Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ bb0300dc

History | View | Annotate | Download (30.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27

    
28
#ifdef CONFIG_KVM_PARA
29
#include <linux/kvm_para.h>
30
#endif
31
//
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
#define MSR_KVM_WALL_CLOCK  0x11
43
#define MSR_KVM_SYSTEM_TIME 0x12
44

    
45
#ifdef KVM_CAP_EXT_CPUID
46

    
47
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
48
{
49
    struct kvm_cpuid2 *cpuid;
50
    int r, size;
51

    
52
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
53
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
54
    cpuid->nent = max;
55
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
56
    if (r == 0 && cpuid->nent >= max) {
57
        r = -E2BIG;
58
    }
59
    if (r < 0) {
60
        if (r == -E2BIG) {
61
            qemu_free(cpuid);
62
            return NULL;
63
        } else {
64
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
65
                    strerror(-r));
66
            exit(1);
67
        }
68
    }
69
    return cpuid;
70
}
71

    
72
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
73
{
74
    struct kvm_cpuid2 *cpuid;
75
    int i, max;
76
    uint32_t ret = 0;
77
    uint32_t cpuid_1_edx;
78

    
79
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
80
        return -1U;
81
    }
82

    
83
    max = 1;
84
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
85
        max *= 2;
86
    }
87

    
88
    for (i = 0; i < cpuid->nent; ++i) {
89
        if (cpuid->entries[i].function == function) {
90
            switch (reg) {
91
            case R_EAX:
92
                ret = cpuid->entries[i].eax;
93
                break;
94
            case R_EBX:
95
                ret = cpuid->entries[i].ebx;
96
                break;
97
            case R_ECX:
98
                ret = cpuid->entries[i].ecx;
99
                break;
100
            case R_EDX:
101
                ret = cpuid->entries[i].edx;
102
                if (function == 0x80000001) {
103
                    /* On Intel, kvm returns cpuid according to the Intel spec,
104
                     * so add missing bits according to the AMD spec:
105
                     */
106
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
107
                    ret |= cpuid_1_edx & 0xdfeff7ff;
108
                }
109
                break;
110
            }
111
        }
112
    }
113

    
114
    qemu_free(cpuid);
115

    
116
    return ret;
117
}
118

    
119
#else
120

    
121
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
122
{
123
    return -1U;
124
}
125

    
126
#endif
127

    
128
static void kvm_trim_features(uint32_t *features, uint32_t supported)
129
{
130
    int i;
131
    uint32_t mask;
132

    
133
    for (i = 0; i < 32; ++i) {
134
        mask = 1U << i;
135
        if ((*features & mask) && !(supported & mask)) {
136
            *features &= ~mask;
137
        }
138
    }
139
}
140

    
141
#ifdef CONFIG_KVM_PARA
142
struct kvm_para_features {
143
        int cap;
144
        int feature;
145
} para_features[] = {
146
#ifdef KVM_CAP_CLOCKSOURCE
147
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
148
#endif
149
#ifdef KVM_CAP_NOP_IO_DELAY
150
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
151
#endif
152
#ifdef KVM_CAP_PV_MMU
153
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
154
#endif
155
#ifdef KVM_CAP_CR3_CACHE
156
        { KVM_CAP_CR3_CACHE, KVM_FEATURE_CR3_CACHE },
157
#endif
158
        { -1, -1 }
159
};
160

    
161
static int get_para_features(CPUState *env)
162
{
163
        int i, features = 0;
164

    
165
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
167
                        features |= (1 << para_features[i].feature);
168
        }
169

    
170
        return features;
171
}
172
#endif
173

    
174
int kvm_arch_init_vcpu(CPUState *env)
175
{
176
    struct {
177
        struct kvm_cpuid2 cpuid;
178
        struct kvm_cpuid_entry2 entries[100];
179
    } __attribute__((packed)) cpuid_data;
180
    uint32_t limit, i, j, cpuid_i;
181
    uint32_t unused;
182
    struct kvm_cpuid_entry2 *c;
183
#ifdef KVM_CPUID_SIGNATURE
184
    uint32_t signature[3];
185
#endif
186

    
187
    env->mp_state = KVM_MP_STATE_RUNNABLE;
188

    
189
    kvm_trim_features(&env->cpuid_features,
190
        kvm_arch_get_supported_cpuid(env, 1, R_EDX));
191

    
192
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
193
    kvm_trim_features(&env->cpuid_ext_features,
194
        kvm_arch_get_supported_cpuid(env, 1, R_ECX));
195
    env->cpuid_ext_features |= i;
196

    
197
    kvm_trim_features(&env->cpuid_ext2_features,
198
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
199
    kvm_trim_features(&env->cpuid_ext3_features,
200
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
201

    
202
    cpuid_i = 0;
203

    
204
#ifdef CONFIG_KVM_PARA
205
    /* Paravirtualization CPUIDs */
206
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
207
    c = &cpuid_data.entries[cpuid_i++];
208
    memset(c, 0, sizeof(*c));
209
    c->function = KVM_CPUID_SIGNATURE;
210
    c->eax = 0;
211
    c->ebx = signature[0];
212
    c->ecx = signature[1];
213
    c->edx = signature[2];
214

    
215
    c = &cpuid_data.entries[cpuid_i++];
216
    memset(c, 0, sizeof(*c));
217
    c->function = KVM_CPUID_FEATURES;
218
    c->eax = env->cpuid_kvm_features & get_para_features(env);
219
#endif
220

    
221
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
222

    
223
    for (i = 0; i <= limit; i++) {
224
        c = &cpuid_data.entries[cpuid_i++];
225

    
226
        switch (i) {
227
        case 2: {
228
            /* Keep reading function 2 till all the input is received */
229
            int times;
230

    
231
            c->function = i;
232
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
233
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
234
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235
            times = c->eax & 0xff;
236

    
237
            for (j = 1; j < times; ++j) {
238
                c = &cpuid_data.entries[cpuid_i++];
239
                c->function = i;
240
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
241
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
242
            }
243
            break;
244
        }
245
        case 4:
246
        case 0xb:
247
        case 0xd:
248
            for (j = 0; ; j++) {
249
                c->function = i;
250
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
251
                c->index = j;
252
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
253

    
254
                if (i == 4 && c->eax == 0)
255
                    break;
256
                if (i == 0xb && !(c->ecx & 0xff00))
257
                    break;
258
                if (i == 0xd && c->eax == 0)
259
                    break;
260

    
261
                c = &cpuid_data.entries[cpuid_i++];
262
            }
263
            break;
264
        default:
265
            c->function = i;
266
            c->flags = 0;
267
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
268
            break;
269
        }
270
    }
271
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
272

    
273
    for (i = 0x80000000; i <= limit; i++) {
274
        c = &cpuid_data.entries[cpuid_i++];
275

    
276
        c->function = i;
277
        c->flags = 0;
278
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
279
    }
280

    
281
    cpuid_data.cpuid.nent = cpuid_i;
282

    
283
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
284
}
285

    
286
void kvm_arch_reset_vcpu(CPUState *env)
287
{
288
    env->exception_injected = -1;
289
    env->interrupt_injected = -1;
290
    env->nmi_injected = 0;
291
    env->nmi_pending = 0;
292
}
293

    
294
static int kvm_has_msr_star(CPUState *env)
295
{
296
    static int has_msr_star;
297
    int ret;
298

    
299
    /* first time */
300
    if (has_msr_star == 0) {        
301
        struct kvm_msr_list msr_list, *kvm_msr_list;
302

    
303
        has_msr_star = -1;
304

    
305
        /* Obtain MSR list from KVM.  These are the MSRs that we must
306
         * save/restore */
307
        msr_list.nmsrs = 0;
308
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
309
        if (ret < 0 && ret != -E2BIG) {
310
            return 0;
311
        }
312
        /* Old kernel modules had a bug and could write beyond the provided
313
           memory. Allocate at least a safe amount of 1K. */
314
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
315
                                              msr_list.nmsrs *
316
                                              sizeof(msr_list.indices[0])));
317

    
318
        kvm_msr_list->nmsrs = msr_list.nmsrs;
319
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
320
        if (ret >= 0) {
321
            int i;
322

    
323
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
324
                if (kvm_msr_list->indices[i] == MSR_STAR) {
325
                    has_msr_star = 1;
326
                    break;
327
                }
328
            }
329
        }
330

    
331
        free(kvm_msr_list);
332
    }
333

    
334
    if (has_msr_star == 1)
335
        return 1;
336
    return 0;
337
}
338

    
339
int kvm_arch_init(KVMState *s, int smp_cpus)
340
{
341
    int ret;
342

    
343
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
344
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
345
     * must be part of guest physical memory, we need to allocate it.  Older
346
     * versions of KVM just assumed that it would be at the end of physical
347
     * memory but that doesn't work with more than 4GB of memory.  We simply
348
     * refuse to work with those older versions of KVM. */
349
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
350
    if (ret <= 0) {
351
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
352
        return ret;
353
    }
354

    
355
    /* this address is 3 pages before the bios, and the bios should present
356
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
357
     * this?
358
     */
359
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
360
}
361
                    
362
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
363
{
364
    lhs->selector = rhs->selector;
365
    lhs->base = rhs->base;
366
    lhs->limit = rhs->limit;
367
    lhs->type = 3;
368
    lhs->present = 1;
369
    lhs->dpl = 3;
370
    lhs->db = 0;
371
    lhs->s = 1;
372
    lhs->l = 0;
373
    lhs->g = 0;
374
    lhs->avl = 0;
375
    lhs->unusable = 0;
376
}
377

    
378
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
379
{
380
    unsigned flags = rhs->flags;
381
    lhs->selector = rhs->selector;
382
    lhs->base = rhs->base;
383
    lhs->limit = rhs->limit;
384
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
385
    lhs->present = (flags & DESC_P_MASK) != 0;
386
    lhs->dpl = rhs->selector & 3;
387
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
388
    lhs->s = (flags & DESC_S_MASK) != 0;
389
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
390
    lhs->g = (flags & DESC_G_MASK) != 0;
391
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
392
    lhs->unusable = 0;
393
}
394

    
395
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
396
{
397
    lhs->selector = rhs->selector;
398
    lhs->base = rhs->base;
399
    lhs->limit = rhs->limit;
400
    lhs->flags =
401
        (rhs->type << DESC_TYPE_SHIFT)
402
        | (rhs->present * DESC_P_MASK)
403
        | (rhs->dpl << DESC_DPL_SHIFT)
404
        | (rhs->db << DESC_B_SHIFT)
405
        | (rhs->s * DESC_S_MASK)
406
        | (rhs->l << DESC_L_SHIFT)
407
        | (rhs->g * DESC_G_MASK)
408
        | (rhs->avl * DESC_AVL_MASK);
409
}
410

    
411
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
412
{
413
    if (set)
414
        *kvm_reg = *qemu_reg;
415
    else
416
        *qemu_reg = *kvm_reg;
417
}
418

    
419
static int kvm_getput_regs(CPUState *env, int set)
420
{
421
    struct kvm_regs regs;
422
    int ret = 0;
423

    
424
    if (!set) {
425
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
426
        if (ret < 0)
427
            return ret;
428
    }
429

    
430
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
431
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
432
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
433
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
434
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
435
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
436
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
437
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
438
#ifdef TARGET_X86_64
439
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
440
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
441
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
442
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
443
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
444
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
445
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
446
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
447
#endif
448

    
449
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
450
    kvm_getput_reg(&regs.rip, &env->eip, set);
451

    
452
    if (set)
453
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
454

    
455
    return ret;
456
}
457

    
458
static int kvm_put_fpu(CPUState *env)
459
{
460
    struct kvm_fpu fpu;
461
    int i;
462

    
463
    memset(&fpu, 0, sizeof fpu);
464
    fpu.fsw = env->fpus & ~(7 << 11);
465
    fpu.fsw |= (env->fpstt & 7) << 11;
466
    fpu.fcw = env->fpuc;
467
    for (i = 0; i < 8; ++i)
468
        fpu.ftwx |= (!env->fptags[i]) << i;
469
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
470
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
471
    fpu.mxcsr = env->mxcsr;
472

    
473
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
474
}
475

    
476
static int kvm_put_sregs(CPUState *env)
477
{
478
    struct kvm_sregs sregs;
479

    
480
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
481
    if (env->interrupt_injected >= 0) {
482
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
483
                (uint64_t)1 << (env->interrupt_injected % 64);
484
    }
485

    
486
    if ((env->eflags & VM_MASK)) {
487
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
488
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
489
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
490
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
491
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
492
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
493
    } else {
494
            set_seg(&sregs.cs, &env->segs[R_CS]);
495
            set_seg(&sregs.ds, &env->segs[R_DS]);
496
            set_seg(&sregs.es, &env->segs[R_ES]);
497
            set_seg(&sregs.fs, &env->segs[R_FS]);
498
            set_seg(&sregs.gs, &env->segs[R_GS]);
499
            set_seg(&sregs.ss, &env->segs[R_SS]);
500

    
501
            if (env->cr[0] & CR0_PE_MASK) {
502
                /* force ss cpl to cs cpl */
503
                sregs.ss.selector = (sregs.ss.selector & ~3) |
504
                        (sregs.cs.selector & 3);
505
                sregs.ss.dpl = sregs.ss.selector & 3;
506
            }
507
    }
508

    
509
    set_seg(&sregs.tr, &env->tr);
510
    set_seg(&sregs.ldt, &env->ldt);
511

    
512
    sregs.idt.limit = env->idt.limit;
513
    sregs.idt.base = env->idt.base;
514
    sregs.gdt.limit = env->gdt.limit;
515
    sregs.gdt.base = env->gdt.base;
516

    
517
    sregs.cr0 = env->cr[0];
518
    sregs.cr2 = env->cr[2];
519
    sregs.cr3 = env->cr[3];
520
    sregs.cr4 = env->cr[4];
521

    
522
    sregs.cr8 = cpu_get_apic_tpr(env);
523
    sregs.apic_base = cpu_get_apic_base(env);
524

    
525
    sregs.efer = env->efer;
526

    
527
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
528
}
529

    
530
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
531
                              uint32_t index, uint64_t value)
532
{
533
    entry->index = index;
534
    entry->data = value;
535
}
536

    
537
static int kvm_put_msrs(CPUState *env)
538
{
539
    struct {
540
        struct kvm_msrs info;
541
        struct kvm_msr_entry entries[100];
542
    } msr_data;
543
    struct kvm_msr_entry *msrs = msr_data.entries;
544
    int n = 0;
545

    
546
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
547
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
548
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
549
    if (kvm_has_msr_star(env))
550
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
551
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
552
#ifdef TARGET_X86_64
553
    /* FIXME if lm capable */
554
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
555
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
556
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
557
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
558
#endif
559
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,  env->system_time_msr);
560
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK,  env->wall_clock_msr);
561

    
562
    msr_data.info.nmsrs = n;
563

    
564
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
565

    
566
}
567

    
568

    
569
static int kvm_get_fpu(CPUState *env)
570
{
571
    struct kvm_fpu fpu;
572
    int i, ret;
573

    
574
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
575
    if (ret < 0)
576
        return ret;
577

    
578
    env->fpstt = (fpu.fsw >> 11) & 7;
579
    env->fpus = fpu.fsw;
580
    env->fpuc = fpu.fcw;
581
    for (i = 0; i < 8; ++i)
582
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
583
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
584
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
585
    env->mxcsr = fpu.mxcsr;
586

    
587
    return 0;
588
}
589

    
590
static int kvm_get_sregs(CPUState *env)
591
{
592
    struct kvm_sregs sregs;
593
    uint32_t hflags;
594
    int bit, i, ret;
595

    
596
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
597
    if (ret < 0)
598
        return ret;
599

    
600
    /* There can only be one pending IRQ set in the bitmap at a time, so try
601
       to find it and save its number instead (-1 for none). */
602
    env->interrupt_injected = -1;
603
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
604
        if (sregs.interrupt_bitmap[i]) {
605
            bit = ctz64(sregs.interrupt_bitmap[i]);
606
            env->interrupt_injected = i * 64 + bit;
607
            break;
608
        }
609
    }
610

    
611
    get_seg(&env->segs[R_CS], &sregs.cs);
612
    get_seg(&env->segs[R_DS], &sregs.ds);
613
    get_seg(&env->segs[R_ES], &sregs.es);
614
    get_seg(&env->segs[R_FS], &sregs.fs);
615
    get_seg(&env->segs[R_GS], &sregs.gs);
616
    get_seg(&env->segs[R_SS], &sregs.ss);
617

    
618
    get_seg(&env->tr, &sregs.tr);
619
    get_seg(&env->ldt, &sregs.ldt);
620

    
621
    env->idt.limit = sregs.idt.limit;
622
    env->idt.base = sregs.idt.base;
623
    env->gdt.limit = sregs.gdt.limit;
624
    env->gdt.base = sregs.gdt.base;
625

    
626
    env->cr[0] = sregs.cr0;
627
    env->cr[2] = sregs.cr2;
628
    env->cr[3] = sregs.cr3;
629
    env->cr[4] = sregs.cr4;
630

    
631
    cpu_set_apic_base(env, sregs.apic_base);
632

    
633
    env->efer = sregs.efer;
634
    //cpu_set_apic_tpr(env, sregs.cr8);
635

    
636
#define HFLAG_COPY_MASK ~( \
637
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
638
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
639
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
640
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
641

    
642

    
643

    
644
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
645
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
646
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
647
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
648
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
649
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
650
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
651

    
652
    if (env->efer & MSR_EFER_LMA) {
653
        hflags |= HF_LMA_MASK;
654
    }
655

    
656
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
657
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
658
    } else {
659
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
660
                (DESC_B_SHIFT - HF_CS32_SHIFT);
661
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
662
                (DESC_B_SHIFT - HF_SS32_SHIFT);
663
        if (!(env->cr[0] & CR0_PE_MASK) ||
664
                   (env->eflags & VM_MASK) ||
665
                   !(hflags & HF_CS32_MASK)) {
666
                hflags |= HF_ADDSEG_MASK;
667
            } else {
668
                hflags |= ((env->segs[R_DS].base |
669
                                env->segs[R_ES].base |
670
                                env->segs[R_SS].base) != 0) <<
671
                    HF_ADDSEG_SHIFT;
672
            }
673
    }
674
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
675

    
676
    return 0;
677
}
678

    
679
static int kvm_get_msrs(CPUState *env)
680
{
681
    struct {
682
        struct kvm_msrs info;
683
        struct kvm_msr_entry entries[100];
684
    } msr_data;
685
    struct kvm_msr_entry *msrs = msr_data.entries;
686
    int ret, i, n;
687

    
688
    n = 0;
689
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
690
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
691
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
692
    if (kvm_has_msr_star(env))
693
        msrs[n++].index = MSR_STAR;
694
    msrs[n++].index = MSR_IA32_TSC;
695
#ifdef TARGET_X86_64
696
    /* FIXME lm_capable_kernel */
697
    msrs[n++].index = MSR_CSTAR;
698
    msrs[n++].index = MSR_KERNELGSBASE;
699
    msrs[n++].index = MSR_FMASK;
700
    msrs[n++].index = MSR_LSTAR;
701
#endif
702
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
703
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
704

    
705
    msr_data.info.nmsrs = n;
706
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
707
    if (ret < 0)
708
        return ret;
709

    
710
    for (i = 0; i < ret; i++) {
711
        switch (msrs[i].index) {
712
        case MSR_IA32_SYSENTER_CS:
713
            env->sysenter_cs = msrs[i].data;
714
            break;
715
        case MSR_IA32_SYSENTER_ESP:
716
            env->sysenter_esp = msrs[i].data;
717
            break;
718
        case MSR_IA32_SYSENTER_EIP:
719
            env->sysenter_eip = msrs[i].data;
720
            break;
721
        case MSR_STAR:
722
            env->star = msrs[i].data;
723
            break;
724
#ifdef TARGET_X86_64
725
        case MSR_CSTAR:
726
            env->cstar = msrs[i].data;
727
            break;
728
        case MSR_KERNELGSBASE:
729
            env->kernelgsbase = msrs[i].data;
730
            break;
731
        case MSR_FMASK:
732
            env->fmask = msrs[i].data;
733
            break;
734
        case MSR_LSTAR:
735
            env->lstar = msrs[i].data;
736
            break;
737
#endif
738
        case MSR_IA32_TSC:
739
            env->tsc = msrs[i].data;
740
            break;
741
        case MSR_KVM_SYSTEM_TIME:
742
            env->system_time_msr = msrs[i].data;
743
            break;
744
        case MSR_KVM_WALL_CLOCK:
745
            env->wall_clock_msr = msrs[i].data;
746
            break;
747
        }
748
    }
749

    
750
    return 0;
751
}
752

    
753
static int kvm_put_mp_state(CPUState *env)
754
{
755
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
756

    
757
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
758
}
759

    
760
static int kvm_get_mp_state(CPUState *env)
761
{
762
    struct kvm_mp_state mp_state;
763
    int ret;
764

    
765
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
766
    if (ret < 0) {
767
        return ret;
768
    }
769
    env->mp_state = mp_state.mp_state;
770
    return 0;
771
}
772

    
773
static int kvm_put_vcpu_events(CPUState *env)
774
{
775
#ifdef KVM_CAP_VCPU_EVENTS
776
    struct kvm_vcpu_events events;
777

    
778
    if (!kvm_has_vcpu_events()) {
779
        return 0;
780
    }
781

    
782
    events.exception.injected = (env->exception_injected >= 0);
783
    events.exception.nr = env->exception_injected;
784
    events.exception.has_error_code = env->has_error_code;
785
    events.exception.error_code = env->error_code;
786

    
787
    events.interrupt.injected = (env->interrupt_injected >= 0);
788
    events.interrupt.nr = env->interrupt_injected;
789
    events.interrupt.soft = env->soft_interrupt;
790

    
791
    events.nmi.injected = env->nmi_injected;
792
    events.nmi.pending = env->nmi_pending;
793
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
794

    
795
    events.sipi_vector = env->sipi_vector;
796

    
797
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
798
#else
799
    return 0;
800
#endif
801
}
802

    
803
static int kvm_get_vcpu_events(CPUState *env)
804
{
805
#ifdef KVM_CAP_VCPU_EVENTS
806
    struct kvm_vcpu_events events;
807
    int ret;
808

    
809
    if (!kvm_has_vcpu_events()) {
810
        return 0;
811
    }
812

    
813
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
814
    if (ret < 0) {
815
       return ret;
816
    }
817
    env->exception_injected =
818
       events.exception.injected ? events.exception.nr : -1;
819
    env->has_error_code = events.exception.has_error_code;
820
    env->error_code = events.exception.error_code;
821

    
822
    env->interrupt_injected =
823
        events.interrupt.injected ? events.interrupt.nr : -1;
824
    env->soft_interrupt = events.interrupt.soft;
825

    
826
    env->nmi_injected = events.nmi.injected;
827
    env->nmi_pending = events.nmi.pending;
828
    if (events.nmi.masked) {
829
        env->hflags2 |= HF2_NMI_MASK;
830
    } else {
831
        env->hflags2 &= ~HF2_NMI_MASK;
832
    }
833

    
834
    env->sipi_vector = events.sipi_vector;
835
#endif
836

    
837
    return 0;
838
}
839

    
840
int kvm_arch_put_registers(CPUState *env)
841
{
842
    int ret;
843

    
844
    ret = kvm_getput_regs(env, 1);
845
    if (ret < 0)
846
        return ret;
847

    
848
    ret = kvm_put_fpu(env);
849
    if (ret < 0)
850
        return ret;
851

    
852
    ret = kvm_put_sregs(env);
853
    if (ret < 0)
854
        return ret;
855

    
856
    ret = kvm_put_msrs(env);
857
    if (ret < 0)
858
        return ret;
859

    
860
    ret = kvm_put_mp_state(env);
861
    if (ret < 0)
862
        return ret;
863

    
864
    ret = kvm_put_vcpu_events(env);
865
    if (ret < 0)
866
        return ret;
867

    
868
    return 0;
869
}
870

    
871
int kvm_arch_get_registers(CPUState *env)
872
{
873
    int ret;
874

    
875
    ret = kvm_getput_regs(env, 0);
876
    if (ret < 0)
877
        return ret;
878

    
879
    ret = kvm_get_fpu(env);
880
    if (ret < 0)
881
        return ret;
882

    
883
    ret = kvm_get_sregs(env);
884
    if (ret < 0)
885
        return ret;
886

    
887
    ret = kvm_get_msrs(env);
888
    if (ret < 0)
889
        return ret;
890

    
891
    ret = kvm_get_mp_state(env);
892
    if (ret < 0)
893
        return ret;
894

    
895
    ret = kvm_get_vcpu_events(env);
896
    if (ret < 0)
897
        return ret;
898

    
899
    return 0;
900
}
901

    
902
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
903
{
904
    /* Try to inject an interrupt if the guest can accept it */
905
    if (run->ready_for_interrupt_injection &&
906
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
907
        (env->eflags & IF_MASK)) {
908
        int irq;
909

    
910
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
911
        irq = cpu_get_pic_interrupt(env);
912
        if (irq >= 0) {
913
            struct kvm_interrupt intr;
914
            intr.irq = irq;
915
            /* FIXME: errors */
916
            dprintf("injected interrupt %d\n", irq);
917
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
918
        }
919
    }
920

    
921
    /* If we have an interrupt but the guest is not ready to receive an
922
     * interrupt, request an interrupt window exit.  This will
923
     * cause a return to userspace as soon as the guest is ready to
924
     * receive interrupts. */
925
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
926
        run->request_interrupt_window = 1;
927
    else
928
        run->request_interrupt_window = 0;
929

    
930
    dprintf("setting tpr\n");
931
    run->cr8 = cpu_get_apic_tpr(env);
932

    
933
    return 0;
934
}
935

    
936
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
937
{
938
    if (run->if_flag)
939
        env->eflags |= IF_MASK;
940
    else
941
        env->eflags &= ~IF_MASK;
942
    
943
    cpu_set_apic_tpr(env, run->cr8);
944
    cpu_set_apic_base(env, run->apic_base);
945

    
946
    return 0;
947
}
948

    
949
static int kvm_handle_halt(CPUState *env)
950
{
951
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
952
          (env->eflags & IF_MASK)) &&
953
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
954
        env->halted = 1;
955
        env->exception_index = EXCP_HLT;
956
        return 0;
957
    }
958

    
959
    return 1;
960
}
961

    
962
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
963
{
964
    int ret = 0;
965

    
966
    switch (run->exit_reason) {
967
    case KVM_EXIT_HLT:
968
        dprintf("handle_hlt\n");
969
        ret = kvm_handle_halt(env);
970
        break;
971
    }
972

    
973
    return ret;
974
}
975

    
976
#ifdef KVM_CAP_SET_GUEST_DEBUG
977
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
978
{
979
    static const uint8_t int3 = 0xcc;
980

    
981
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
982
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
983
        return -EINVAL;
984
    return 0;
985
}
986

    
987
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
988
{
989
    uint8_t int3;
990

    
991
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
992
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
993
        return -EINVAL;
994
    return 0;
995
}
996

    
997
static struct {
998
    target_ulong addr;
999
    int len;
1000
    int type;
1001
} hw_breakpoint[4];
1002

    
1003
static int nb_hw_breakpoint;
1004

    
1005
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1006
{
1007
    int n;
1008

    
1009
    for (n = 0; n < nb_hw_breakpoint; n++)
1010
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1011
            (hw_breakpoint[n].len == len || len == -1))
1012
            return n;
1013
    return -1;
1014
}
1015

    
1016
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1017
                                  target_ulong len, int type)
1018
{
1019
    switch (type) {
1020
    case GDB_BREAKPOINT_HW:
1021
        len = 1;
1022
        break;
1023
    case GDB_WATCHPOINT_WRITE:
1024
    case GDB_WATCHPOINT_ACCESS:
1025
        switch (len) {
1026
        case 1:
1027
            break;
1028
        case 2:
1029
        case 4:
1030
        case 8:
1031
            if (addr & (len - 1))
1032
                return -EINVAL;
1033
            break;
1034
        default:
1035
            return -EINVAL;
1036
        }
1037
        break;
1038
    default:
1039
        return -ENOSYS;
1040
    }
1041

    
1042
    if (nb_hw_breakpoint == 4)
1043
        return -ENOBUFS;
1044

    
1045
    if (find_hw_breakpoint(addr, len, type) >= 0)
1046
        return -EEXIST;
1047

    
1048
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1049
    hw_breakpoint[nb_hw_breakpoint].len = len;
1050
    hw_breakpoint[nb_hw_breakpoint].type = type;
1051
    nb_hw_breakpoint++;
1052

    
1053
    return 0;
1054
}
1055

    
1056
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1057
                                  target_ulong len, int type)
1058
{
1059
    int n;
1060

    
1061
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1062
    if (n < 0)
1063
        return -ENOENT;
1064

    
1065
    nb_hw_breakpoint--;
1066
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1067

    
1068
    return 0;
1069
}
1070

    
1071
void kvm_arch_remove_all_hw_breakpoints(void)
1072
{
1073
    nb_hw_breakpoint = 0;
1074
}
1075

    
1076
static CPUWatchpoint hw_watchpoint;
1077

    
1078
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1079
{
1080
    int handle = 0;
1081
    int n;
1082

    
1083
    if (arch_info->exception == 1) {
1084
        if (arch_info->dr6 & (1 << 14)) {
1085
            if (cpu_single_env->singlestep_enabled)
1086
                handle = 1;
1087
        } else {
1088
            for (n = 0; n < 4; n++)
1089
                if (arch_info->dr6 & (1 << n))
1090
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1091
                    case 0x0:
1092
                        handle = 1;
1093
                        break;
1094
                    case 0x1:
1095
                        handle = 1;
1096
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1097
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1098
                        hw_watchpoint.flags = BP_MEM_WRITE;
1099
                        break;
1100
                    case 0x3:
1101
                        handle = 1;
1102
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1103
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1104
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1105
                        break;
1106
                    }
1107
        }
1108
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1109
        handle = 1;
1110

    
1111
    if (!handle)
1112
        kvm_update_guest_debug(cpu_single_env,
1113
                        (arch_info->exception == 1) ?
1114
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1115

    
1116
    return handle;
1117
}
1118

    
1119
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1120
{
1121
    const uint8_t type_code[] = {
1122
        [GDB_BREAKPOINT_HW] = 0x0,
1123
        [GDB_WATCHPOINT_WRITE] = 0x1,
1124
        [GDB_WATCHPOINT_ACCESS] = 0x3
1125
    };
1126
    const uint8_t len_code[] = {
1127
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1128
    };
1129
    int n;
1130

    
1131
    if (kvm_sw_breakpoints_active(env))
1132
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1133

    
1134
    if (nb_hw_breakpoint > 0) {
1135
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1136
        dbg->arch.debugreg[7] = 0x0600;
1137
        for (n = 0; n < nb_hw_breakpoint; n++) {
1138
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1139
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1140
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1141
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1142
        }
1143
    }
1144
}
1145
#endif /* KVM_CAP_SET_GUEST_DEBUG */