Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ bb44e0d1

History | View | Annotate | Download (51.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
static int lm_capable_kernel;
58

    
59
#ifdef KVM_CAP_EXT_CPUID
60

    
61
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62
{
63
    struct kvm_cpuid2 *cpuid;
64
    int r, size;
65

    
66
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68
    cpuid->nent = max;
69
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70
    if (r == 0 && cpuid->nent >= max) {
71
        r = -E2BIG;
72
    }
73
    if (r < 0) {
74
        if (r == -E2BIG) {
75
            qemu_free(cpuid);
76
            return NULL;
77
        } else {
78
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79
                    strerror(-r));
80
            exit(1);
81
        }
82
    }
83
    return cpuid;
84
}
85

    
86
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87
                                      uint32_t index, int reg)
88
{
89
    struct kvm_cpuid2 *cpuid;
90
    int i, max;
91
    uint32_t ret = 0;
92
    uint32_t cpuid_1_edx;
93

    
94
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95
        return -1U;
96
    }
97

    
98
    max = 1;
99
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100
        max *= 2;
101
    }
102

    
103
    for (i = 0; i < cpuid->nent; ++i) {
104
        if (cpuid->entries[i].function == function &&
105
            cpuid->entries[i].index == index) {
106
            switch (reg) {
107
            case R_EAX:
108
                ret = cpuid->entries[i].eax;
109
                break;
110
            case R_EBX:
111
                ret = cpuid->entries[i].ebx;
112
                break;
113
            case R_ECX:
114
                ret = cpuid->entries[i].ecx;
115
                break;
116
            case R_EDX:
117
                ret = cpuid->entries[i].edx;
118
                switch (function) {
119
                case 1:
120
                    /* KVM before 2.6.30 misreports the following features */
121
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122
                    break;
123
                case 0x80000001:
124
                    /* On Intel, kvm returns cpuid according to the Intel spec,
125
                     * so add missing bits according to the AMD spec:
126
                     */
127
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128
                    ret |= cpuid_1_edx & 0x183f7ff;
129
                    break;
130
                }
131
                break;
132
            }
133
        }
134
    }
135

    
136
    qemu_free(cpuid);
137

    
138
    return ret;
139
}
140

    
141
#else
142

    
143
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144
                                      uint32_t index, int reg)
145
{
146
    return -1U;
147
}
148

    
149
#endif
150

    
151
#ifdef CONFIG_KVM_PARA
152
struct kvm_para_features {
153
    int cap;
154
    int feature;
155
} para_features[] = {
156
#ifdef KVM_CAP_CLOCKSOURCE
157
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158
#endif
159
#ifdef KVM_CAP_NOP_IO_DELAY
160
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161
#endif
162
#ifdef KVM_CAP_PV_MMU
163
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164
#endif
165
#ifdef KVM_CAP_ASYNC_PF
166
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167
#endif
168
    { -1, -1 }
169
};
170

    
171
static int get_para_features(CPUState *env)
172
{
173
    int i, features = 0;
174

    
175
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177
            features |= (1 << para_features[i].feature);
178
        }
179
    }
180
    return features;
181
}
182
#endif
183

    
184
#ifdef KVM_CAP_MCE
185
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186
                                     int *max_banks)
187
{
188
    int r;
189

    
190
    r = kvm_check_extension(s, KVM_CAP_MCE);
191
    if (r > 0) {
192
        *max_banks = r;
193
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194
    }
195
    return -ENOSYS;
196
}
197

    
198
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199
{
200
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201
}
202

    
203
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204
{
205
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206
}
207

    
208
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209
{
210
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211
    int r;
212

    
213
    kmsrs->nmsrs = n;
214
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217
    free(kmsrs);
218
    return r;
219
}
220

    
221
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222
static int kvm_mce_in_progress(CPUState *env)
223
{
224
    struct kvm_msr_entry msr_mcg_status = {
225
        .index = MSR_MCG_STATUS,
226
    };
227
    int r;
228

    
229
    r = kvm_get_msr(env, &msr_mcg_status, 1);
230
    if (r == -1 || r == 0) {
231
        fprintf(stderr, "Failed to get MCE status\n");
232
        return 0;
233
    }
234
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235
}
236

    
237
struct kvm_x86_mce_data
238
{
239
    CPUState *env;
240
    struct kvm_x86_mce *mce;
241
    int abort_on_error;
242
};
243

    
244
static void kvm_do_inject_x86_mce(void *_data)
245
{
246
    struct kvm_x86_mce_data *data = _data;
247
    int r;
248

    
249
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
250
    if ((data->env->mcg_cap & MCG_SER_P) &&
251
        !(data->mce->status & MCI_STATUS_AR)) {
252
        if (kvm_mce_in_progress(data->env)) {
253
            return;
254
        }
255
    }
256

    
257
    r = kvm_set_mce(data->env, data->mce);
258
    if (r < 0) {
259
        perror("kvm_set_mce FAILED");
260
        if (data->abort_on_error) {
261
            abort();
262
        }
263
    }
264
}
265

    
266
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267
                                  int flag)
268
{
269
    struct kvm_x86_mce_data data = {
270
        .env = env,
271
        .mce = mce,
272
        .abort_on_error = (flag & ABORT_ON_ERROR),
273
    };
274

    
275
    if (!env->mcg_cap) {
276
        fprintf(stderr, "MCE support is not enabled!\n");
277
        return;
278
    }
279

    
280
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
281
}
282

    
283
static void kvm_mce_broadcast_rest(CPUState *env);
284
#endif
285

    
286
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
288
                        int flag)
289
{
290
#ifdef KVM_CAP_MCE
291
    struct kvm_x86_mce mce = {
292
        .bank = bank,
293
        .status = status,
294
        .mcg_status = mcg_status,
295
        .addr = addr,
296
        .misc = misc,
297
    };
298

    
299
    if (flag & MCE_BROADCAST) {
300
        kvm_mce_broadcast_rest(cenv);
301
    }
302

    
303
    kvm_inject_x86_mce_on(cenv, &mce, flag);
304
#else
305
    if (flag & ABORT_ON_ERROR) {
306
        abort();
307
    }
308
#endif
309
}
310

    
311
int kvm_arch_init_vcpu(CPUState *env)
312
{
313
    struct {
314
        struct kvm_cpuid2 cpuid;
315
        struct kvm_cpuid_entry2 entries[100];
316
    } __attribute__((packed)) cpuid_data;
317
    uint32_t limit, i, j, cpuid_i;
318
    uint32_t unused;
319
    struct kvm_cpuid_entry2 *c;
320
#ifdef KVM_CPUID_SIGNATURE
321
    uint32_t signature[3];
322
#endif
323

    
324
    env->mp_state = KVM_MP_STATE_RUNNABLE;
325

    
326
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
327

    
328
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
329
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
330
    env->cpuid_ext_features |= i;
331

    
332
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333
                                                             0, R_EDX);
334
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
335
                                                             0, R_ECX);
336
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337
                                                             0, R_EDX);
338

    
339

    
340
    cpuid_i = 0;
341

    
342
#ifdef CONFIG_KVM_PARA
343
    /* Paravirtualization CPUIDs */
344
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345
    c = &cpuid_data.entries[cpuid_i++];
346
    memset(c, 0, sizeof(*c));
347
    c->function = KVM_CPUID_SIGNATURE;
348
    c->eax = 0;
349
    c->ebx = signature[0];
350
    c->ecx = signature[1];
351
    c->edx = signature[2];
352

    
353
    c = &cpuid_data.entries[cpuid_i++];
354
    memset(c, 0, sizeof(*c));
355
    c->function = KVM_CPUID_FEATURES;
356
    c->eax = env->cpuid_kvm_features & get_para_features(env);
357
#endif
358

    
359
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
360

    
361
    for (i = 0; i <= limit; i++) {
362
        c = &cpuid_data.entries[cpuid_i++];
363

    
364
        switch (i) {
365
        case 2: {
366
            /* Keep reading function 2 till all the input is received */
367
            int times;
368

    
369
            c->function = i;
370
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
372
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373
            times = c->eax & 0xff;
374

    
375
            for (j = 1; j < times; ++j) {
376
                c = &cpuid_data.entries[cpuid_i++];
377
                c->function = i;
378
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
380
            }
381
            break;
382
        }
383
        case 4:
384
        case 0xb:
385
        case 0xd:
386
            for (j = 0; ; j++) {
387
                c->function = i;
388
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389
                c->index = j;
390
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
391

    
392
                if (i == 4 && c->eax == 0) {
393
                    break;
394
                }
395
                if (i == 0xb && !(c->ecx & 0xff00)) {
396
                    break;
397
                }
398
                if (i == 0xd && c->eax == 0) {
399
                    break;
400
                }
401
                c = &cpuid_data.entries[cpuid_i++];
402
            }
403
            break;
404
        default:
405
            c->function = i;
406
            c->flags = 0;
407
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408
            break;
409
        }
410
    }
411
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
412

    
413
    for (i = 0x80000000; i <= limit; i++) {
414
        c = &cpuid_data.entries[cpuid_i++];
415

    
416
        c->function = i;
417
        c->flags = 0;
418
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
419
    }
420

    
421
    cpuid_data.cpuid.nent = cpuid_i;
422

    
423
#ifdef KVM_CAP_MCE
424
    if (((env->cpuid_version >> 8)&0xF) >= 6
425
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
426
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
427
        uint64_t mcg_cap;
428
        int banks;
429

    
430
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
431
            perror("kvm_get_mce_cap_supported FAILED");
432
        } else {
433
            if (banks > MCE_BANKS_DEF)
434
                banks = MCE_BANKS_DEF;
435
            mcg_cap &= MCE_CAP_DEF;
436
            mcg_cap |= banks;
437
            if (kvm_setup_mce(env, &mcg_cap)) {
438
                perror("kvm_setup_mce FAILED");
439
            } else {
440
                env->mcg_cap = mcg_cap;
441
            }
442
        }
443
    }
444
#endif
445

    
446
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
447
}
448

    
449
void kvm_arch_reset_vcpu(CPUState *env)
450
{
451
    env->exception_injected = -1;
452
    env->interrupt_injected = -1;
453
    env->nmi_injected = 0;
454
    env->nmi_pending = 0;
455
    if (kvm_irqchip_in_kernel()) {
456
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
457
                                          KVM_MP_STATE_UNINITIALIZED;
458
    } else {
459
        env->mp_state = KVM_MP_STATE_RUNNABLE;
460
    }
461
}
462

    
463
int has_msr_star;
464
int has_msr_hsave_pa;
465

    
466
static void kvm_supported_msrs(CPUState *env)
467
{
468
    static int kvm_supported_msrs;
469
    int ret;
470

    
471
    /* first time */
472
    if (kvm_supported_msrs == 0) {
473
        struct kvm_msr_list msr_list, *kvm_msr_list;
474

    
475
        kvm_supported_msrs = -1;
476

    
477
        /* Obtain MSR list from KVM.  These are the MSRs that we must
478
         * save/restore */
479
        msr_list.nmsrs = 0;
480
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
481
        if (ret < 0 && ret != -E2BIG) {
482
            return;
483
        }
484
        /* Old kernel modules had a bug and could write beyond the provided
485
           memory. Allocate at least a safe amount of 1K. */
486
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
487
                                              msr_list.nmsrs *
488
                                              sizeof(msr_list.indices[0])));
489

    
490
        kvm_msr_list->nmsrs = msr_list.nmsrs;
491
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
492
        if (ret >= 0) {
493
            int i;
494

    
495
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
496
                if (kvm_msr_list->indices[i] == MSR_STAR) {
497
                    has_msr_star = 1;
498
                    continue;
499
                }
500
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
501
                    has_msr_hsave_pa = 1;
502
                    continue;
503
                }
504
            }
505
        }
506

    
507
        free(kvm_msr_list);
508
    }
509

    
510
    return;
511
}
512

    
513
static int kvm_has_msr_hsave_pa(CPUState *env)
514
{
515
    kvm_supported_msrs(env);
516
    return has_msr_hsave_pa;
517
}
518

    
519
static int kvm_has_msr_star(CPUState *env)
520
{
521
    kvm_supported_msrs(env);
522
    return has_msr_star;
523
}
524

    
525
static int kvm_init_identity_map_page(KVMState *s)
526
{
527
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
528
    int ret;
529
    uint64_t addr = 0xfffbc000;
530

    
531
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
532
        return 0;
533
    }
534

    
535
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
536
    if (ret < 0) {
537
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
538
        return ret;
539
    }
540
#endif
541
    return 0;
542
}
543

    
544
int kvm_arch_init(KVMState *s, int smp_cpus)
545
{
546
    int ret;
547

    
548
    struct utsname utsname;
549

    
550
    uname(&utsname);
551
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
552

    
553
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
554
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
555
     * must be part of guest physical memory, we need to allocate it.  Older
556
     * versions of KVM just assumed that it would be at the end of physical
557
     * memory but that doesn't work with more than 4GB of memory.  We simply
558
     * refuse to work with those older versions of KVM. */
559
    ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
560
    if (ret <= 0) {
561
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
562
        return ret;
563
    }
564

    
565
    /* this address is 3 pages before the bios, and the bios should present
566
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
567
     * this?
568
     */
569
    /*
570
     * Tell fw_cfg to notify the BIOS to reserve the range.
571
     */
572
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
573
        perror("e820_add_entry() table is full");
574
        exit(1);
575
    }
576
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
577
    if (ret < 0) {
578
        return ret;
579
    }
580

    
581
    return kvm_init_identity_map_page(s);
582
}
583

    
584
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
585
{
586
    lhs->selector = rhs->selector;
587
    lhs->base = rhs->base;
588
    lhs->limit = rhs->limit;
589
    lhs->type = 3;
590
    lhs->present = 1;
591
    lhs->dpl = 3;
592
    lhs->db = 0;
593
    lhs->s = 1;
594
    lhs->l = 0;
595
    lhs->g = 0;
596
    lhs->avl = 0;
597
    lhs->unusable = 0;
598
}
599

    
600
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
601
{
602
    unsigned flags = rhs->flags;
603
    lhs->selector = rhs->selector;
604
    lhs->base = rhs->base;
605
    lhs->limit = rhs->limit;
606
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
607
    lhs->present = (flags & DESC_P_MASK) != 0;
608
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
609
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
610
    lhs->s = (flags & DESC_S_MASK) != 0;
611
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
612
    lhs->g = (flags & DESC_G_MASK) != 0;
613
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
614
    lhs->unusable = 0;
615
}
616

    
617
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
618
{
619
    lhs->selector = rhs->selector;
620
    lhs->base = rhs->base;
621
    lhs->limit = rhs->limit;
622
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
623
                 (rhs->present * DESC_P_MASK) |
624
                 (rhs->dpl << DESC_DPL_SHIFT) |
625
                 (rhs->db << DESC_B_SHIFT) |
626
                 (rhs->s * DESC_S_MASK) |
627
                 (rhs->l << DESC_L_SHIFT) |
628
                 (rhs->g * DESC_G_MASK) |
629
                 (rhs->avl * DESC_AVL_MASK);
630
}
631

    
632
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
633
{
634
    if (set) {
635
        *kvm_reg = *qemu_reg;
636
    } else {
637
        *qemu_reg = *kvm_reg;
638
    }
639
}
640

    
641
static int kvm_getput_regs(CPUState *env, int set)
642
{
643
    struct kvm_regs regs;
644
    int ret = 0;
645

    
646
    if (!set) {
647
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
648
        if (ret < 0) {
649
            return ret;
650
        }
651
    }
652

    
653
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
654
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
655
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
656
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
657
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
658
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
659
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
660
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
661
#ifdef TARGET_X86_64
662
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
663
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
664
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
665
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
666
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
667
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
668
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
669
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
670
#endif
671

    
672
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
673
    kvm_getput_reg(&regs.rip, &env->eip, set);
674

    
675
    if (set) {
676
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
677
    }
678

    
679
    return ret;
680
}
681

    
682
static int kvm_put_fpu(CPUState *env)
683
{
684
    struct kvm_fpu fpu;
685
    int i;
686

    
687
    memset(&fpu, 0, sizeof fpu);
688
    fpu.fsw = env->fpus & ~(7 << 11);
689
    fpu.fsw |= (env->fpstt & 7) << 11;
690
    fpu.fcw = env->fpuc;
691
    for (i = 0; i < 8; ++i) {
692
        fpu.ftwx |= (!env->fptags[i]) << i;
693
    }
694
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
695
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
696
    fpu.mxcsr = env->mxcsr;
697

    
698
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
699
}
700

    
701
#ifdef KVM_CAP_XSAVE
702
#define XSAVE_CWD_RIP     2
703
#define XSAVE_CWD_RDP     4
704
#define XSAVE_MXCSR       6
705
#define XSAVE_ST_SPACE    8
706
#define XSAVE_XMM_SPACE   40
707
#define XSAVE_XSTATE_BV   128
708
#define XSAVE_YMMH_SPACE  144
709
#endif
710

    
711
static int kvm_put_xsave(CPUState *env)
712
{
713
#ifdef KVM_CAP_XSAVE
714
    int i, r;
715
    struct kvm_xsave* xsave;
716
    uint16_t cwd, swd, twd, fop;
717

    
718
    if (!kvm_has_xsave()) {
719
        return kvm_put_fpu(env);
720
    }
721

    
722
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
723
    memset(xsave, 0, sizeof(struct kvm_xsave));
724
    cwd = swd = twd = fop = 0;
725
    swd = env->fpus & ~(7 << 11);
726
    swd |= (env->fpstt & 7) << 11;
727
    cwd = env->fpuc;
728
    for (i = 0; i < 8; ++i) {
729
        twd |= (!env->fptags[i]) << i;
730
    }
731
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
732
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
733
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
734
            sizeof env->fpregs);
735
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
736
            sizeof env->xmm_regs);
737
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
738
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
739
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
740
            sizeof env->ymmh_regs);
741
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
742
    qemu_free(xsave);
743
    return r;
744
#else
745
    return kvm_put_fpu(env);
746
#endif
747
}
748

    
749
static int kvm_put_xcrs(CPUState *env)
750
{
751
#ifdef KVM_CAP_XCRS
752
    struct kvm_xcrs xcrs;
753

    
754
    if (!kvm_has_xcrs()) {
755
        return 0;
756
    }
757

    
758
    xcrs.nr_xcrs = 1;
759
    xcrs.flags = 0;
760
    xcrs.xcrs[0].xcr = 0;
761
    xcrs.xcrs[0].value = env->xcr0;
762
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
763
#else
764
    return 0;
765
#endif
766
}
767

    
768
static int kvm_put_sregs(CPUState *env)
769
{
770
    struct kvm_sregs sregs;
771

    
772
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
773
    if (env->interrupt_injected >= 0) {
774
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
775
                (uint64_t)1 << (env->interrupt_injected % 64);
776
    }
777

    
778
    if ((env->eflags & VM_MASK)) {
779
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
780
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
781
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
782
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
783
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
784
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
785
    } else {
786
        set_seg(&sregs.cs, &env->segs[R_CS]);
787
        set_seg(&sregs.ds, &env->segs[R_DS]);
788
        set_seg(&sregs.es, &env->segs[R_ES]);
789
        set_seg(&sregs.fs, &env->segs[R_FS]);
790
        set_seg(&sregs.gs, &env->segs[R_GS]);
791
        set_seg(&sregs.ss, &env->segs[R_SS]);
792
    }
793

    
794
    set_seg(&sregs.tr, &env->tr);
795
    set_seg(&sregs.ldt, &env->ldt);
796

    
797
    sregs.idt.limit = env->idt.limit;
798
    sregs.idt.base = env->idt.base;
799
    sregs.gdt.limit = env->gdt.limit;
800
    sregs.gdt.base = env->gdt.base;
801

    
802
    sregs.cr0 = env->cr[0];
803
    sregs.cr2 = env->cr[2];
804
    sregs.cr3 = env->cr[3];
805
    sregs.cr4 = env->cr[4];
806

    
807
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
808
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
809

    
810
    sregs.efer = env->efer;
811

    
812
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
813
}
814

    
815
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
816
                              uint32_t index, uint64_t value)
817
{
818
    entry->index = index;
819
    entry->data = value;
820
}
821

    
822
static int kvm_put_msrs(CPUState *env, int level)
823
{
824
    struct {
825
        struct kvm_msrs info;
826
        struct kvm_msr_entry entries[100];
827
    } msr_data;
828
    struct kvm_msr_entry *msrs = msr_data.entries;
829
    int n = 0;
830

    
831
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
832
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
833
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
834
    if (kvm_has_msr_star(env)) {
835
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
836
    }
837
    if (kvm_has_msr_hsave_pa(env)) {
838
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
839
    }
840
#ifdef TARGET_X86_64
841
    if (lm_capable_kernel) {
842
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
843
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
844
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
845
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
846
    }
847
#endif
848
    if (level == KVM_PUT_FULL_STATE) {
849
        /*
850
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
851
         * writeback. Until this is fixed, we only write the offset to SMP
852
         * guests after migration, desynchronizing the VCPUs, but avoiding
853
         * huge jump-backs that would occur without any writeback at all.
854
         */
855
        if (smp_cpus == 1 || env->tsc != 0) {
856
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
857
        }
858
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
859
                          env->system_time_msr);
860
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
861
#ifdef KVM_CAP_ASYNC_PF
862
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
863
#endif
864
    }
865
#ifdef KVM_CAP_MCE
866
    if (env->mcg_cap) {
867
        int i;
868

    
869
        if (level == KVM_PUT_RESET_STATE) {
870
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
871
        } else if (level == KVM_PUT_FULL_STATE) {
872
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
873
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
874
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
875
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
876
            }
877
        }
878
    }
879
#endif
880

    
881
    msr_data.info.nmsrs = n;
882

    
883
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
884

    
885
}
886

    
887

    
888
static int kvm_get_fpu(CPUState *env)
889
{
890
    struct kvm_fpu fpu;
891
    int i, ret;
892

    
893
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
894
    if (ret < 0) {
895
        return ret;
896
    }
897

    
898
    env->fpstt = (fpu.fsw >> 11) & 7;
899
    env->fpus = fpu.fsw;
900
    env->fpuc = fpu.fcw;
901
    for (i = 0; i < 8; ++i) {
902
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
903
    }
904
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
905
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
906
    env->mxcsr = fpu.mxcsr;
907

    
908
    return 0;
909
}
910

    
911
static int kvm_get_xsave(CPUState *env)
912
{
913
#ifdef KVM_CAP_XSAVE
914
    struct kvm_xsave* xsave;
915
    int ret, i;
916
    uint16_t cwd, swd, twd, fop;
917

    
918
    if (!kvm_has_xsave()) {
919
        return kvm_get_fpu(env);
920
    }
921

    
922
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
923
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
924
    if (ret < 0) {
925
        qemu_free(xsave);
926
        return ret;
927
    }
928

    
929
    cwd = (uint16_t)xsave->region[0];
930
    swd = (uint16_t)(xsave->region[0] >> 16);
931
    twd = (uint16_t)xsave->region[1];
932
    fop = (uint16_t)(xsave->region[1] >> 16);
933
    env->fpstt = (swd >> 11) & 7;
934
    env->fpus = swd;
935
    env->fpuc = cwd;
936
    for (i = 0; i < 8; ++i) {
937
        env->fptags[i] = !((twd >> i) & 1);
938
    }
939
    env->mxcsr = xsave->region[XSAVE_MXCSR];
940
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
941
            sizeof env->fpregs);
942
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
943
            sizeof env->xmm_regs);
944
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
945
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
946
            sizeof env->ymmh_regs);
947
    qemu_free(xsave);
948
    return 0;
949
#else
950
    return kvm_get_fpu(env);
951
#endif
952
}
953

    
954
static int kvm_get_xcrs(CPUState *env)
955
{
956
#ifdef KVM_CAP_XCRS
957
    int i, ret;
958
    struct kvm_xcrs xcrs;
959

    
960
    if (!kvm_has_xcrs()) {
961
        return 0;
962
    }
963

    
964
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
965
    if (ret < 0) {
966
        return ret;
967
    }
968

    
969
    for (i = 0; i < xcrs.nr_xcrs; i++) {
970
        /* Only support xcr0 now */
971
        if (xcrs.xcrs[0].xcr == 0) {
972
            env->xcr0 = xcrs.xcrs[0].value;
973
            break;
974
        }
975
    }
976
    return 0;
977
#else
978
    return 0;
979
#endif
980
}
981

    
982
static int kvm_get_sregs(CPUState *env)
983
{
984
    struct kvm_sregs sregs;
985
    uint32_t hflags;
986
    int bit, i, ret;
987

    
988
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
989
    if (ret < 0) {
990
        return ret;
991
    }
992

    
993
    /* There can only be one pending IRQ set in the bitmap at a time, so try
994
       to find it and save its number instead (-1 for none). */
995
    env->interrupt_injected = -1;
996
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
997
        if (sregs.interrupt_bitmap[i]) {
998
            bit = ctz64(sregs.interrupt_bitmap[i]);
999
            env->interrupt_injected = i * 64 + bit;
1000
            break;
1001
        }
1002
    }
1003

    
1004
    get_seg(&env->segs[R_CS], &sregs.cs);
1005
    get_seg(&env->segs[R_DS], &sregs.ds);
1006
    get_seg(&env->segs[R_ES], &sregs.es);
1007
    get_seg(&env->segs[R_FS], &sregs.fs);
1008
    get_seg(&env->segs[R_GS], &sregs.gs);
1009
    get_seg(&env->segs[R_SS], &sregs.ss);
1010

    
1011
    get_seg(&env->tr, &sregs.tr);
1012
    get_seg(&env->ldt, &sregs.ldt);
1013

    
1014
    env->idt.limit = sregs.idt.limit;
1015
    env->idt.base = sregs.idt.base;
1016
    env->gdt.limit = sregs.gdt.limit;
1017
    env->gdt.base = sregs.gdt.base;
1018

    
1019
    env->cr[0] = sregs.cr0;
1020
    env->cr[2] = sregs.cr2;
1021
    env->cr[3] = sregs.cr3;
1022
    env->cr[4] = sregs.cr4;
1023

    
1024
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1025

    
1026
    env->efer = sregs.efer;
1027
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1028

    
1029
#define HFLAG_COPY_MASK \
1030
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1031
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1032
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1033
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1034

    
1035
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1036
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1037
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1038
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1039
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1040
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1041
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1042

    
1043
    if (env->efer & MSR_EFER_LMA) {
1044
        hflags |= HF_LMA_MASK;
1045
    }
1046

    
1047
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1048
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1049
    } else {
1050
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1051
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1052
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1053
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1054
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1055
            !(hflags & HF_CS32_MASK)) {
1056
            hflags |= HF_ADDSEG_MASK;
1057
        } else {
1058
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1059
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1060
        }
1061
    }
1062
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1063

    
1064
    return 0;
1065
}
1066

    
1067
static int kvm_get_msrs(CPUState *env)
1068
{
1069
    struct {
1070
        struct kvm_msrs info;
1071
        struct kvm_msr_entry entries[100];
1072
    } msr_data;
1073
    struct kvm_msr_entry *msrs = msr_data.entries;
1074
    int ret, i, n;
1075

    
1076
    n = 0;
1077
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1078
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1079
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1080
    if (kvm_has_msr_star(env)) {
1081
        msrs[n++].index = MSR_STAR;
1082
    }
1083
    if (kvm_has_msr_hsave_pa(env)) {
1084
        msrs[n++].index = MSR_VM_HSAVE_PA;
1085
    }
1086
    msrs[n++].index = MSR_IA32_TSC;
1087
#ifdef TARGET_X86_64
1088
    if (lm_capable_kernel) {
1089
        msrs[n++].index = MSR_CSTAR;
1090
        msrs[n++].index = MSR_KERNELGSBASE;
1091
        msrs[n++].index = MSR_FMASK;
1092
        msrs[n++].index = MSR_LSTAR;
1093
    }
1094
#endif
1095
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1096
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1097
#ifdef KVM_CAP_ASYNC_PF
1098
    msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1099
#endif
1100

    
1101
#ifdef KVM_CAP_MCE
1102
    if (env->mcg_cap) {
1103
        msrs[n++].index = MSR_MCG_STATUS;
1104
        msrs[n++].index = MSR_MCG_CTL;
1105
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1106
            msrs[n++].index = MSR_MC0_CTL + i;
1107
        }
1108
    }
1109
#endif
1110

    
1111
    msr_data.info.nmsrs = n;
1112
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1113
    if (ret < 0) {
1114
        return ret;
1115
    }
1116

    
1117
    for (i = 0; i < ret; i++) {
1118
        switch (msrs[i].index) {
1119
        case MSR_IA32_SYSENTER_CS:
1120
            env->sysenter_cs = msrs[i].data;
1121
            break;
1122
        case MSR_IA32_SYSENTER_ESP:
1123
            env->sysenter_esp = msrs[i].data;
1124
            break;
1125
        case MSR_IA32_SYSENTER_EIP:
1126
            env->sysenter_eip = msrs[i].data;
1127
            break;
1128
        case MSR_STAR:
1129
            env->star = msrs[i].data;
1130
            break;
1131
#ifdef TARGET_X86_64
1132
        case MSR_CSTAR:
1133
            env->cstar = msrs[i].data;
1134
            break;
1135
        case MSR_KERNELGSBASE:
1136
            env->kernelgsbase = msrs[i].data;
1137
            break;
1138
        case MSR_FMASK:
1139
            env->fmask = msrs[i].data;
1140
            break;
1141
        case MSR_LSTAR:
1142
            env->lstar = msrs[i].data;
1143
            break;
1144
#endif
1145
        case MSR_IA32_TSC:
1146
            env->tsc = msrs[i].data;
1147
            break;
1148
        case MSR_VM_HSAVE_PA:
1149
            env->vm_hsave = msrs[i].data;
1150
            break;
1151
        case MSR_KVM_SYSTEM_TIME:
1152
            env->system_time_msr = msrs[i].data;
1153
            break;
1154
        case MSR_KVM_WALL_CLOCK:
1155
            env->wall_clock_msr = msrs[i].data;
1156
            break;
1157
#ifdef KVM_CAP_MCE
1158
        case MSR_MCG_STATUS:
1159
            env->mcg_status = msrs[i].data;
1160
            break;
1161
        case MSR_MCG_CTL:
1162
            env->mcg_ctl = msrs[i].data;
1163
            break;
1164
#endif
1165
        default:
1166
#ifdef KVM_CAP_MCE
1167
            if (msrs[i].index >= MSR_MC0_CTL &&
1168
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1169
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1170
            }
1171
#endif
1172
            break;
1173
#ifdef KVM_CAP_ASYNC_PF
1174
        case MSR_KVM_ASYNC_PF_EN:
1175
            env->async_pf_en_msr = msrs[i].data;
1176
            break;
1177
#endif
1178
        }
1179
    }
1180

    
1181
    return 0;
1182
}
1183

    
1184
static int kvm_put_mp_state(CPUState *env)
1185
{
1186
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1187

    
1188
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1189
}
1190

    
1191
static int kvm_get_mp_state(CPUState *env)
1192
{
1193
    struct kvm_mp_state mp_state;
1194
    int ret;
1195

    
1196
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1197
    if (ret < 0) {
1198
        return ret;
1199
    }
1200
    env->mp_state = mp_state.mp_state;
1201
    return 0;
1202
}
1203

    
1204
static int kvm_put_vcpu_events(CPUState *env, int level)
1205
{
1206
#ifdef KVM_CAP_VCPU_EVENTS
1207
    struct kvm_vcpu_events events;
1208

    
1209
    if (!kvm_has_vcpu_events()) {
1210
        return 0;
1211
    }
1212

    
1213
    events.exception.injected = (env->exception_injected >= 0);
1214
    events.exception.nr = env->exception_injected;
1215
    events.exception.has_error_code = env->has_error_code;
1216
    events.exception.error_code = env->error_code;
1217

    
1218
    events.interrupt.injected = (env->interrupt_injected >= 0);
1219
    events.interrupt.nr = env->interrupt_injected;
1220
    events.interrupt.soft = env->soft_interrupt;
1221

    
1222
    events.nmi.injected = env->nmi_injected;
1223
    events.nmi.pending = env->nmi_pending;
1224
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1225

    
1226
    events.sipi_vector = env->sipi_vector;
1227

    
1228
    events.flags = 0;
1229
    if (level >= KVM_PUT_RESET_STATE) {
1230
        events.flags |=
1231
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1232
    }
1233

    
1234
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1235
#else
1236
    return 0;
1237
#endif
1238
}
1239

    
1240
static int kvm_get_vcpu_events(CPUState *env)
1241
{
1242
#ifdef KVM_CAP_VCPU_EVENTS
1243
    struct kvm_vcpu_events events;
1244
    int ret;
1245

    
1246
    if (!kvm_has_vcpu_events()) {
1247
        return 0;
1248
    }
1249

    
1250
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1251
    if (ret < 0) {
1252
       return ret;
1253
    }
1254
    env->exception_injected =
1255
       events.exception.injected ? events.exception.nr : -1;
1256
    env->has_error_code = events.exception.has_error_code;
1257
    env->error_code = events.exception.error_code;
1258

    
1259
    env->interrupt_injected =
1260
        events.interrupt.injected ? events.interrupt.nr : -1;
1261
    env->soft_interrupt = events.interrupt.soft;
1262

    
1263
    env->nmi_injected = events.nmi.injected;
1264
    env->nmi_pending = events.nmi.pending;
1265
    if (events.nmi.masked) {
1266
        env->hflags2 |= HF2_NMI_MASK;
1267
    } else {
1268
        env->hflags2 &= ~HF2_NMI_MASK;
1269
    }
1270

    
1271
    env->sipi_vector = events.sipi_vector;
1272
#endif
1273

    
1274
    return 0;
1275
}
1276

    
1277
static int kvm_guest_debug_workarounds(CPUState *env)
1278
{
1279
    int ret = 0;
1280
#ifdef KVM_CAP_SET_GUEST_DEBUG
1281
    unsigned long reinject_trap = 0;
1282

    
1283
    if (!kvm_has_vcpu_events()) {
1284
        if (env->exception_injected == 1) {
1285
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1286
        } else if (env->exception_injected == 3) {
1287
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1288
        }
1289
        env->exception_injected = -1;
1290
    }
1291

    
1292
    /*
1293
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1294
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1295
     * by updating the debug state once again if single-stepping is on.
1296
     * Another reason to call kvm_update_guest_debug here is a pending debug
1297
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1298
     * reinject them via SET_GUEST_DEBUG.
1299
     */
1300
    if (reinject_trap ||
1301
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1302
        ret = kvm_update_guest_debug(env, reinject_trap);
1303
    }
1304
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1305
    return ret;
1306
}
1307

    
1308
static int kvm_put_debugregs(CPUState *env)
1309
{
1310
#ifdef KVM_CAP_DEBUGREGS
1311
    struct kvm_debugregs dbgregs;
1312
    int i;
1313

    
1314
    if (!kvm_has_debugregs()) {
1315
        return 0;
1316
    }
1317

    
1318
    for (i = 0; i < 4; i++) {
1319
        dbgregs.db[i] = env->dr[i];
1320
    }
1321
    dbgregs.dr6 = env->dr[6];
1322
    dbgregs.dr7 = env->dr[7];
1323
    dbgregs.flags = 0;
1324

    
1325
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1326
#else
1327
    return 0;
1328
#endif
1329
}
1330

    
1331
static int kvm_get_debugregs(CPUState *env)
1332
{
1333
#ifdef KVM_CAP_DEBUGREGS
1334
    struct kvm_debugregs dbgregs;
1335
    int i, ret;
1336

    
1337
    if (!kvm_has_debugregs()) {
1338
        return 0;
1339
    }
1340

    
1341
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1342
    if (ret < 0) {
1343
        return ret;
1344
    }
1345
    for (i = 0; i < 4; i++) {
1346
        env->dr[i] = dbgregs.db[i];
1347
    }
1348
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1349
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1350
#endif
1351

    
1352
    return 0;
1353
}
1354

    
1355
int kvm_arch_put_registers(CPUState *env, int level)
1356
{
1357
    int ret;
1358

    
1359
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1360

    
1361
    ret = kvm_getput_regs(env, 1);
1362
    if (ret < 0) {
1363
        return ret;
1364
    }
1365
    ret = kvm_put_xsave(env);
1366
    if (ret < 0) {
1367
        return ret;
1368
    }
1369
    ret = kvm_put_xcrs(env);
1370
    if (ret < 0) {
1371
        return ret;
1372
    }
1373
    ret = kvm_put_sregs(env);
1374
    if (ret < 0) {
1375
        return ret;
1376
    }
1377
    ret = kvm_put_msrs(env, level);
1378
    if (ret < 0) {
1379
        return ret;
1380
    }
1381
    if (level >= KVM_PUT_RESET_STATE) {
1382
        ret = kvm_put_mp_state(env);
1383
        if (ret < 0) {
1384
            return ret;
1385
        }
1386
    }
1387
    ret = kvm_put_vcpu_events(env, level);
1388
    if (ret < 0) {
1389
        return ret;
1390
    }
1391
    /* must be last */
1392
    ret = kvm_guest_debug_workarounds(env);
1393
    if (ret < 0) {
1394
        return ret;
1395
    }
1396
    ret = kvm_put_debugregs(env);
1397
    if (ret < 0) {
1398
        return ret;
1399
    }
1400
    return 0;
1401
}
1402

    
1403
int kvm_arch_get_registers(CPUState *env)
1404
{
1405
    int ret;
1406

    
1407
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1408

    
1409
    ret = kvm_getput_regs(env, 0);
1410
    if (ret < 0) {
1411
        return ret;
1412
    }
1413
    ret = kvm_get_xsave(env);
1414
    if (ret < 0) {
1415
        return ret;
1416
    }
1417
    ret = kvm_get_xcrs(env);
1418
    if (ret < 0) {
1419
        return ret;
1420
    }
1421
    ret = kvm_get_sregs(env);
1422
    if (ret < 0) {
1423
        return ret;
1424
    }
1425
    ret = kvm_get_msrs(env);
1426
    if (ret < 0) {
1427
        return ret;
1428
    }
1429
    ret = kvm_get_mp_state(env);
1430
    if (ret < 0) {
1431
        return ret;
1432
    }
1433
    ret = kvm_get_vcpu_events(env);
1434
    if (ret < 0) {
1435
        return ret;
1436
    }
1437
    ret = kvm_get_debugregs(env);
1438
    if (ret < 0) {
1439
        return ret;
1440
    }
1441
    return 0;
1442
}
1443

    
1444
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1445
{
1446
    /* Inject NMI */
1447
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1448
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1449
        DPRINTF("injected NMI\n");
1450
        kvm_vcpu_ioctl(env, KVM_NMI);
1451
    }
1452

    
1453
    /* Try to inject an interrupt if the guest can accept it */
1454
    if (run->ready_for_interrupt_injection &&
1455
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1456
        (env->eflags & IF_MASK)) {
1457
        int irq;
1458

    
1459
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1460
        irq = cpu_get_pic_interrupt(env);
1461
        if (irq >= 0) {
1462
            struct kvm_interrupt intr;
1463
            intr.irq = irq;
1464
            /* FIXME: errors */
1465
            DPRINTF("injected interrupt %d\n", irq);
1466
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1467
        }
1468
    }
1469

    
1470
    /* If we have an interrupt but the guest is not ready to receive an
1471
     * interrupt, request an interrupt window exit.  This will
1472
     * cause a return to userspace as soon as the guest is ready to
1473
     * receive interrupts. */
1474
    if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1475
        run->request_interrupt_window = 1;
1476
    } else {
1477
        run->request_interrupt_window = 0;
1478
    }
1479

    
1480
    DPRINTF("setting tpr\n");
1481
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1482

    
1483
    return 0;
1484
}
1485

    
1486
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1487
{
1488
    if (run->if_flag) {
1489
        env->eflags |= IF_MASK;
1490
    } else {
1491
        env->eflags &= ~IF_MASK;
1492
    }
1493
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1494
    cpu_set_apic_base(env->apic_state, run->apic_base);
1495

    
1496
    return 0;
1497
}
1498

    
1499
int kvm_arch_process_irqchip_events(CPUState *env)
1500
{
1501
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1502
        kvm_cpu_synchronize_state(env);
1503
        do_cpu_init(env);
1504
        env->exception_index = EXCP_HALTED;
1505
    }
1506

    
1507
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1508
        kvm_cpu_synchronize_state(env);
1509
        do_cpu_sipi(env);
1510
    }
1511

    
1512
    return env->halted;
1513
}
1514

    
1515
static int kvm_handle_halt(CPUState *env)
1516
{
1517
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1518
          (env->eflags & IF_MASK)) &&
1519
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1520
        env->halted = 1;
1521
        env->exception_index = EXCP_HLT;
1522
        return 0;
1523
    }
1524

    
1525
    return 1;
1526
}
1527

    
1528
static bool host_supports_vmx(void)
1529
{
1530
    uint32_t ecx, unused;
1531

    
1532
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1533
    return ecx & CPUID_EXT_VMX;
1534
}
1535

    
1536
#define VMX_INVALID_GUEST_STATE 0x80000021
1537

    
1538
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1539
{
1540
    uint64_t code;
1541
    int ret = 0;
1542

    
1543
    switch (run->exit_reason) {
1544
    case KVM_EXIT_HLT:
1545
        DPRINTF("handle_hlt\n");
1546
        ret = kvm_handle_halt(env);
1547
        break;
1548
    case KVM_EXIT_SET_TPR:
1549
        ret = 1;
1550
        break;
1551
    case KVM_EXIT_FAIL_ENTRY:
1552
        code = run->fail_entry.hardware_entry_failure_reason;
1553
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1554
                code);
1555
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1556
            fprintf(stderr,
1557
                    "\nIf you're runnning a guest on an Intel machine without "
1558
                        "unrestricted mode\n"
1559
                    "support, the failure can be most likely due to the guest "
1560
                        "entering an invalid\n"
1561
                    "state for Intel VT. For example, the guest maybe running "
1562
                        "in big real mode\n"
1563
                    "which is not supported on less recent Intel processors."
1564
                        "\n\n");
1565
        }
1566
        ret = -1;
1567
        break;
1568
    case KVM_EXIT_EXCEPTION:
1569
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1570
                run->ex.exception, run->ex.error_code);
1571
        ret = -1;
1572
        break;
1573
    default:
1574
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1575
        ret = -1;
1576
        break;
1577
    }
1578

    
1579
    return ret;
1580
}
1581

    
1582
#ifdef KVM_CAP_SET_GUEST_DEBUG
1583
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1584
{
1585
    static const uint8_t int3 = 0xcc;
1586

    
1587
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1588
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1589
        return -EINVAL;
1590
    }
1591
    return 0;
1592
}
1593

    
1594
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1595
{
1596
    uint8_t int3;
1597

    
1598
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1599
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1600
        return -EINVAL;
1601
    }
1602
    return 0;
1603
}
1604

    
1605
static struct {
1606
    target_ulong addr;
1607
    int len;
1608
    int type;
1609
} hw_breakpoint[4];
1610

    
1611
static int nb_hw_breakpoint;
1612

    
1613
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1614
{
1615
    int n;
1616

    
1617
    for (n = 0; n < nb_hw_breakpoint; n++) {
1618
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1619
            (hw_breakpoint[n].len == len || len == -1)) {
1620
            return n;
1621
        }
1622
    }
1623
    return -1;
1624
}
1625

    
1626
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1627
                                  target_ulong len, int type)
1628
{
1629
    switch (type) {
1630
    case GDB_BREAKPOINT_HW:
1631
        len = 1;
1632
        break;
1633
    case GDB_WATCHPOINT_WRITE:
1634
    case GDB_WATCHPOINT_ACCESS:
1635
        switch (len) {
1636
        case 1:
1637
            break;
1638
        case 2:
1639
        case 4:
1640
        case 8:
1641
            if (addr & (len - 1)) {
1642
                return -EINVAL;
1643
            }
1644
            break;
1645
        default:
1646
            return -EINVAL;
1647
        }
1648
        break;
1649
    default:
1650
        return -ENOSYS;
1651
    }
1652

    
1653
    if (nb_hw_breakpoint == 4) {
1654
        return -ENOBUFS;
1655
    }
1656
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1657
        return -EEXIST;
1658
    }
1659
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1660
    hw_breakpoint[nb_hw_breakpoint].len = len;
1661
    hw_breakpoint[nb_hw_breakpoint].type = type;
1662
    nb_hw_breakpoint++;
1663

    
1664
    return 0;
1665
}
1666

    
1667
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1668
                                  target_ulong len, int type)
1669
{
1670
    int n;
1671

    
1672
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1673
    if (n < 0) {
1674
        return -ENOENT;
1675
    }
1676
    nb_hw_breakpoint--;
1677
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1678

    
1679
    return 0;
1680
}
1681

    
1682
void kvm_arch_remove_all_hw_breakpoints(void)
1683
{
1684
    nb_hw_breakpoint = 0;
1685
}
1686

    
1687
static CPUWatchpoint hw_watchpoint;
1688

    
1689
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1690
{
1691
    int handle = 0;
1692
    int n;
1693

    
1694
    if (arch_info->exception == 1) {
1695
        if (arch_info->dr6 & (1 << 14)) {
1696
            if (cpu_single_env->singlestep_enabled) {
1697
                handle = 1;
1698
            }
1699
        } else {
1700
            for (n = 0; n < 4; n++) {
1701
                if (arch_info->dr6 & (1 << n)) {
1702
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1703
                    case 0x0:
1704
                        handle = 1;
1705
                        break;
1706
                    case 0x1:
1707
                        handle = 1;
1708
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1709
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1710
                        hw_watchpoint.flags = BP_MEM_WRITE;
1711
                        break;
1712
                    case 0x3:
1713
                        handle = 1;
1714
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1715
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1716
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1717
                        break;
1718
                    }
1719
                }
1720
            }
1721
        }
1722
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1723
        handle = 1;
1724
    }
1725
    if (!handle) {
1726
        cpu_synchronize_state(cpu_single_env);
1727
        assert(cpu_single_env->exception_injected == -1);
1728

    
1729
        cpu_single_env->exception_injected = arch_info->exception;
1730
        cpu_single_env->has_error_code = 0;
1731
    }
1732

    
1733
    return handle;
1734
}
1735

    
1736
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1737
{
1738
    const uint8_t type_code[] = {
1739
        [GDB_BREAKPOINT_HW] = 0x0,
1740
        [GDB_WATCHPOINT_WRITE] = 0x1,
1741
        [GDB_WATCHPOINT_ACCESS] = 0x3
1742
    };
1743
    const uint8_t len_code[] = {
1744
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1745
    };
1746
    int n;
1747

    
1748
    if (kvm_sw_breakpoints_active(env)) {
1749
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1750
    }
1751
    if (nb_hw_breakpoint > 0) {
1752
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1753
        dbg->arch.debugreg[7] = 0x0600;
1754
        for (n = 0; n < nb_hw_breakpoint; n++) {
1755
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1756
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1757
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1758
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1759
        }
1760
    }
1761
    /* Legal xcr0 for loading */
1762
    env->xcr0 = 1;
1763
}
1764
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1765

    
1766
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1767
{
1768
    return !(env->cr[0] & CR0_PE_MASK) ||
1769
           ((env->segs[R_CS].selector  & 3) != 3);
1770
}
1771

    
1772
static void hardware_memory_error(void)
1773
{
1774
    fprintf(stderr, "Hardware memory error!\n");
1775
    exit(1);
1776
}
1777

    
1778
#ifdef KVM_CAP_MCE
1779
static void kvm_mce_broadcast_rest(CPUState *env)
1780
{
1781
    struct kvm_x86_mce mce = {
1782
        .bank = 1,
1783
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1784
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1785
        .addr = 0,
1786
        .misc = 0,
1787
    };
1788
    CPUState *cenv;
1789

    
1790
    /* Broadcast MCA signal for processor version 06H_EH and above */
1791
    if (cpu_x86_support_mca_broadcast(env)) {
1792
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1793
            if (cenv == env) {
1794
                continue;
1795
            }
1796
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1797
        }
1798
    }
1799
}
1800

    
1801
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1802
{
1803
    struct kvm_x86_mce mce = {
1804
        .bank = 9,
1805
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807
                  | MCI_STATUS_AR | 0x134,
1808
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1809
        .addr = paddr,
1810
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1811
    };
1812
    int r;
1813

    
1814
    r = kvm_set_mce(env, &mce);
1815
    if (r < 0) {
1816
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817
        abort();
1818
    }
1819
    kvm_mce_broadcast_rest(env);
1820
}
1821

    
1822
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1823
{
1824
    struct kvm_x86_mce mce = {
1825
        .bank = 9,
1826
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828
                  | 0xc0,
1829
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830
        .addr = paddr,
1831
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1832
    };
1833
    int r;
1834

    
1835
    r = kvm_set_mce(env, &mce);
1836
    if (r < 0) {
1837
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1838
        abort();
1839
    }
1840
    kvm_mce_broadcast_rest(env);
1841
}
1842

    
1843
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1844
{
1845
    struct kvm_x86_mce mce = {
1846
        .bank = 9,
1847
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1848
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1849
                  | 0xc0,
1850
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1851
        .addr = paddr,
1852
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1853
    };
1854

    
1855
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1856
    kvm_mce_broadcast_rest(env);
1857
}
1858

    
1859
#endif
1860

    
1861
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1862
{
1863
#if defined(KVM_CAP_MCE)
1864
    void *vaddr;
1865
    ram_addr_t ram_addr;
1866
    target_phys_addr_t paddr;
1867

    
1868
    if ((env->mcg_cap & MCG_SER_P) && addr
1869
        && (code == BUS_MCEERR_AR
1870
            || code == BUS_MCEERR_AO)) {
1871
        vaddr = (void *)addr;
1872
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1873
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1874
            fprintf(stderr, "Hardware memory error for memory used by "
1875
                    "QEMU itself instead of guest system!\n");
1876
            /* Hope we are lucky for AO MCE */
1877
            if (code == BUS_MCEERR_AO) {
1878
                return 0;
1879
            } else {
1880
                hardware_memory_error();
1881
            }
1882
        }
1883

    
1884
        if (code == BUS_MCEERR_AR) {
1885
            /* Fake an Intel architectural Data Load SRAR UCR */
1886
            kvm_mce_inj_srar_dataload(env, paddr);
1887
        } else {
1888
            /*
1889
             * If there is an MCE excpetion being processed, ignore
1890
             * this SRAO MCE
1891
             */
1892
            if (!kvm_mce_in_progress(env)) {
1893
                /* Fake an Intel architectural Memory scrubbing UCR */
1894
                kvm_mce_inj_srao_memscrub(env, paddr);
1895
            }
1896
        }
1897
    } else
1898
#endif
1899
    {
1900
        if (code == BUS_MCEERR_AO) {
1901
            return 0;
1902
        } else if (code == BUS_MCEERR_AR) {
1903
            hardware_memory_error();
1904
        } else {
1905
            return 1;
1906
        }
1907
    }
1908
    return 0;
1909
}
1910

    
1911
int kvm_on_sigbus(int code, void *addr)
1912
{
1913
#if defined(KVM_CAP_MCE)
1914
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1915
        void *vaddr;
1916
        ram_addr_t ram_addr;
1917
        target_phys_addr_t paddr;
1918

    
1919
        /* Hope we are lucky for AO MCE */
1920
        vaddr = addr;
1921
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1922
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1923
            fprintf(stderr, "Hardware memory error for memory used by "
1924
                    "QEMU itself instead of guest system!: %p\n", addr);
1925
            return 0;
1926
        }
1927
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1928
    } else
1929
#endif
1930
    {
1931
        if (code == BUS_MCEERR_AO) {
1932
            return 0;
1933
        } else if (code == BUS_MCEERR_AR) {
1934
            hardware_memory_error();
1935
        } else {
1936
            return 1;
1937
        }
1938
    }
1939
    return 0;
1940
}