sys/types.h>
29
#include <sys/mman.h>
30
#endif
31
#include "config.h"
32
#include "monitor.h"
33
#include "sysemu.h"
34
#include "arch_init.h"
35
#include "audio/audio.h"
36
#include "hw/pc.h"
37
#include "hw/pci.h"
38
#include "hw/audiodev.h"
39
#include "kvm.h"
40
#include "migration.h"
41
#include "net.h"
42
#include "gdbstub.h"
43
#include "hw/smbios.h"
44
#include "exec-memory.h"
45
#include "hw/pcspk.h"
46
#include "qemu/page_cache.h"
47
#include "qmp-commands.h"
48

    
49
#ifdef DEBUG_ARCH_INIT
50
#define DPRINTF(fmt, ...) \
51
    do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
52
#else
53
#define DPRINTF(fmt, ...) \
54
    do { } while (0)
55
#endif
56

    
57
#ifdef TARGET_SPARC
58
int graphic_width = 1024;
59
int graphic_height = 768;
60
int graphic_depth = 8;
61
#else
62
int graphic_width = 800;
63
int graphic_height = 600;
64
int graphic_depth = 15;
65
#endif
66

    
67

    
68
#if defined(TARGET_ALPHA)
69
#define QEMU_ARCH QEMU_ARCH_ALPHA
70
#elif defined(TARGET_ARM)
71
#define QEMU_ARCH QEMU_ARCH_ARM
72
#elif defined(TARGET_CRIS)
73
#define QEMU_ARCH QEMU_ARCH_CRIS
74
#elif defined(TARGET_I386)
75
#define QEMU_ARCH QEMU_ARCH_I386
76
#elif defined(TARGET_M68K)
77
#define QEMU_ARCH QEMU_ARCH_M68K
78
#elif defined(TARGET_LM32)
79
#define QEMU_ARCH QEMU_ARCH_LM32
80
#elif defined(TARGET_MICROBLAZE)
81
#define QEMU_ARCH QEMU_ARCH_MICROBLAZE
82
#elif defined(TARGET_MIPS)
83
#define QEMU_ARCH QEMU_ARCH_MIPS
84
#elif defined(TARGET_OPENRISC)
85
#define QEMU_ARCH QEMU_ARCH_OPENRISC
86
#elif defined(TARGET_PPC)
87
#define QEMU_ARCH QEMU_ARCH_PPC
88
#elif defined(TARGET_S390X)
89
#define QEMU_ARCH QEMU_ARCH_S390X
90
#elif defined(TARGET_SH4)
91
#define QEMU_ARCH QEMU_ARCH_SH4
92
#elif defined(TARGET_SPARC)
93
#define QEMU_ARCH QEMU_ARCH_SPARC
94
#elif defined(TARGET_XTENSA)
95
#define QEMU_ARCH QEMU_ARCH_XTENSA
96
#elif defined(TARGET_UNICORE32)
97
#define QEMU_ARCH QEMU_ARCH_UNICORE32
98
#endif
99

    
100
const uint32_t arch_type = QEMU_ARCH;
101

    
102
/***********************************************************/
103
/* ram save/restore */
104

    
105
#define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
106
#define RAM_SAVE_FLAG_COMPRESS 0x02
107
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
108
#define RAM_SAVE_FLAG_PAGE     0x08
109
#define RAM_SAVE_FLAG_EOS      0x10
110
#define RAM_SAVE_FLAG_CONTINUE 0x20
111
#define RAM_SAVE_FLAG_XBZRLE   0x40
112

    
113
#ifdef __ALTIVEC__
114
#include <altivec.h>
115
#define VECTYPE        vector unsigned char
116
#define SPLAT(p)       vec_splat(vec_ld(0, p), 0)
117
#define ALL_EQ(v1, v2) vec_all_eq(v1, v2)
118
/* altivec.h may redefine the bool macro as vector type.
119
 * Reset it to POSIX semantics. */
120
#undef bool
121
#define bool _Bool
122
#elif defined __SSE2__
123
#include <emmintrin.h>
124
#define VECTYPE        __m128i
125
#define SPLAT(p)       _mm_set1_epi8(*(p))
126
#define ALL_EQ(v1, v2) (_mm_movemask_epi8(_mm_cmpeq_epi8(v1, v2)) == 0xFFFF)
127
#else
128
#define VECTYPE        unsigned long
129
#define SPLAT(p)       (*(p) * (~0UL / 255))
130
#define ALL_EQ(v1, v2) ((v1) == (v2))
131
#endif
132

    
133

    
134
static struct defconfig_file {
135
    const char *filename;
136
    /* Indicates it is an user config file (disabled by -no-user-config) */
137
    bool userconfig;
138
} default_config_files[] = {
139
    { CONFIG_QEMU_CONFDIR "/qemu.conf",                   true },
140
    { CONFIG_QEMU_CONFDIR "/target-" TARGET_ARCH ".conf", true },
141
    { NULL }, /* end of list */
142
};
143

    
144

    
145
int qemu_read_default_config_files(bool userconfig)
146
{
147
    int ret;
148
    struct defconfig_file *f;
149

    
150
    for (f = default_config_files; f->filename; f++) {
151
        if (!userconfig && f->userconfig) {
152
            continue;
153
        }
154
        ret = qemu_read_config_file(f->filename);
155
        if (ret < 0 && ret != -ENOENT) {
156
            return ret;
157
        }
158
    }
159
    
160
    return 0;
161
}
162

    
163
static int is_dup_page(uint8_t *page)
164
{
165
    VECTYPE *p = (VECTYPE *)page;
166
    VECTYPE val = SPLAT(page);
167
    int i;
168

    
169
    for (i = 0; i < TARGET_PAGE_SIZE / sizeof(VECTYPE); i++) {
170
        if (!ALL_EQ(val, p[i])) {
171
            return 0;
172
        }
173
    }
174

    
175
    return 1;
176
}
177

    
178
/* struct contains XBZRLE cache and a static page
179
   used by the compression */
180
static struct {
181
    /* buffer used for XBZRLE encoding */
182
    uint8_t *encoded_buf;
183
    /* buffer for storing page content */
184
    uint8_t *current_buf;
185
    /* buffer used for XBZRLE decoding */
186
    uint8_t *decoded_buf;
187
    /* Cache for XBZRLE */
188
    PageCache *cache;
189
} XBZRLE = {
190
    .encoded_buf = NULL,
191
    .current_buf = NULL,
192
    .decoded_buf = NULL,
193
    .cache = NULL,
194
};
195

    
196

    
197
int64_t xbzrle_cache_resize(int64_t new_size)
198
{
199
    if (XBZRLE.cache != NULL) {
200
        return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
201
            TARGET_PAGE_SIZE;
202
    }
203
    return pow2floor(new_size);
204
}
205

    
206
/* accounting for migration statistics */
207
typedef struct AccountingInfo {
208
    uint64_t dup_pages;
209
    uint64_t norm_pages;
210
    uint64_t iterations;
211
    uint64_t xbzrle_bytes;
212
    uint64_t xbzrle_pages;
213
    uint64_t xbzrle_cache_miss;
214
    uint64_t xbzrle_overflows;
215
} AccountingInfo;
216

    
217
static AccountingInfo acct_info;
218

    
219
static void acct_clear(void)
220
{
221
    memset(&acct_info, 0, sizeof(acct_info));
222
}
223

    
224
uint64_t dup_mig_bytes_transferred(void)
225
{
226
    return acct_info.dup_pages * TARGET_PAGE_SIZE;
227
}
228

    
229
uint64_t dup_mig_pages_transferred(void)
230
{
231
    return acct_info.dup_pages;
232
}
233

    
234
uint64_t norm_mig_bytes_transferred(void)
235
{
236
    return acct_info.norm_pages * TARGET_PAGE_SIZE;
237
}
238

    
239
uint64_t norm_mig_pages_transferred(void)
240
{
241
    return acct_info.norm_pages;
242
}
243

    
244
uint64_t xbzrle_mig_bytes_transferred(void)
245
{
246
    return acct_info.xbzrle_bytes;
247
}
248

    
249
uint64_t xbzrle_mig_pages_transferred(void)
250
{
251
    return acct_info.xbzrle_pages;
252
}
253

    
254
uint64_t xbzrle_mig_pages_cache_miss(void)
255
{
256
    return acct_info.xbzrle_cache_miss;
257
}
258

    
259
uint64_t xbzrle_mig_pages_overflow(void)
260
{
261
    return acct_info.xbzrle_overflows;
262
}
263

    
264
static void save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
265
        int cont, int flag)
266
{
267
        qemu_put_be64(f, offset | cont | flag);
268
        if (!cont) {
269
                qemu_put_byte(f, strlen(block->idstr));
270
                qemu_put_buffer(f, (uint8_t *)block->idstr,
271
                                strlen(block->idstr));
272
        }
273

    
274
}
275

    
276
#define ENCODING_FLAG_XBZRLE 0x1
277

    
278
static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
279
                            ram_addr_t current_addr, RAMBlock *block,
280
                            ram_addr_t offset, int cont, bool last_stage)
281
{
282
    int encoded_len = 0, bytes_sent = -1;
283
    uint8_t *prev_cached_page;
284

    
285
    if (!cache_is_cached(XBZRLE.cache, current_addr)) {
286
        if (!last_stage) {
287
            cache_insert(XBZRLE.cache, current_addr,
288
                         g_memdup(current_data, TARGET_PAGE_SIZE));
289
        }
290
        acct_info.xbzrle_cache_miss++;
291
        return -1;
292
    }
293

    
294
    prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
295

    
296
    /* save current buffer into memory */
297
    memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
298

    
299
    /* XBZRLE encoding (if there is no overflow) */
300
    encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
301
                                       TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
302
                                       TARGET_PAGE_SIZE);
303
    if (encoded_len == 0) {
304
        DPRINTF("Skipping unmodified page\n");
305
        return 0;
306
    } else if (encoded_len == -1) {
307
        DPRINTF("Overflow\n");
308
        acct_info.xbzrle_overflows++;
309
        /* update data in the cache */
310
        memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
311
        return -1;
312
    }
313

    
314
    /* we need to update the data in the cache, in order to get the same data */
315
    if (!last_stage) {
316
        memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
317
    }
318

    
319
    /* Send XBZRLE based compressed page */
320
    save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
321
    qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
322
    qemu_put_be16(f, encoded_len);
323
    qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
324
    bytes_sent = encoded_len + 1 + 2;
325
    acct_info.xbzrle_pages++;
326
    acct_info.xbzrle_bytes += bytes_sent;
327

    
328
    return bytes_sent;
329
}
330

    
331
static RAMBlock *last_block;
332
static ram_addr_t last_offset;
333

    
334
/*
335
 * ram_save_block: Writes a page of memory to the stream f
336
 *
337
 * Returns:  0: if the page hasn't changed
338
 *          -1: if there are no more dirty pages
339
 *           n: the amount of bytes written in other case
340
 */
341

    
342
static int ram_save_block(QEMUFile *f, bool last_stage)
343
{
344
    RAMBlock *block = last_block;
345
    ram_addr_t offset = last_offset;
346
    int bytes_sent = -1;
347
    MemoryRegion *mr;
348
    ram_addr_t current_addr;
349

    
350
    if (!block)
351
        block = QLIST_FIRST(&ram_list.blocks);
352

    
353
    do {
354
        mr = block->mr;
355
        if (memory_region_get_dirty(mr, offset, TARGET_PAGE_SIZE,
356
                                    DIRTY_MEMORY_MIGRATION)) {
357
            uint8_t *p;
358
            int cont = (block == last_block) ? RAM_SAVE_FLAG_CONTINUE : 0;
359

    
360
            memory_region_reset_dirty(mr, offset, TARGET_PAGE_SIZE,
361
                                      DIRTY_MEMORY_MIGRATION);
362

    
363
            p = memory_region_get_ram_ptr(mr) + offset;
364

    
365
            if (is_dup_page(p)) {
366
                acct_info.dup_pages++;
367
                save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_COMPRESS);
368
                qemu_put_byte(f, *p);
369
                bytes_sent = 1;
370
            } else if (migrate_use_xbzrle()) {
371
                current_addr = block->offset + offset;
372
                bytes_sent = save_xbzrle_page(f, p, current_addr, block,
373
                                              offset, cont, last_stage);
374
                if (!last_stage) {
375
                    p = get_cached_data(XBZRLE.cache, current_addr);
376
                }
377
            }
378

    
379
            /* either we didn't send yet (we may have had XBZRLE overflow) */
380
            if (bytes_sent == -1) {
381
                save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
382
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
383
                bytes_sent = TARGET_PAGE_SIZE;
384
                acct_info.norm_pages++;
385
            }
386

    
387
            /* if page is unmodified, continue to the next */
388
            if (bytes_sent != 0) {
389
                break;
390
            }
391
        }
392

    
393
        offset += TARGET_PAGE_SIZE;
394
        if (offset >= block->length) {
395
            offset = 0;
396
            block = QLIST_NEXT(block, next);
397
            if (!block)
398
                block = QLIST_FIRST(&ram_list.blocks);
399
        }
400
    } while (block != last_block || offset != last_offset);
401

    
402
    last_block = block;
403
    last_offset = offset;
404

    
405
    return bytes_sent;
406
}
407

    
408
static uint64_t bytes_transferred;
409

    
410
static ram_addr_t ram_save_remaining(void)
411
{
412
    return ram_list.dirty_pages;
413
}
414

    
415
uint64_t ram_bytes_remaining(void)
416
{
417
    return ram_save_remaining() * TARGET_PAGE_SIZE;
418
}
419

    
420
uint64_t ram_bytes_transferred(void)
421
{
422
    return bytes_transferred;
423
}
424

    
425
uint64_t ram_bytes_total(void)
426
{
427
    RAMBlock *block;
428
    uint64_t total = 0;
429

    
430
    QLIST_FOREACH(block, &ram_list.blocks, next)
431
        total += block->length;
432

    
433
    return total;
434
}
435

    
436
static int block_compar(const void *a, const void *b)
437
{
438
    RAMBlock * const *ablock = a;
439
    RAMBlock * const *bblock = b;
440

    
441
    return strcmp((*ablock)->idstr, (*bblock)->idstr);
442
}
443

    
444
static void sort_ram_list(void)
445
{
446
    RAMBlock *block, *nblock, **blocks;
447
    int n;
448
    n = 0;
449
    QLIST_FOREACH(block, &ram_list.blocks, next) {
450
        ++n;
451
    }
452
    blocks = g_malloc(n * sizeof *blocks);
453
    n = 0;
454
    QLIST_FOREACH_SAFE(block, &ram_list.blocks, next, nblock) {
455
        blocks[n++] = block;
456
        QLIST_REMOVE(block, next);
457
    }
458
    qsort(blocks, n, sizeof *blocks, block_compar);
459
    while (--n >= 0) {
460
        QLIST_INSERT_HEAD(&ram_list.blocks, blocks[n], next);
461
    }
462
    g_free(blocks);
463
}
464

    
465
static void migration_end(void)
466
{
467
    memory_global_dirty_log_stop();
468

    
469
    if (migrate_use_xbzrle()) {
470
        cache_fini(XBZRLE.cache);
471
        g_free(XBZRLE.cache);
472
        g_free(XBZRLE.encoded_buf);
473
        g_free(XBZRLE.current_buf);
474
        g_free(XBZRLE.decoded_buf);
475
        XBZRLE.cache = NULL;
476
    }
477
}
478

    
479
static void ram_migration_cancel(void *opaque)
480
{
481
    migration_end();
482
}
483

    
484
#define MAX_WAIT 50 /* ms, half buffered_file limit */
485

    
486
static int ram_save_setup(QEMUFile *f, void *opaque)
487
{
488
    ram_addr_t addr;
489
    RAMBlock *block;
490

    
491
    bytes_transferred = 0;
492
    last_block = NULL;
493
    last_offset = 0;
494
    sort_ram_list();
495

    
496
    if (migrate_use_xbzrle()) {
497
        XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
498
                                  TARGET_PAGE_SIZE,
499
                                  TARGET_PAGE_SIZE);
500
        if (!XBZRLE.cache) {
501
            DPRINTF("Error creating cache\n");
502
            return -1;
503
        }
504
        XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
505
        XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
506
        acct_clear();
507
    }
508

    
509
    /* Make sure all dirty bits are set */
510
    QLIST_FOREACH(block, &ram_list.blocks, next) {
511
        for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
512
            if (!memory_region_get_dirty(block->mr, addr, TARGET_PAGE_SIZE,
513
                                         DIRTY_MEMORY_MIGRATION)) {
514
                memory_region_set_dirty(block->mr, addr, TARGET_PAGE_SIZE);
515
            }
516
        }
517
    }
518

    
519
    memory_global_dirty_log_start();
520

    
521
    qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
522

    
523
    QLIST_FOREACH(block, &ram_list.blocks, next) {
524
        qemu_put_byte(f, strlen(block->idstr));
525
        qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
526
        qemu_put_be64(f, block->length);
527
    }
528

    
529
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
530

    
531
    return 0;
532
}
533

    
534
static int ram_save_iterate(QEMUFile *f, void *opaque)
535
{
536
    uint64_t bytes_transferred_last;
537
    double bwidth = 0;
538
    int ret;
539
    int i;
540
    uint64_t expected_time;
541

    
542
    bytes_transferred_last = bytes_transferred;
543
    bwidth = qemu_get_clock_ns(rt_clock);
544

    
545
    i = 0;
546
    while ((ret = qemu_file_rate_limit(f)) == 0) {
547
        int bytes_sent;
548

    
549
        bytes_sent = ram_save_block(f, false);
550
        /* no more blocks to sent */
551
        if (bytes_sent < 0) {
552
            break;
553
        }
554
        bytes_transferred += bytes_sent;
555
        acct_info.iterations++;
556
        /* we want to check in the 1st loop, just in case it was the 1st time
557
           and we had to sync the dirty bitmap.
558
           qemu_get_clock_ns() is a bit expensive, so we only check each some
559
           iterations
560
        */
561
        if ((i & 63) == 0) {
562
            uint64_t t1 = (qemu_get_clock_ns(rt_clock) - bwidth) / 1000000;
563
            if (t1 > MAX_WAIT) {
564
                DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
565
                        t1, i);
566
                break;
567
            }
568
        }
569
        i++;
570
    }
571

    
572
    if (ret < 0) {
573
        return ret;
574
    }
575

    
576
    bwidth = qemu_get_clock_ns(rt_clock) - bwidth;
577
    bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
578

    
579
    /* if we haven't transferred anything this round, force expected_time to a
580
     * a very high value, but without crashing */
581
    if (bwidth == 0) {
582
        bwidth = 0.000001;
583
    }
584

    
585
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
586

    
587
    expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
588

    
589
    DPRINTF("ram_save_live: expected(%" PRIu64 ") <= max(%" PRIu64 ")?\n",
590
            expected_time, migrate_max_downtime());
591

    
592
    if (expected_time <= migrate_max_downtime()) {
593
        memory_global_sync_dirty_bitmap(get_system_memory());
594
        expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
595

    
596
        return expected_time <= migrate_max_downtime();
597
    }
598
    return 0;
599
}
600

    
601
static int ram_save_complete(QEMUFile *f, void *opaque)
602
{
603
    memory_global_sync_dirty_bitmap(get_system_memory());
604

    
605
    /* try transferring iterative blocks of memory */
606

    
607
    /* flush all remaining blocks regardless of rate limiting */
608
    while (true) {
609
        int bytes_sent;
610

    
611
        bytes_sent = ram_save_block(f, true);
612
        /* no more blocks to sent */
613
        if (bytes_sent < 0) {
614
            break;
615
        }
616
        bytes_transferred += bytes_sent;
617
    }
618
    memory_global_dirty_log_stop();
619

    
620
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
621

    
622
    return 0;
623
}
624

    
625
static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
626
{
627
    int ret, rc = 0;
628
    unsigned int xh_len;
629
    int xh_flags;
630

    
631
    if (!XBZRLE.decoded_buf) {
632
        XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
633
    }
634

    
635
    /* extract RLE header */
636
    xh_flags = qemu_get_byte(f);
637
    xh_len = qemu_get_be16(f);
638

    
639
    if (xh_flags != ENCODING_FLAG_XBZRLE) {
640
        fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
641
        return -1;
642
    }
643

    
644
    if (xh_len > TARGET_PAGE_SIZE) {
645
        fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
646
        return -1;
647
    }
648
    /* load data and decode */
649
    qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
650

    
651
    /* decode RLE */
652
    ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
653
                               TARGET_PAGE_SIZE);
654
    if (ret == -1) {
655
        fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
656
        rc = -1;
657
    } else  if (ret > TARGET_PAGE_SIZE) {
658
        fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
659
                ret, TARGET_PAGE_SIZE);
660
        abort();
661
    }
662

    
663
    return rc;
664
}
665

    
666
static inline void *host_from_stream_offset(QEMUFile *f,
667
                                            ram_addr_t offset,
668
                                            int flags)
669
{
670
    static RAMBlock *block = NULL;
671
    char id[256];
672
    uint8_t len;
673

    
674
    if (flags & RAM_SAVE_FLAG_CONTINUE) {
675
        if (!block) {
676
            fprintf(stderr, "Ack, bad migration stream!\n");
677
            return NULL;
678
        }
679

    
680
        return memory_region_get_ram_ptr(block->mr) + offset;
681
    }
682

    
683
    len = qemu_get_byte(f);
684
    qemu_get_buffer(f, (uint8_t *)id, len);
685
    id[len] = 0;
686

    
687
    QLIST_FOREACH(block, &ram_list.blocks, next) {
688
        if (!strncmp(id, block->idstr, sizeof(id)))
689
            return memory_region_get_ram_ptr(block->mr) + offset;
690
    }
691

    
692
    fprintf(stderr, "Can't find block %s!\n", id);
693
    return NULL;
694
}
695

    
696
static int ram_load(QEMUFile *f, void *opaque, int version_id)
697
{
698
    ram_addr_t addr;
699
    int flags, ret = 0;
700
    int error;
701
    static uint64_t seq_iter;
702

    
703
    seq_iter++;
704

    
705
    if (version_id < 4 || version_id > 4) {
706
        return -EINVAL;
707
    }
708

    
709
    do {
710
        addr = qemu_get_be64(f);
711

    
712
        flags = addr & ~TARGET_PAGE_MASK;
713
        addr &= TARGET_PAGE_MASK;
714

    
715
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
716
            if (version_id == 4) {
717
                /* Synchronize RAM block list */
718
                char id[256];
719
                ram_addr_t length;
720
                ram_addr_t total_ram_bytes = addr;
721

    
722
                while (total_ram_bytes) {
723
                    RAMBlock *block;
724
                    uint8_t len;
725

    
726
                    len = qemu_get_byte(f);
727
                    qemu_get_buffer(f, (uint8_t *)id, len);
728
                    id[len] = 0;
729
                    length = qemu_get_be64(f);
730

    
731
                    QLIST_FOREACH(block, &ram_list.blocks, next) {
732
                        if (!strncmp(id, block->idstr, sizeof(id))) {
733
                            if (block->length != length) {
734
                                ret =  -EINVAL;
735
                                goto done;
736
                            }
737
                            break;
738
                        }
739
                    }
740

    
741
                    if (!block) {
742
                        fprintf(stderr, "Unknown ramblock \"%s\", cannot "
743
                                "accept migration\n", id);
744
                        ret = -EINVAL;
745
                        goto done;
746
                    }
747

    
748
                    total_ram_bytes -= length;
749
                }
750
            }
751
        }
752

    
753
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
754
            void *host;
755
            uint8_t ch;
756

    
757
            host = host_from_stream_offset(f, addr, flags);
758
            if (!host) {
759
                return -EINVAL;
760
            }
761

    
762
            ch = qemu_get_byte(f);
763
            memset(host, ch, TARGET_PAGE_SIZE);
764
#ifndef _WIN32
765
            if (ch == 0 &&
766
                (!kvm_enabled() || kvm_has_sync_mmu())) {
767
                qemu_madvise(host, TARGET_PAGE_SIZE, QEMU_MADV_DONTNEED);
768
            }
769
#endif
770
        } else if (flags & RAM_SAVE_FLAG_PAGE) {
771
            void *host;
772

    
773
            host = host_from_stream_offset(f, addr, flags);
774
            if (!host) {
775
                return -EINVAL;
776
            }
777

    
778
            qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
779
        } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
780
            if (!migrate_use_xbzrle()) {
781
                return -EINVAL;
782
            }
783
            void *host = host_from_stream_offset(f, addr, flags);
784
            if (!host) {
785
                return -EINVAL;
786
            }
787

    
788
            if (load_xbzrle(f, addr, host) < 0) {
789
                ret = -EINVAL;
790
                goto done;
791
            }
792
        }
793
        error = qemu_file_get_error(f);
794
        if (error) {
795
            ret = error;
796
            goto done;
797
        }
798
    } while (!(flags & RAM_SAVE_FLAG_EOS));
799

    
800
done:
801
    DPRINTF("Completed load of VM with exit code %d seq iteration "
802
            "%" PRIu64 "\n", ret, seq_iter);
803
    return ret;
804
}
805

    
806
SaveVMHandlers savevm_ram_handlers = {
807
    .save_live_setup = ram_save_setup,
808
    .save_live_iterate = ram_save_iterate,
809
    .save_live_complete = ram_save_complete,
810
    .load_state = ram_load,
811
    .cancel = ram_migration_cancel,
812
};
813

    
814
#ifdef HAS_AUDIO
815
struct soundhw {
816
    const char *name;
817
    const char *descr;
818
    int enabled;
819
    int isa;
820
    union {
821
        int (*init_isa) (ISABus *bus);
822
        int (*init_pci) (PCIBus *bus);
823
    } init;
824
};
825

    
826
static struct soundhw soundhw[] = {
827
#ifdef HAS_AUDIO_CHOICE
828
#ifdef CONFIG_PCSPK
829
    {
830
        "pcspk",
831
        "PC speaker",
832
        0,
833
        1,
834
        { .init_isa = pcspk_audio_init }
835
    },
836
#endif
837

    
838
#ifdef CONFIG_SB16
839
    {
840
        "sb16",
841
        "Creative Sound Blaster 16",
842
        0,
843
        1,
844
        { .init_isa = SB16_init }
845
    },
846
#endif
847

    
848
#ifdef CONFIG_CS4231A
849
    {
850
        "cs4231a",
851
        "CS4231A",
852
        0,
853
        1,
854
        { .init_isa = cs4231a_init }
855
    },
856
#endif
857

    
858
#ifdef CONFIG_ADLIB
859
    {
860
        "adlib",
861
#ifdef HAS_YMF262
862
        "Yamaha YMF262 (OPL3)",
863
#else
864
        "Yamaha YM3812 (OPL2)",
865
#endif
866
        0,
867
        1,
868
        { .init_isa = Adlib_init }
869
    },
870
#endif
871

    
872
#ifdef CONFIG_GUS
873
    {
874
        "gus",
875
        "Gravis Ultrasound GF1",
876
        0,
877
        1,
878
        { .init_isa = GUS_init }
879
    },
880
#endif
881

    
882
#ifdef CONFIG_AC97
883
    {
884
        "ac97",
885
        "Intel 82801AA AC97 Audio",
886
        0,
887
        0,
888
        { .init_pci = ac97_init }
889
    },
890
#endif
891

    
892
#ifdef CONFIG_ES1370
893
    {
894
        "es1370",
895
        "ENSONIQ AudioPCI ES1370",
896
        0,
897
        0,
898
        { .init_pci = es1370_init }
899
    },
900
#endif
901

    
902
#ifdef CONFIG_HDA
903
    {
904
        "hda",
905
        "Intel HD Audio",
906
        0,
907
        0,
908
        { .init_pci = intel_hda_and_codec_init }
909
    },
910
#endif
911

    
912
#endif /* HAS_AUDIO_CHOICE */
913

    
914
    { NULL, NULL, 0, 0, { NULL } }
915
};
916

    
917
void select_soundhw(const char *optarg)
918
{
919
    struct soundhw *c;
920

    
921
    if (is_help_option(optarg)) {
922
    show_valid_cards:
923

    
924
#ifdef HAS_AUDIO_CHOICE
925
        printf("Valid sound card names (comma separated):\n");
926
        for (c = soundhw; c->name; ++c) {
927
            printf ("%-11s %s\n", c->name, c->descr);
928
        }
929
        printf("\n-soundhw all will enable all of the above\n");
930
#else
931
        printf("Machine has no user-selectable audio hardware "
932
               "(it may or may not have always-present audio hardware).\n");
933
#endif
934
        exit(!is_help_option(optarg));
935
    }
936
    else {
937
        size_t l;
938
        const char *p;
939
        char *e;
940
        int bad_card = 0;
941

    
942
        if (!strcmp(optarg, "all")) {
943
            for (c = soundhw; c->name; ++c) {
944
                c->enabled = 1;
945
            }
946
            return;
947
        }
948

    
949
        p = optarg;
950
        while (*p) {
951
            e = strchr(p, ',');
952
            l = !e ? strlen(p) : (size_t) (e - p);
953

    
954
            for (c = soundhw; c->name; ++c) {
955
                if (!strncmp(c->name, p, l) && !c->name[l]) {
956
                    c->enabled = 1;
957
                    break;
958
                }
959
            }
960

    
961
            if (!c->name) {
962
                if (l > 80) {
963
                    fprintf(stderr,
964
                            "Unknown sound card name (too big to show)\n");
965
                }
966
                else {
967
                    fprintf(stderr, "Unknown sound card name `%.*s'\n",
968
                            (int) l, p);
969
                }
970
                bad_card = 1;
971
            }
972
            p += l + (e != NULL);
973
        }
974

    
975
        if (bad_card) {
976
            goto show_valid_cards;
977
        }
978
    }
979
}
980

    
981
void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
982
{
983
    struct soundhw *c;
984

    
985
    for (c = soundhw; c->name; ++c) {
986
        if (c->enabled) {
987
            if (c->isa) {
988
                if (isa_bus) {
989
                    c->init.init_isa(isa_bus);
990
                }
991
            } else {
992
                if (pci_bus) {
993
                    c->init.init_pci(pci_bus);
994
                }
995
            }
996
        }
997
    }
998
}
999
#else
1000
void select_soundhw(const char *optarg)
1001
{
1002
}
1003
void audio_init(ISABus *isa_bus, PCIBus *pci_bus)
1004
{
1005
}
1006
#endif
1007

    
1008
int qemu_uuid_parse(const char *str, uint8_t *uuid)
1009
{
1010
    int ret;
1011

    
1012
    if (strlen(str) != 36) {
1013
        return -1;
1014
    }
1015

    
1016
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1017
                 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1018
                 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1019
                 &uuid[15]);
1020

    
1021
    if (ret != 16) {
1022
        return -1;
1023
    }
1024
#ifdef TARGET_I386
1025
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
1026
#endif
1027
    return 0;
1028
}
1029

    
1030
void do_acpitable_option(const char *optarg)
1031
{
1032
#ifdef TARGET_I386
1033
    if (acpi_table_add(optarg) < 0) {
1034
        fprintf(stderr, "Wrong acpi table provided\n");
1035
        exit(1);
1036
    }
1037
#endif
1038
}
1039

    
1040
void do_smbios_option(const char *optarg)
1041
{
1042
#ifdef TARGET_I386
1043
    if (smbios_entry_add(optarg) < 0) {
1044
        fprintf(stderr, "Wrong smbios provided\n");
1045
        exit(1);
1046
    }
1047
#endif
1048
}
1049

    
1050
void cpudef_init(void)
1051
{
1052
#if defined(cpudef_setup)
1053
    cpudef_setup(); /* parse cpu definitions in target config file */
1054
#endif
1055
}
1056

    
1057
int audio_available(void)
1058
{
1059
#ifdef HAS_AUDIO
1060
    return 1;
1061
#else
1062
    return 0;
1063
#endif
1064
}
1065

    
1066
int tcg_available(void)
1067
{
1068
    return 1;
1069
}
1070

    
1071
int kvm_available(void)
1072
{
1073
#ifdef CONFIG_KVM
1074
    return 1;
1075
#else
1076
    return 0;
1077
#endif
1078
}
1079

    
1080
int xen_available(void)
1081
{
1082
#ifdef CONFIG_XEN
1083
    return 1;
1084
#else
1085
    return 0;
1086
#endif
1087
}
1088

    
1089

    
1090
TargetInfo *qmp_query_target(Error **errp)
1091
{
1092
    TargetInfo *info = g_malloc0(sizeof(*info));
1093

    
1094
    info->arch = TARGET_TYPE;
1095

    
1096
    return info;
1097
}