Statistics
| Branch: | Revision:

root / hw / etraxfs_timer.c @ bbaf29c7

History | View | Annotate | Download (6.6 kB)

1
/*
2
 * QEMU ETRAX System Emulator
3
 *
4
 * Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27
#include "qemu-timer.h"
28

    
29
#define D(x)
30

    
31
void etrax_ack_irq(CPUState *env, uint32_t mask);
32

    
33
#define R_TIME 0xb001e038
34
#define RW_TMR0_DIV 0xb001e000
35
#define R_TMR0_DATA 0xb001e004
36
#define RW_TMR0_CTRL 0xb001e008
37
#define RW_TMR1_DIV 0xb001e010
38
#define R_TMR1_DATA 0xb001e014
39
#define RW_TMR1_CTRL 0xb001e018
40

    
41
#define RW_INTR_MASK 0xb001e048
42
#define RW_ACK_INTR 0xb001e04c
43
#define R_INTR 0xb001e050
44
#define R_MASKED_INTR 0xb001e054
45

    
46

    
47
uint32_t rw_intr_mask;
48
uint32_t rw_ack_intr;
49
uint32_t r_intr;
50

    
51
struct fs_timer_t {
52
        QEMUBH *bh;
53
        unsigned int limit;
54
        int scale;
55
        ptimer_state *ptimer;
56
        CPUState *env;
57
        qemu_irq *irq;
58
        uint32_t mask;
59
        struct timeval last;
60
};
61

    
62
static struct fs_timer_t timer[2];
63

    
64
static inline int timer_index(target_phys_addr_t addr)
65
{
66
        int t = 0;
67
        if (addr >= 0xb005e000)
68
                t = 1;
69
        return t;
70
}
71

    
72
/* diff two timevals.  Return a single int in us. */
73
int diff_timeval_us(struct timeval *a, struct timeval *b)
74
{
75
        int diff;
76

    
77
        /* assume these values are signed.  */
78
        diff = (a->tv_sec - b->tv_sec) * 1000 * 1000;
79
        diff += (a->tv_usec - b->tv_usec);
80
        return diff;
81
}
82

    
83
static uint32_t timer_readb (void *opaque, target_phys_addr_t addr)
84
{
85
        CPUState *env;
86
        uint32_t r = 0;
87

    
88
        env = opaque;
89
        D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
90
        return r;
91
}
92
static uint32_t timer_readw (void *opaque, target_phys_addr_t addr)
93
{
94
        CPUState *env;
95
        uint32_t r = 0;
96

    
97
        env = opaque;
98
        D(printf ("%s %x pc=%x\n", __func__, addr, env->pc));
99
        return r;
100
}
101

    
102
static uint32_t timer_readl (void *opaque, target_phys_addr_t addr)
103
{
104
        CPUState *env = opaque;
105
        uint32_t r = 0;
106
        int t = timer_index(addr);
107

    
108
        switch (addr) {
109
        case R_TMR0_DATA:
110
                break;
111
        case R_TMR1_DATA:
112
                D(printf ("R_TMR1_DATA\n"));
113
                break;
114
        case R_TIME:
115
        {
116
                struct timeval now;
117
                gettimeofday(&now, NULL);
118
                if (!(timer[t].last.tv_sec == 0 
119
                      && timer[t].last.tv_usec == 0)) {
120
                        r = diff_timeval_us(&now, &timer[t].last);
121
                        r *= 1000; /* convert to ns.  */
122
                        r++; /* make sure we increase for each call.  */
123
                }
124
                timer[t].last = now;
125
                break;
126
        }
127

    
128
        case RW_INTR_MASK:
129
                r = rw_intr_mask;
130
                break;
131
        case R_MASKED_INTR:
132
                r = r_intr & rw_intr_mask;
133
                break;
134
        default:
135
                printf ("%s %x p=%x\n", __func__, addr, env->pc);
136
                break;
137
        }
138
        return r;
139
}
140

    
141
static void
142
timer_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
143
{
144
        CPUState *env;
145
        env = opaque;
146
        D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
147
}
148
static void
149
timer_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
150
{
151
        CPUState *env;
152
        env = opaque;
153
        D(printf ("%s %x %x pc=%x\n", __func__, addr, value, env->pc));
154
}
155

    
156
static void write_ctrl(struct fs_timer_t *t, uint32_t v)
157
{
158
        int op;
159
        int freq;
160
        int freq_hz;
161

    
162
        op = v & 3;
163
        freq = v >> 2;
164
        freq_hz = 32000000;
165

    
166
        switch (freq)
167
        {
168
        case 0:
169
        case 1:
170
                printf ("extern or disabled timer clock?\n");
171
                break;
172
        case 4: freq_hz =  29493000; break;
173
        case 5: freq_hz =  32000000; break;
174
        case 6: freq_hz =  32768000; break;
175
        case 7: freq_hz = 100000000; break;
176
        default:
177
                abort();
178
                break;
179
        }
180

    
181
        printf ("freq_hz=%d limit=%d\n", freq_hz, t->limit);
182
        t->scale = 0;
183
        if (t->limit > 2048)
184
        {
185
                t->scale = 2048;
186
                ptimer_set_period(t->ptimer, freq_hz / t->scale);
187
        }
188

    
189
        printf ("op=%d\n", op);
190
        switch (op)
191
        {
192
                case 0:
193
                        printf ("limit=%d %d\n", t->limit, t->limit/t->scale);
194
                        ptimer_set_limit(t->ptimer, t->limit / t->scale, 1);
195
                        break;
196
                case 1:
197
                        ptimer_stop(t->ptimer);
198
                        break;
199
                case 2:
200
                        ptimer_run(t->ptimer, 0);
201
                        break;
202
                default:
203
                        abort();
204
                        break;
205
        }
206
}
207

    
208
static void timer_ack_irq(struct fs_timer_t *t)
209
{
210
        if (!(r_intr & t->mask & rw_intr_mask)) {
211
                qemu_irq_lower(t->irq[0]);
212
                etrax_ack_irq(t->env, 1 << 0x1b);
213
        }
214
}
215

    
216
static void
217
timer_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
218
{
219
        CPUState *env = opaque;
220
        int t = timer_index(addr);
221

    
222
        D(printf ("%s %x %x pc=%x\n",
223
                __func__, addr, value, env->pc));
224
        switch (addr)
225
        {
226
                case RW_TMR0_DIV:
227
                        D(printf ("RW_TMR0_DIV=%x\n", value));
228
                        timer[t].limit = value;
229
                        break;
230
                case RW_TMR0_CTRL:
231
                        D(printf ("RW_TMR0_CTRL=%x\n", value));
232
                        write_ctrl(&timer[t], value);
233
                        break;
234
                case RW_TMR1_DIV:
235
                        D(printf ("RW_TMR1_DIV=%x\n", value));
236
                        break;
237
                case RW_TMR1_CTRL:
238
                        D(printf ("RW_TMR1_CTRL=%x\n", value));
239
                        break;
240
                case RW_INTR_MASK:
241
                        D(printf ("RW_INTR_MASK=%x\n", value));
242
                        rw_intr_mask = value;
243
                        break;
244
                case RW_ACK_INTR:
245
                        r_intr &= ~value;
246
                        timer_ack_irq(&timer[t]);
247
                        break;
248
                default:
249
                        printf ("%s %x %x pc=%x\n",
250
                                __func__, addr, value, env->pc);
251
                        break;
252
        }
253
}
254

    
255
static CPUReadMemoryFunc *timer_read[] = {
256
    &timer_readb,
257
    &timer_readw,
258
    &timer_readl,
259
};
260

    
261
static CPUWriteMemoryFunc *timer_write[] = {
262
    &timer_writeb,
263
    &timer_writew,
264
    &timer_writel,
265
};
266

    
267
static void timer_irq(void *opaque)
268
{
269
        struct fs_timer_t *t = opaque;
270
        r_intr |= t->mask;
271
        if (t->mask & rw_intr_mask) {
272
                qemu_irq_raise(t->irq[0]);
273
        }
274
}
275

    
276
void etraxfs_timer_init(CPUState *env, qemu_irq *irqs)
277
{
278
        int timer_regs;
279

    
280
        timer[0].bh = qemu_bh_new(timer_irq, &timer[0]);
281
        timer[0].ptimer = ptimer_init(timer[0].bh);
282
        timer[0].irq = irqs + 0x1b;
283
        timer[0].mask = 1;
284
        timer[0].env = env;
285

    
286
        timer[1].bh = qemu_bh_new(timer_irq, &timer[1]);
287
        timer[1].ptimer = ptimer_init(timer[1].bh);
288
        timer[1].irq = irqs + 0x1b;
289
        timer[1].mask = 1;
290
        timer[1].env = env;
291

    
292
        timer_regs = cpu_register_io_memory(0, timer_read, timer_write, env);
293
        cpu_register_physical_memory (0xb001e000, 0x5c, timer_regs);
294
        cpu_register_physical_memory (0xb005e000, 0x5c, timer_regs);
295
}