Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ bbf7d96b

History | View | Annotate | Download (49.7 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3

    
4
//#define DEBUG_PCALL
5
//#define DEBUG_MMU
6
//#define DEBUG_MXCC
7
//#define DEBUG_UNALIGNED
8
//#define DEBUG_UNASSIGNED
9

    
10
#ifdef DEBUG_MMU
11
#define DPRINTF_MMU(fmt, args...) \
12
do { printf("MMU: " fmt , ##args); } while (0)
13
#else
14
#define DPRINTF_MMU(fmt, args...)
15
#endif
16

    
17
#ifdef DEBUG_MXCC
18
#define DPRINTF_MXCC(fmt, args...) \
19
do { printf("MXCC: " fmt , ##args); } while (0)
20
#else
21
#define DPRINTF_MXCC(fmt, args...)
22
#endif
23

    
24
void raise_exception(int tt)
25
{
26
    env->exception_index = tt;
27
    cpu_loop_exit();
28
}
29

    
30
void check_ieee_exceptions()
31
{
32
     T0 = get_float_exception_flags(&env->fp_status);
33
     if (T0)
34
     {
35
        /* Copy IEEE 754 flags into FSR */
36
        if (T0 & float_flag_invalid)
37
            env->fsr |= FSR_NVC;
38
        if (T0 & float_flag_overflow)
39
            env->fsr |= FSR_OFC;
40
        if (T0 & float_flag_underflow)
41
            env->fsr |= FSR_UFC;
42
        if (T0 & float_flag_divbyzero)
43
            env->fsr |= FSR_DZC;
44
        if (T0 & float_flag_inexact)
45
            env->fsr |= FSR_NXC;
46

    
47
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
48
        {
49
            /* Unmasked exception, generate a trap */
50
            env->fsr |= FSR_FTT_IEEE_EXCP;
51
            raise_exception(TT_FP_EXCP);
52
        }
53
        else
54
        {
55
            /* Accumulate exceptions */
56
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
57
        }
58
     }
59
}
60

    
61
#ifdef USE_INT_TO_FLOAT_HELPERS
62
void do_fitos(void)
63
{
64
    set_float_exception_flags(0, &env->fp_status);
65
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
66
    check_ieee_exceptions();
67
}
68

    
69
void do_fitod(void)
70
{
71
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
72
}
73
#ifdef TARGET_SPARC64
74
void do_fxtos(void)
75
{
76
    set_float_exception_flags(0, &env->fp_status);
77
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
78
    check_ieee_exceptions();
79
}
80

    
81
void do_fxtod(void)
82
{
83
    set_float_exception_flags(0, &env->fp_status);
84
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
85
    check_ieee_exceptions();
86
}
87
#endif
88
#endif
89

    
90
void do_fabss(void)
91
{
92
    FT0 = float32_abs(FT1);
93
}
94

    
95
#ifdef TARGET_SPARC64
96
void do_fabsd(void)
97
{
98
    DT0 = float64_abs(DT1);
99
}
100
#endif
101

    
102
void do_fsqrts(void)
103
{
104
    set_float_exception_flags(0, &env->fp_status);
105
    FT0 = float32_sqrt(FT1, &env->fp_status);
106
    check_ieee_exceptions();
107
}
108

    
109
void do_fsqrtd(void)
110
{
111
    set_float_exception_flags(0, &env->fp_status);
112
    DT0 = float64_sqrt(DT1, &env->fp_status);
113
    check_ieee_exceptions();
114
}
115

    
116
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
117
    void glue(do_, name) (void)                                         \
118
    {                                                                   \
119
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
120
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
121
        case float_relation_unordered:                                  \
122
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
123
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
124
                env->fsr |= T0;                                         \
125
                env->fsr |= FSR_NVC;                                    \
126
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
127
                raise_exception(TT_FP_EXCP);                            \
128
            } else {                                                    \
129
                env->fsr |= FSR_NVA;                                    \
130
            }                                                           \
131
            break;                                                      \
132
        case float_relation_less:                                       \
133
            T0 = FSR_FCC0 << FS;                                        \
134
            break;                                                      \
135
        case float_relation_greater:                                    \
136
            T0 = FSR_FCC1 << FS;                                        \
137
            break;                                                      \
138
        default:                                                        \
139
            T0 = 0;                                                     \
140
            break;                                                      \
141
        }                                                               \
142
        env->fsr |= T0;                                                 \
143
    }
144

    
145
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
146
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
147

    
148
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
149
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
150

    
151
#ifdef TARGET_SPARC64
152
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
153
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
154

    
155
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
156
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
157

    
158
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
159
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
160

    
161
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
162
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
163

    
164
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
165
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
166

    
167
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
168
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
169
#endif
170

    
171
#ifndef TARGET_SPARC64
172
#ifndef CONFIG_USER_ONLY
173

    
174
#ifdef DEBUG_MXCC
175
static void dump_mxcc(CPUState *env)
176
{
177
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
178
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
179
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
180
           "          %016llx %016llx %016llx %016llx\n",
181
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
182
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
183
}
184
#endif
185

    
186
void helper_ld_asi(int asi, int size, int sign)
187
{
188
    uint32_t ret = 0;
189
    uint64_t tmp;
190
#ifdef DEBUG_MXCC
191
    uint32_t last_T0 = T0;
192
#endif
193

    
194
    switch (asi) {
195
    case 2: /* SuperSparc MXCC registers */
196
        switch (T0) {
197
        case 0x01c00a00: /* MXCC control register */
198
            if (size == 8) {
199
                ret = env->mxccregs[3];
200
                T0 = env->mxccregs[3] >> 32;
201
            } else
202
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
203
            break;
204
        case 0x01c00a04: /* MXCC control register */
205
            if (size == 4)
206
                ret = env->mxccregs[3];
207
            else
208
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
209
            break;
210
        case 0x01c00c00: /* Module reset register */
211
            if (size == 8) {
212
                ret = env->mxccregs[5] >> 32;
213
                T0 = env->mxccregs[5];
214
                // should we do something here?
215
            } else
216
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
217
            break;
218
        case 0x01c00f00: /* MBus port address register */
219
            if (size == 8) {
220
                ret = env->mxccregs[7];
221
                T0 = env->mxccregs[7] >> 32;
222
            } else
223
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
224
            break;
225
        default:
226
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
227
            break;
228
        }
229
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
230
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
231
#ifdef DEBUG_MXCC
232
        dump_mxcc(env);
233
#endif
234
        break;
235
    case 3: /* MMU probe */
236
        {
237
            int mmulev;
238

    
239
            mmulev = (T0 >> 8) & 15;
240
            if (mmulev > 4)
241
                ret = 0;
242
            else {
243
                ret = mmu_probe(env, T0, mmulev);
244
                //bswap32s(&ret);
245
            }
246
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
247
        }
248
        break;
249
    case 4: /* read MMU regs */
250
        {
251
            int reg = (T0 >> 8) & 0xf;
252

    
253
            ret = env->mmuregs[reg];
254
            if (reg == 3) /* Fault status cleared on read */
255
                env->mmuregs[reg] = 0;
256
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
257
        }
258
        break;
259
    case 9: /* Supervisor code access */
260
        switch(size) {
261
        case 1:
262
            ret = ldub_code(T0);
263
            break;
264
        case 2:
265
            ret = lduw_code(T0 & ~1);
266
            break;
267
        default:
268
        case 4:
269
            ret = ldl_code(T0 & ~3);
270
            break;
271
        case 8:
272
            tmp = ldq_code(T0 & ~7);
273
            ret = tmp >> 32;
274
            T0 = tmp & 0xffffffff;
275
            break;
276
        }
277
        break;
278
    case 0xa: /* User data access */
279
        switch(size) {
280
        case 1:
281
            ret = ldub_user(T0);
282
            break;
283
        case 2:
284
            ret = lduw_user(T0 & ~1);
285
            break;
286
        default:
287
        case 4:
288
            ret = ldl_user(T0 & ~3);
289
            break;
290
        case 8:
291
            tmp = ldq_user(T0 & ~7);
292
            ret = tmp >> 32;
293
            T0 = tmp & 0xffffffff;
294
            break;
295
        }
296
        break;
297
    case 0xb: /* Supervisor data access */
298
        switch(size) {
299
        case 1:
300
            ret = ldub_kernel(T0);
301
            break;
302
        case 2:
303
            ret = lduw_kernel(T0 & ~1);
304
            break;
305
        default:
306
        case 4:
307
            ret = ldl_kernel(T0 & ~3);
308
            break;
309
        case 8:
310
            tmp = ldq_kernel(T0 & ~7);
311
            ret = tmp >> 32;
312
            T0 = tmp & 0xffffffff;
313
            break;
314
        }
315
        break;
316
    case 0xc: /* I-cache tag */
317
    case 0xd: /* I-cache data */
318
    case 0xe: /* D-cache tag */
319
    case 0xf: /* D-cache data */
320
        break;
321
    case 0x20: /* MMU passthrough */
322
        switch(size) {
323
        case 1:
324
            ret = ldub_phys(T0);
325
            break;
326
        case 2:
327
            ret = lduw_phys(T0 & ~1);
328
            break;
329
        default:
330
        case 4:
331
            ret = ldl_phys(T0 & ~3);
332
            break;
333
        case 8:
334
            tmp = ldq_phys(T0 & ~7);
335
            ret = tmp >> 32;
336
            T0 = tmp & 0xffffffff;
337
            break;
338
        }
339
        break;
340
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
341
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
342
        switch(size) {
343
        case 1:
344
            ret = ldub_phys((target_phys_addr_t)T0
345
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
346
            break;
347
        case 2:
348
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
349
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
350
            break;
351
        default:
352
        case 4:
353
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
354
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
355
            break;
356
        case 8:
357
            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
358
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
359
            ret = tmp >> 32;
360
            T0 = tmp & 0xffffffff;
361
            break;
362
        }
363
        break;
364
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
365
    default:
366
        do_unassigned_access(T0, 0, 0, 1);
367
        ret = 0;
368
        break;
369
    }
370
    if (sign) {
371
        switch(size) {
372
        case 1:
373
            T1 = (int8_t) ret;
374
            break;
375
        case 2:
376
            T1 = (int16_t) ret;
377
            break;
378
        default:
379
            T1 = ret;
380
            break;
381
        }
382
    }
383
    else
384
        T1 = ret;
385
}
386

    
387
void helper_st_asi(int asi, int size)
388
{
389
    switch(asi) {
390
    case 2: /* SuperSparc MXCC registers */
391
        switch (T0) {
392
        case 0x01c00000: /* MXCC stream data register 0 */
393
            if (size == 8)
394
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
395
            else
396
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
397
            break;
398
        case 0x01c00008: /* MXCC stream data register 1 */
399
            if (size == 8)
400
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
401
            else
402
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
403
            break;
404
        case 0x01c00010: /* MXCC stream data register 2 */
405
            if (size == 8)
406
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
407
            else
408
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
409
            break;
410
        case 0x01c00018: /* MXCC stream data register 3 */
411
            if (size == 8)
412
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
413
            else
414
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
415
            break;
416
        case 0x01c00100: /* MXCC stream source */
417
            if (size == 8)
418
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
419
            else
420
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
421
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
422
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
423
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
424
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
425
            break;
426
        case 0x01c00200: /* MXCC stream destination */
427
            if (size == 8)
428
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
429
            else
430
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
431
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
432
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
433
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
434
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
435
            break;
436
        case 0x01c00a00: /* MXCC control register */
437
            if (size == 8)
438
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
439
            else
440
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
441
            break;
442
        case 0x01c00a04: /* MXCC control register */
443
            if (size == 4)
444
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | T1;
445
            else
446
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
447
            break;
448
        case 0x01c00e00: /* MXCC error register  */
449
            // writing a 1 bit clears the error
450
            if (size == 8)
451
                env->mxccregs[6] &= ~(((uint64_t)T1 << 32) | T2);
452
            else
453
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
454
            break;
455
        case 0x01c00f00: /* MBus port address register */
456
            if (size == 8)
457
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
458
            else
459
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
460
            break;
461
        default:
462
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
463
            break;
464
        }
465
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
466
#ifdef DEBUG_MXCC
467
        dump_mxcc(env);
468
#endif
469
        break;
470
    case 3: /* MMU flush */
471
        {
472
            int mmulev;
473

    
474
            mmulev = (T0 >> 8) & 15;
475
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
476
            switch (mmulev) {
477
            case 0: // flush page
478
                tlb_flush_page(env, T0 & 0xfffff000);
479
                break;
480
            case 1: // flush segment (256k)
481
            case 2: // flush region (16M)
482
            case 3: // flush context (4G)
483
            case 4: // flush entire
484
                tlb_flush(env, 1);
485
                break;
486
            default:
487
                break;
488
            }
489
#ifdef DEBUG_MMU
490
            dump_mmu(env);
491
#endif
492
            return;
493
        }
494
    case 4: /* write MMU regs */
495
        {
496
            int reg = (T0 >> 8) & 0xf;
497
            uint32_t oldreg;
498

    
499
            oldreg = env->mmuregs[reg];
500
            switch(reg) {
501
            case 0:
502
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | env->mmu_bm);
503
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | env->mmu_bm);
504
                // Mappings generated during no-fault mode or MMU
505
                // disabled mode are invalid in normal mode
506
                if (oldreg != env->mmuregs[reg])
507
                    tlb_flush(env, 1);
508
                break;
509
            case 2:
510
                env->mmuregs[reg] = T1;
511
                if (oldreg != env->mmuregs[reg]) {
512
                    /* we flush when the MMU context changes because
513
                       QEMU has no MMU context support */
514
                    tlb_flush(env, 1);
515
                }
516
                break;
517
            case 3:
518
            case 4:
519
                break;
520
            default:
521
                env->mmuregs[reg] = T1;
522
                break;
523
            }
524
            if (oldreg != env->mmuregs[reg]) {
525
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
526
            }
527
#ifdef DEBUG_MMU
528
            dump_mmu(env);
529
#endif
530
            return;
531
        }
532
    case 0xa: /* User data access */
533
        switch(size) {
534
        case 1:
535
            stb_user(T0, T1);
536
            break;
537
        case 2:
538
            stw_user(T0 & ~1, T1);
539
            break;
540
        default:
541
        case 4:
542
            stl_user(T0 & ~3, T1);
543
            break;
544
        case 8:
545
            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
546
            break;
547
        }
548
        break;
549
    case 0xb: /* Supervisor data access */
550
        switch(size) {
551
        case 1:
552
            stb_kernel(T0, T1);
553
            break;
554
        case 2:
555
            stw_kernel(T0 & ~1, T1);
556
            break;
557
        default:
558
        case 4:
559
            stl_kernel(T0 & ~3, T1);
560
            break;
561
        case 8:
562
            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
563
            break;
564
        }
565
        break;
566
    case 0xc: /* I-cache tag */
567
    case 0xd: /* I-cache data */
568
    case 0xe: /* D-cache tag */
569
    case 0xf: /* D-cache data */
570
    case 0x10: /* I/D-cache flush page */
571
    case 0x11: /* I/D-cache flush segment */
572
    case 0x12: /* I/D-cache flush region */
573
    case 0x13: /* I/D-cache flush context */
574
    case 0x14: /* I/D-cache flush user */
575
        break;
576
    case 0x17: /* Block copy, sta access */
577
        {
578
            // value (T1) = src
579
            // address (T0) = dst
580
            // copy 32 bytes
581
            unsigned int i;
582
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
583

    
584
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
585
                temp = ldl_kernel(src);
586
                stl_kernel(dst, temp);
587
            }
588
        }
589
        return;
590
    case 0x1f: /* Block fill, stda access */
591
        {
592
            // value (T1, T2)
593
            // address (T0) = dst
594
            // fill 32 bytes
595
            unsigned int i;
596
            uint32_t dst = T0 & 7;
597
            uint64_t val;
598

    
599
            val = (((uint64_t)T1) << 32) | T2;
600

    
601
            for (i = 0; i < 32; i += 8, dst += 8)
602
                stq_kernel(dst, val);
603
        }
604
        return;
605
    case 0x20: /* MMU passthrough */
606
        {
607
            switch(size) {
608
            case 1:
609
                stb_phys(T0, T1);
610
                break;
611
            case 2:
612
                stw_phys(T0 & ~1, T1);
613
                break;
614
            case 4:
615
            default:
616
                stl_phys(T0 & ~3, T1);
617
                break;
618
            case 8:
619
                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
620
                break;
621
            }
622
        }
623
        return;
624
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
625
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
626
        {
627
            switch(size) {
628
            case 1:
629
                stb_phys((target_phys_addr_t)T0
630
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
631
                break;
632
            case 2:
633
                stw_phys((target_phys_addr_t)(T0 & ~1)
634
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
635
                break;
636
            case 4:
637
            default:
638
                stl_phys((target_phys_addr_t)(T0 & ~3)
639
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
640
                break;
641
            case 8:
642
                stq_phys((target_phys_addr_t)(T0 & ~7)
643
                           | ((target_phys_addr_t)(asi & 0xf) << 32),
644
                         ((uint64_t)T1 << 32) | T2);
645
                break;
646
            }
647
        }
648
        return;
649
    case 0x31: /* Ross RT620 I-cache flush */
650
    case 0x36: /* I-cache flash clear */
651
    case 0x37: /* D-cache flash clear */
652
        break;
653
    case 9: /* Supervisor code access, XXX */
654
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
655
    default:
656
        do_unassigned_access(T0, 1, 0, 1);
657
        return;
658
    }
659
}
660

    
661
#endif /* CONFIG_USER_ONLY */
662
#else /* TARGET_SPARC64 */
663

    
664
#ifdef CONFIG_USER_ONLY
665
void helper_ld_asi(int asi, int size, int sign)
666
{
667
    uint64_t ret = 0;
668

    
669
    if (asi < 0x80)
670
        raise_exception(TT_PRIV_ACT);
671

    
672
    switch (asi) {
673
    case 0x80: // Primary
674
    case 0x82: // Primary no-fault
675
    case 0x88: // Primary LE
676
    case 0x8a: // Primary no-fault LE
677
        {
678
            switch(size) {
679
            case 1:
680
                ret = ldub_raw(T0);
681
                break;
682
            case 2:
683
                ret = lduw_raw(T0 & ~1);
684
                break;
685
            case 4:
686
                ret = ldl_raw(T0 & ~3);
687
                break;
688
            default:
689
            case 8:
690
                ret = ldq_raw(T0 & ~7);
691
                break;
692
            }
693
        }
694
        break;
695
    case 0x81: // Secondary
696
    case 0x83: // Secondary no-fault
697
    case 0x89: // Secondary LE
698
    case 0x8b: // Secondary no-fault LE
699
        // XXX
700
        break;
701
    default:
702
        break;
703
    }
704

    
705
    /* Convert from little endian */
706
    switch (asi) {
707
    case 0x88: // Primary LE
708
    case 0x89: // Secondary LE
709
    case 0x8a: // Primary no-fault LE
710
    case 0x8b: // Secondary no-fault LE
711
        switch(size) {
712
        case 2:
713
            ret = bswap16(ret);
714
            break;
715
        case 4:
716
            ret = bswap32(ret);
717
            break;
718
        case 8:
719
            ret = bswap64(ret);
720
            break;
721
        default:
722
            break;
723
        }
724
    default:
725
        break;
726
    }
727

    
728
    /* Convert to signed number */
729
    if (sign) {
730
        switch(size) {
731
        case 1:
732
            ret = (int8_t) ret;
733
            break;
734
        case 2:
735
            ret = (int16_t) ret;
736
            break;
737
        case 4:
738
            ret = (int32_t) ret;
739
            break;
740
        default:
741
            break;
742
        }
743
    }
744
    T1 = ret;
745
}
746

    
747
void helper_st_asi(int asi, int size)
748
{
749
    if (asi < 0x80)
750
        raise_exception(TT_PRIV_ACT);
751

    
752
    /* Convert to little endian */
753
    switch (asi) {
754
    case 0x88: // Primary LE
755
    case 0x89: // Secondary LE
756
        switch(size) {
757
        case 2:
758
            T0 = bswap16(T0);
759
            break;
760
        case 4:
761
            T0 = bswap32(T0);
762
            break;
763
        case 8:
764
            T0 = bswap64(T0);
765
            break;
766
        default:
767
            break;
768
        }
769
    default:
770
        break;
771
    }
772

    
773
    switch(asi) {
774
    case 0x80: // Primary
775
    case 0x88: // Primary LE
776
        {
777
            switch(size) {
778
            case 1:
779
                stb_raw(T0, T1);
780
                break;
781
            case 2:
782
                stw_raw(T0 & ~1, T1);
783
                break;
784
            case 4:
785
                stl_raw(T0 & ~3, T1);
786
                break;
787
            case 8:
788
            default:
789
                stq_raw(T0 & ~7, T1);
790
                break;
791
            }
792
        }
793
        break;
794
    case 0x81: // Secondary
795
    case 0x89: // Secondary LE
796
        // XXX
797
        return;
798

    
799
    case 0x82: // Primary no-fault, RO
800
    case 0x83: // Secondary no-fault, RO
801
    case 0x8a: // Primary no-fault LE, RO
802
    case 0x8b: // Secondary no-fault LE, RO
803
    default:
804
        do_unassigned_access(T0, 1, 0, 1);
805
        return;
806
    }
807
}
808

    
809
#else /* CONFIG_USER_ONLY */
810

    
811
void helper_ld_asi(int asi, int size, int sign)
812
{
813
    uint64_t ret = 0;
814

    
815
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
816
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
817
        raise_exception(TT_PRIV_ACT);
818

    
819
    switch (asi) {
820
    case 0x10: // As if user primary
821
    case 0x18: // As if user primary LE
822
    case 0x80: // Primary
823
    case 0x82: // Primary no-fault
824
    case 0x88: // Primary LE
825
    case 0x8a: // Primary no-fault LE
826
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
827
            if (env->hpstate & HS_PRIV) {
828
                switch(size) {
829
                case 1:
830
                    ret = ldub_hypv(T0);
831
                    break;
832
                case 2:
833
                    ret = lduw_hypv(T0 & ~1);
834
                    break;
835
                case 4:
836
                    ret = ldl_hypv(T0 & ~3);
837
                    break;
838
                default:
839
                case 8:
840
                    ret = ldq_hypv(T0 & ~7);
841
                    break;
842
                }
843
            } else {
844
                switch(size) {
845
                case 1:
846
                    ret = ldub_kernel(T0);
847
                    break;
848
                case 2:
849
                    ret = lduw_kernel(T0 & ~1);
850
                    break;
851
                case 4:
852
                    ret = ldl_kernel(T0 & ~3);
853
                    break;
854
                default:
855
                case 8:
856
                    ret = ldq_kernel(T0 & ~7);
857
                    break;
858
                }
859
            }
860
        } else {
861
            switch(size) {
862
            case 1:
863
                ret = ldub_user(T0);
864
                break;
865
            case 2:
866
                ret = lduw_user(T0 & ~1);
867
                break;
868
            case 4:
869
                ret = ldl_user(T0 & ~3);
870
                break;
871
            default:
872
            case 8:
873
                ret = ldq_user(T0 & ~7);
874
                break;
875
            }
876
        }
877
        break;
878
    case 0x14: // Bypass
879
    case 0x15: // Bypass, non-cacheable
880
    case 0x1c: // Bypass LE
881
    case 0x1d: // Bypass, non-cacheable LE
882
        {
883
            switch(size) {
884
            case 1:
885
                ret = ldub_phys(T0);
886
                break;
887
            case 2:
888
                ret = lduw_phys(T0 & ~1);
889
                break;
890
            case 4:
891
                ret = ldl_phys(T0 & ~3);
892
                break;
893
            default:
894
            case 8:
895
                ret = ldq_phys(T0 & ~7);
896
                break;
897
            }
898
            break;
899
        }
900
    case 0x04: // Nucleus
901
    case 0x0c: // Nucleus Little Endian (LE)
902
    case 0x11: // As if user secondary
903
    case 0x19: // As if user secondary LE
904
    case 0x24: // Nucleus quad LDD 128 bit atomic
905
    case 0x2c: // Nucleus quad LDD 128 bit atomic
906
    case 0x4a: // UPA config
907
    case 0x81: // Secondary
908
    case 0x83: // Secondary no-fault
909
    case 0x89: // Secondary LE
910
    case 0x8b: // Secondary no-fault LE
911
        // XXX
912
        break;
913
    case 0x45: // LSU
914
        ret = env->lsu;
915
        break;
916
    case 0x50: // I-MMU regs
917
        {
918
            int reg = (T0 >> 3) & 0xf;
919

    
920
            ret = env->immuregs[reg];
921
            break;
922
        }
923
    case 0x51: // I-MMU 8k TSB pointer
924
    case 0x52: // I-MMU 64k TSB pointer
925
    case 0x55: // I-MMU data access
926
        // XXX
927
        break;
928
    case 0x56: // I-MMU tag read
929
        {
930
            unsigned int i;
931

    
932
            for (i = 0; i < 64; i++) {
933
                // Valid, ctx match, vaddr match
934
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
935
                    env->itlb_tag[i] == T0) {
936
                    ret = env->itlb_tag[i];
937
                    break;
938
                }
939
            }
940
            break;
941
        }
942
    case 0x58: // D-MMU regs
943
        {
944
            int reg = (T0 >> 3) & 0xf;
945

    
946
            ret = env->dmmuregs[reg];
947
            break;
948
        }
949
    case 0x5e: // D-MMU tag read
950
        {
951
            unsigned int i;
952

    
953
            for (i = 0; i < 64; i++) {
954
                // Valid, ctx match, vaddr match
955
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
956
                    env->dtlb_tag[i] == T0) {
957
                    ret = env->dtlb_tag[i];
958
                    break;
959
                }
960
            }
961
            break;
962
        }
963
    case 0x59: // D-MMU 8k TSB pointer
964
    case 0x5a: // D-MMU 64k TSB pointer
965
    case 0x5b: // D-MMU data pointer
966
    case 0x5d: // D-MMU data access
967
    case 0x48: // Interrupt dispatch, RO
968
    case 0x49: // Interrupt data receive
969
    case 0x7f: // Incoming interrupt vector, RO
970
        // XXX
971
        break;
972
    case 0x54: // I-MMU data in, WO
973
    case 0x57: // I-MMU demap, WO
974
    case 0x5c: // D-MMU data in, WO
975
    case 0x5f: // D-MMU demap, WO
976
    case 0x77: // Interrupt vector, WO
977
    default:
978
        do_unassigned_access(T0, 0, 0, 1);
979
        ret = 0;
980
        break;
981
    }
982

    
983
    /* Convert from little endian */
984
    switch (asi) {
985
    case 0x0c: // Nucleus Little Endian (LE)
986
    case 0x18: // As if user primary LE
987
    case 0x19: // As if user secondary LE
988
    case 0x1c: // Bypass LE
989
    case 0x1d: // Bypass, non-cacheable LE
990
    case 0x88: // Primary LE
991
    case 0x89: // Secondary LE
992
    case 0x8a: // Primary no-fault LE
993
    case 0x8b: // Secondary no-fault LE
994
        switch(size) {
995
        case 2:
996
            ret = bswap16(ret);
997
            break;
998
        case 4:
999
            ret = bswap32(ret);
1000
            break;
1001
        case 8:
1002
            ret = bswap64(ret);
1003
            break;
1004
        default:
1005
            break;
1006
        }
1007
    default:
1008
        break;
1009
    }
1010

    
1011
    /* Convert to signed number */
1012
    if (sign) {
1013
        switch(size) {
1014
        case 1:
1015
            ret = (int8_t) ret;
1016
            break;
1017
        case 2:
1018
            ret = (int16_t) ret;
1019
            break;
1020
        case 4:
1021
            ret = (int32_t) ret;
1022
            break;
1023
        default:
1024
            break;
1025
        }
1026
    }
1027
    T1 = ret;
1028
}
1029

    
1030
void helper_st_asi(int asi, int size)
1031
{
1032
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1033
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1034
        raise_exception(TT_PRIV_ACT);
1035

    
1036
    /* Convert to little endian */
1037
    switch (asi) {
1038
    case 0x0c: // Nucleus Little Endian (LE)
1039
    case 0x18: // As if user primary LE
1040
    case 0x19: // As if user secondary LE
1041
    case 0x1c: // Bypass LE
1042
    case 0x1d: // Bypass, non-cacheable LE
1043
    case 0x88: // Primary LE
1044
    case 0x89: // Secondary LE
1045
        switch(size) {
1046
        case 2:
1047
            T0 = bswap16(T0);
1048
            break;
1049
        case 4:
1050
            T0 = bswap32(T0);
1051
            break;
1052
        case 8:
1053
            T0 = bswap64(T0);
1054
            break;
1055
        default:
1056
            break;
1057
        }
1058
    default:
1059
        break;
1060
    }
1061

    
1062
    switch(asi) {
1063
    case 0x10: // As if user primary
1064
    case 0x18: // As if user primary LE
1065
    case 0x80: // Primary
1066
    case 0x88: // Primary LE
1067
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1068
            if (env->hpstate & HS_PRIV) {
1069
                switch(size) {
1070
                case 1:
1071
                    stb_hypv(T0, T1);
1072
                    break;
1073
                case 2:
1074
                    stw_hypv(T0 & ~1, T1);
1075
                    break;
1076
                case 4:
1077
                    stl_hypv(T0 & ~3, T1);
1078
                    break;
1079
                case 8:
1080
                default:
1081
                    stq_hypv(T0 & ~7, T1);
1082
                    break;
1083
                }
1084
            } else {
1085
                switch(size) {
1086
                case 1:
1087
                    stb_kernel(T0, T1);
1088
                    break;
1089
                case 2:
1090
                    stw_kernel(T0 & ~1, T1);
1091
                    break;
1092
                case 4:
1093
                    stl_kernel(T0 & ~3, T1);
1094
                    break;
1095
                case 8:
1096
                default:
1097
                    stq_kernel(T0 & ~7, T1);
1098
                    break;
1099
                }
1100
            }
1101
        } else {
1102
            switch(size) {
1103
            case 1:
1104
                stb_user(T0, T1);
1105
                break;
1106
            case 2:
1107
                stw_user(T0 & ~1, T1);
1108
                break;
1109
            case 4:
1110
                stl_user(T0 & ~3, T1);
1111
                break;
1112
            case 8:
1113
            default:
1114
                stq_user(T0 & ~7, T1);
1115
                break;
1116
            }
1117
        }
1118
        break;
1119
    case 0x14: // Bypass
1120
    case 0x15: // Bypass, non-cacheable
1121
    case 0x1c: // Bypass LE
1122
    case 0x1d: // Bypass, non-cacheable LE
1123
        {
1124
            switch(size) {
1125
            case 1:
1126
                stb_phys(T0, T1);
1127
                break;
1128
            case 2:
1129
                stw_phys(T0 & ~1, T1);
1130
                break;
1131
            case 4:
1132
                stl_phys(T0 & ~3, T1);
1133
                break;
1134
            case 8:
1135
            default:
1136
                stq_phys(T0 & ~7, T1);
1137
                break;
1138
            }
1139
        }
1140
        return;
1141
    case 0x04: // Nucleus
1142
    case 0x0c: // Nucleus Little Endian (LE)
1143
    case 0x11: // As if user secondary
1144
    case 0x19: // As if user secondary LE
1145
    case 0x24: // Nucleus quad LDD 128 bit atomic
1146
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1147
    case 0x4a: // UPA config
1148
    case 0x81: // Secondary
1149
    case 0x89: // Secondary LE
1150
        // XXX
1151
        return;
1152
    case 0x45: // LSU
1153
        {
1154
            uint64_t oldreg;
1155

    
1156
            oldreg = env->lsu;
1157
            env->lsu = T1 & (DMMU_E | IMMU_E);
1158
            // Mappings generated during D/I MMU disabled mode are
1159
            // invalid in normal mode
1160
            if (oldreg != env->lsu) {
1161
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1162
#ifdef DEBUG_MMU
1163
                dump_mmu(env);
1164
#endif
1165
                tlb_flush(env, 1);
1166
            }
1167
            return;
1168
        }
1169
    case 0x50: // I-MMU regs
1170
        {
1171
            int reg = (T0 >> 3) & 0xf;
1172
            uint64_t oldreg;
1173

    
1174
            oldreg = env->immuregs[reg];
1175
            switch(reg) {
1176
            case 0: // RO
1177
            case 4:
1178
                return;
1179
            case 1: // Not in I-MMU
1180
            case 2:
1181
            case 7:
1182
            case 8:
1183
                return;
1184
            case 3: // SFSR
1185
                if ((T1 & 1) == 0)
1186
                    T1 = 0; // Clear SFSR
1187
                break;
1188
            case 5: // TSB access
1189
            case 6: // Tag access
1190
            default:
1191
                break;
1192
            }
1193
            env->immuregs[reg] = T1;
1194
            if (oldreg != env->immuregs[reg]) {
1195
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1196
            }
1197
#ifdef DEBUG_MMU
1198
            dump_mmu(env);
1199
#endif
1200
            return;
1201
        }
1202
    case 0x54: // I-MMU data in
1203
        {
1204
            unsigned int i;
1205

    
1206
            // Try finding an invalid entry
1207
            for (i = 0; i < 64; i++) {
1208
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1209
                    env->itlb_tag[i] = env->immuregs[6];
1210
                    env->itlb_tte[i] = T1;
1211
                    return;
1212
                }
1213
            }
1214
            // Try finding an unlocked entry
1215
            for (i = 0; i < 64; i++) {
1216
                if ((env->itlb_tte[i] & 0x40) == 0) {
1217
                    env->itlb_tag[i] = env->immuregs[6];
1218
                    env->itlb_tte[i] = T1;
1219
                    return;
1220
                }
1221
            }
1222
            // error state?
1223
            return;
1224
        }
1225
    case 0x55: // I-MMU data access
1226
        {
1227
            unsigned int i = (T0 >> 3) & 0x3f;
1228

    
1229
            env->itlb_tag[i] = env->immuregs[6];
1230
            env->itlb_tte[i] = T1;
1231
            return;
1232
        }
1233
    case 0x57: // I-MMU demap
1234
        // XXX
1235
        return;
1236
    case 0x58: // D-MMU regs
1237
        {
1238
            int reg = (T0 >> 3) & 0xf;
1239
            uint64_t oldreg;
1240

    
1241
            oldreg = env->dmmuregs[reg];
1242
            switch(reg) {
1243
            case 0: // RO
1244
            case 4:
1245
                return;
1246
            case 3: // SFSR
1247
                if ((T1 & 1) == 0) {
1248
                    T1 = 0; // Clear SFSR, Fault address
1249
                    env->dmmuregs[4] = 0;
1250
                }
1251
                env->dmmuregs[reg] = T1;
1252
                break;
1253
            case 1: // Primary context
1254
            case 2: // Secondary context
1255
            case 5: // TSB access
1256
            case 6: // Tag access
1257
            case 7: // Virtual Watchpoint
1258
            case 8: // Physical Watchpoint
1259
            default:
1260
                break;
1261
            }
1262
            env->dmmuregs[reg] = T1;
1263
            if (oldreg != env->dmmuregs[reg]) {
1264
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1265
            }
1266
#ifdef DEBUG_MMU
1267
            dump_mmu(env);
1268
#endif
1269
            return;
1270
        }
1271
    case 0x5c: // D-MMU data in
1272
        {
1273
            unsigned int i;
1274

    
1275
            // Try finding an invalid entry
1276
            for (i = 0; i < 64; i++) {
1277
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1278
                    env->dtlb_tag[i] = env->dmmuregs[6];
1279
                    env->dtlb_tte[i] = T1;
1280
                    return;
1281
                }
1282
            }
1283
            // Try finding an unlocked entry
1284
            for (i = 0; i < 64; i++) {
1285
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1286
                    env->dtlb_tag[i] = env->dmmuregs[6];
1287
                    env->dtlb_tte[i] = T1;
1288
                    return;
1289
                }
1290
            }
1291
            // error state?
1292
            return;
1293
        }
1294
    case 0x5d: // D-MMU data access
1295
        {
1296
            unsigned int i = (T0 >> 3) & 0x3f;
1297

    
1298
            env->dtlb_tag[i] = env->dmmuregs[6];
1299
            env->dtlb_tte[i] = T1;
1300
            return;
1301
        }
1302
    case 0x5f: // D-MMU demap
1303
    case 0x49: // Interrupt data receive
1304
        // XXX
1305
        return;
1306
    case 0x51: // I-MMU 8k TSB pointer, RO
1307
    case 0x52: // I-MMU 64k TSB pointer, RO
1308
    case 0x56: // I-MMU tag read, RO
1309
    case 0x59: // D-MMU 8k TSB pointer, RO
1310
    case 0x5a: // D-MMU 64k TSB pointer, RO
1311
    case 0x5b: // D-MMU data pointer, RO
1312
    case 0x5e: // D-MMU tag read, RO
1313
    case 0x48: // Interrupt dispatch, RO
1314
    case 0x7f: // Incoming interrupt vector, RO
1315
    case 0x82: // Primary no-fault, RO
1316
    case 0x83: // Secondary no-fault, RO
1317
    case 0x8a: // Primary no-fault LE, RO
1318
    case 0x8b: // Secondary no-fault LE, RO
1319
    default:
1320
        do_unassigned_access(T0, 1, 0, 1);
1321
        return;
1322
    }
1323
}
1324
#endif /* CONFIG_USER_ONLY */
1325

    
1326
void helper_ldf_asi(int asi, int size, int rd)
1327
{
1328
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1329
    unsigned int i;
1330

    
1331
    switch (asi) {
1332
    case 0xf0: // Block load primary
1333
    case 0xf1: // Block load secondary
1334
    case 0xf8: // Block load primary LE
1335
    case 0xf9: // Block load secondary LE
1336
        if (rd & 7) {
1337
            raise_exception(TT_ILL_INSN);
1338
            return;
1339
        }
1340
        if (T0 & 0x3f) {
1341
            raise_exception(TT_UNALIGNED);
1342
            return;
1343
        }
1344
        for (i = 0; i < 16; i++) {
1345
            helper_ld_asi(asi & 0x8f, 4, 0);
1346
            *(uint32_t *)&env->fpr[rd++] = T1;
1347
            T0 += 4;
1348
        }
1349
        T0 = tmp_T0;
1350
        T1 = tmp_T1;
1351

    
1352
        return;
1353
    default:
1354
        break;
1355
    }
1356

    
1357
    helper_ld_asi(asi, size, 0);
1358
    switch(size) {
1359
    default:
1360
    case 4:
1361
        *((uint32_t *)&FT0) = T1;
1362
        break;
1363
    case 8:
1364
        *((int64_t *)&DT0) = T1;
1365
        break;
1366
    }
1367
    T1 = tmp_T1;
1368
}
1369

    
1370
void helper_stf_asi(int asi, int size, int rd)
1371
{
1372
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1373
    unsigned int i;
1374

    
1375
    switch (asi) {
1376
    case 0xf0: // Block store primary
1377
    case 0xf1: // Block store secondary
1378
    case 0xf8: // Block store primary LE
1379
    case 0xf9: // Block store secondary LE
1380
        if (rd & 7) {
1381
            raise_exception(TT_ILL_INSN);
1382
            return;
1383
        }
1384
        if (T0 & 0x3f) {
1385
            raise_exception(TT_UNALIGNED);
1386
            return;
1387
        }
1388
        for (i = 0; i < 16; i++) {
1389
            T1 = *(uint32_t *)&env->fpr[rd++];
1390
            helper_st_asi(asi & 0x8f, 4);
1391
            T0 += 4;
1392
        }
1393
        T0 = tmp_T0;
1394
        T1 = tmp_T1;
1395

    
1396
        return;
1397
    default:
1398
        break;
1399
    }
1400

    
1401
    switch(size) {
1402
    default:
1403
    case 4:
1404
        T1 = *((uint32_t *)&FT0);
1405
        break;
1406
    case 8:
1407
        T1 = *((int64_t *)&DT0);
1408
        break;
1409
    }
1410
    helper_st_asi(asi, size);
1411
    T1 = tmp_T1;
1412
}
1413

    
1414
#endif /* TARGET_SPARC64 */
1415

    
1416
#ifndef TARGET_SPARC64
1417
void helper_rett()
1418
{
1419
    unsigned int cwp;
1420

    
1421
    if (env->psret == 1)
1422
        raise_exception(TT_ILL_INSN);
1423

    
1424
    env->psret = 1;
1425
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1426
    if (env->wim & (1 << cwp)) {
1427
        raise_exception(TT_WIN_UNF);
1428
    }
1429
    set_cwp(cwp);
1430
    env->psrs = env->psrps;
1431
}
1432
#endif
1433

    
1434
void helper_ldfsr(void)
1435
{
1436
    int rnd_mode;
1437
    switch (env->fsr & FSR_RD_MASK) {
1438
    case FSR_RD_NEAREST:
1439
        rnd_mode = float_round_nearest_even;
1440
        break;
1441
    default:
1442
    case FSR_RD_ZERO:
1443
        rnd_mode = float_round_to_zero;
1444
        break;
1445
    case FSR_RD_POS:
1446
        rnd_mode = float_round_up;
1447
        break;
1448
    case FSR_RD_NEG:
1449
        rnd_mode = float_round_down;
1450
        break;
1451
    }
1452
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1453
}
1454

    
1455
void helper_debug()
1456
{
1457
    env->exception_index = EXCP_DEBUG;
1458
    cpu_loop_exit();
1459
}
1460

    
1461
#ifndef TARGET_SPARC64
1462
void do_wrpsr()
1463
{
1464
    if ((T0 & PSR_CWP) >= NWINDOWS)
1465
        raise_exception(TT_ILL_INSN);
1466
    else
1467
        PUT_PSR(env, T0);
1468
}
1469

    
1470
void do_rdpsr()
1471
{
1472
    T0 = GET_PSR(env);
1473
}
1474

    
1475
#else
1476

    
1477
void do_popc()
1478
{
1479
    T0 = ctpop64(T1);
1480
}
1481

    
1482
static inline uint64_t *get_gregset(uint64_t pstate)
1483
{
1484
    switch (pstate) {
1485
    default:
1486
    case 0:
1487
        return env->bgregs;
1488
    case PS_AG:
1489
        return env->agregs;
1490
    case PS_MG:
1491
        return env->mgregs;
1492
    case PS_IG:
1493
        return env->igregs;
1494
    }
1495
}
1496

    
1497
static inline void change_pstate(uint64_t new_pstate)
1498
{
1499
    uint64_t pstate_regs, new_pstate_regs;
1500
    uint64_t *src, *dst;
1501

    
1502
    pstate_regs = env->pstate & 0xc01;
1503
    new_pstate_regs = new_pstate & 0xc01;
1504
    if (new_pstate_regs != pstate_regs) {
1505
        // Switch global register bank
1506
        src = get_gregset(new_pstate_regs);
1507
        dst = get_gregset(pstate_regs);
1508
        memcpy32(dst, env->gregs);
1509
        memcpy32(env->gregs, src);
1510
    }
1511
    env->pstate = new_pstate;
1512
}
1513

    
1514
void do_wrpstate(void)
1515
{
1516
    change_pstate(T0 & 0xf3f);
1517
}
1518

    
1519
void do_done(void)
1520
{
1521
    env->tl--;
1522
    env->pc = env->tnpc[env->tl];
1523
    env->npc = env->tnpc[env->tl] + 4;
1524
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1525
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1526
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1527
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1528
}
1529

    
1530
void do_retry(void)
1531
{
1532
    env->tl--;
1533
    env->pc = env->tpc[env->tl];
1534
    env->npc = env->tnpc[env->tl];
1535
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1536
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1537
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1538
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1539
}
1540
#endif
1541

    
1542
void set_cwp(int new_cwp)
1543
{
1544
    /* put the modified wrap registers at their proper location */
1545
    if (env->cwp == (NWINDOWS - 1))
1546
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1547
    env->cwp = new_cwp;
1548
    /* put the wrap registers at their temporary location */
1549
    if (new_cwp == (NWINDOWS - 1))
1550
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1551
    env->regwptr = env->regbase + (new_cwp * 16);
1552
    REGWPTR = env->regwptr;
1553
}
1554

    
1555
void cpu_set_cwp(CPUState *env1, int new_cwp)
1556
{
1557
    CPUState *saved_env;
1558
#ifdef reg_REGWPTR
1559
    target_ulong *saved_regwptr;
1560
#endif
1561

    
1562
    saved_env = env;
1563
#ifdef reg_REGWPTR
1564
    saved_regwptr = REGWPTR;
1565
#endif
1566
    env = env1;
1567
    set_cwp(new_cwp);
1568
    env = saved_env;
1569
#ifdef reg_REGWPTR
1570
    REGWPTR = saved_regwptr;
1571
#endif
1572
}
1573

    
1574
#ifdef TARGET_SPARC64
1575
void do_interrupt(int intno)
1576
{
1577
#ifdef DEBUG_PCALL
1578
    if (loglevel & CPU_LOG_INT) {
1579
        static int count;
1580
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1581
                count, intno,
1582
                env->pc,
1583
                env->npc, env->regwptr[6]);
1584
        cpu_dump_state(env, logfile, fprintf, 0);
1585
#if 0
1586
        {
1587
            int i;
1588
            uint8_t *ptr;
1589

1590
            fprintf(logfile, "       code=");
1591
            ptr = (uint8_t *)env->pc;
1592
            for(i = 0; i < 16; i++) {
1593
                fprintf(logfile, " %02x", ldub(ptr + i));
1594
            }
1595
            fprintf(logfile, "\n");
1596
        }
1597
#endif
1598
        count++;
1599
    }
1600
#endif
1601
#if !defined(CONFIG_USER_ONLY)
1602
    if (env->tl == MAXTL) {
1603
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1604
        return;
1605
    }
1606
#endif
1607
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1608
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1609
    env->tpc[env->tl] = env->pc;
1610
    env->tnpc[env->tl] = env->npc;
1611
    env->tt[env->tl] = intno;
1612
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1613

    
1614
    if (intno == TT_CLRWIN)
1615
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1616
    else if ((intno & 0x1c0) == TT_SPILL)
1617
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1618
    else if ((intno & 0x1c0) == TT_FILL)
1619
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1620
    env->tbr &= ~0x7fffULL;
1621
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1622
    if (env->tl < MAXTL - 1) {
1623
        env->tl++;
1624
    } else {
1625
        env->pstate |= PS_RED;
1626
        if (env->tl != MAXTL)
1627
            env->tl++;
1628
    }
1629
    env->pc = env->tbr;
1630
    env->npc = env->pc + 4;
1631
    env->exception_index = 0;
1632
}
1633
#else
1634
void do_interrupt(int intno)
1635
{
1636
    int cwp;
1637

    
1638
#ifdef DEBUG_PCALL
1639
    if (loglevel & CPU_LOG_INT) {
1640
        static int count;
1641
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1642
                count, intno,
1643
                env->pc,
1644
                env->npc, env->regwptr[6]);
1645
        cpu_dump_state(env, logfile, fprintf, 0);
1646
#if 0
1647
        {
1648
            int i;
1649
            uint8_t *ptr;
1650

1651
            fprintf(logfile, "       code=");
1652
            ptr = (uint8_t *)env->pc;
1653
            for(i = 0; i < 16; i++) {
1654
                fprintf(logfile, " %02x", ldub(ptr + i));
1655
            }
1656
            fprintf(logfile, "\n");
1657
        }
1658
#endif
1659
        count++;
1660
    }
1661
#endif
1662
#if !defined(CONFIG_USER_ONLY)
1663
    if (env->psret == 0) {
1664
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1665
        return;
1666
    }
1667
#endif
1668
    env->psret = 0;
1669
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1670
    set_cwp(cwp);
1671
    env->regwptr[9] = env->pc;
1672
    env->regwptr[10] = env->npc;
1673
    env->psrps = env->psrs;
1674
    env->psrs = 1;
1675
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1676
    env->pc = env->tbr;
1677
    env->npc = env->pc + 4;
1678
    env->exception_index = 0;
1679
}
1680
#endif
1681

    
1682
#if !defined(CONFIG_USER_ONLY)
1683

    
1684
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1685
                                void *retaddr);
1686

    
1687
#define MMUSUFFIX _mmu
1688
#define ALIGNED_ONLY
1689
#ifdef __s390__
1690
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
1691
#else
1692
# define GETPC() (__builtin_return_address(0))
1693
#endif
1694

    
1695
#define SHIFT 0
1696
#include "softmmu_template.h"
1697

    
1698
#define SHIFT 1
1699
#include "softmmu_template.h"
1700

    
1701
#define SHIFT 2
1702
#include "softmmu_template.h"
1703

    
1704
#define SHIFT 3
1705
#include "softmmu_template.h"
1706

    
1707
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1708
                                void *retaddr)
1709
{
1710
#ifdef DEBUG_UNALIGNED
1711
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1712
#endif
1713
    raise_exception(TT_UNALIGNED);
1714
}
1715

    
1716
/* try to fill the TLB and return an exception if error. If retaddr is
1717
   NULL, it means that the function was called in C code (i.e. not
1718
   from generated code or from helper.c) */
1719
/* XXX: fix it to restore all registers */
1720
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1721
{
1722
    TranslationBlock *tb;
1723
    int ret;
1724
    unsigned long pc;
1725
    CPUState *saved_env;
1726

    
1727
    /* XXX: hack to restore env in all cases, even if not called from
1728
       generated code */
1729
    saved_env = env;
1730
    env = cpu_single_env;
1731

    
1732
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1733
    if (ret) {
1734
        if (retaddr) {
1735
            /* now we have a real cpu fault */
1736
            pc = (unsigned long)retaddr;
1737
            tb = tb_find_pc(pc);
1738
            if (tb) {
1739
                /* the PC is inside the translated code. It means that we have
1740
                   a virtual CPU fault */
1741
                cpu_restore_state(tb, env, pc, (void *)T2);
1742
            }
1743
        }
1744
        cpu_loop_exit();
1745
    }
1746
    env = saved_env;
1747
}
1748

    
1749
#endif
1750

    
1751
#ifndef TARGET_SPARC64
1752
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1753
                          int is_asi)
1754
{
1755
    CPUState *saved_env;
1756

    
1757
    /* XXX: hack to restore env in all cases, even if not called from
1758
       generated code */
1759
    saved_env = env;
1760
    env = cpu_single_env;
1761
    if (env->mmuregs[3]) /* Fault status register */
1762
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1763
    if (is_asi)
1764
        env->mmuregs[3] |= 1 << 16;
1765
    if (env->psrs)
1766
        env->mmuregs[3] |= 1 << 5;
1767
    if (is_exec)
1768
        env->mmuregs[3] |= 1 << 6;
1769
    if (is_write)
1770
        env->mmuregs[3] |= 1 << 7;
1771
    env->mmuregs[3] |= (5 << 2) | 2;
1772
    env->mmuregs[4] = addr; /* Fault address register */
1773
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1774
#ifdef DEBUG_UNASSIGNED
1775
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1776
               "\n", addr, env->pc);
1777
#endif
1778
        if (is_exec)
1779
            raise_exception(TT_CODE_ACCESS);
1780
        else
1781
            raise_exception(TT_DATA_ACCESS);
1782
    }
1783
    env = saved_env;
1784
}
1785
#else
1786
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1787
                          int is_asi)
1788
{
1789
#ifdef DEBUG_UNASSIGNED
1790
    CPUState *saved_env;
1791

    
1792
    /* XXX: hack to restore env in all cases, even if not called from
1793
       generated code */
1794
    saved_env = env;
1795
    env = cpu_single_env;
1796
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1797
           addr, env->pc);
1798
    env = saved_env;
1799
#endif
1800
    if (is_exec)
1801
        raise_exception(TT_CODE_ACCESS);
1802
    else
1803
        raise_exception(TT_DATA_ACCESS);
1804
}
1805
#endif
1806

    
1807
#ifdef TARGET_SPARC64
1808
void do_tick_set_count(void *opaque, uint64_t count)
1809
{
1810
#if !defined(CONFIG_USER_ONLY)
1811
    ptimer_set_count(opaque, -count);
1812
#endif
1813
}
1814

    
1815
uint64_t do_tick_get_count(void *opaque)
1816
{
1817
#if !defined(CONFIG_USER_ONLY)
1818
    return -ptimer_get_count(opaque);
1819
#else
1820
    return 0;
1821
#endif
1822
}
1823

    
1824
void do_tick_set_limit(void *opaque, uint64_t limit)
1825
{
1826
#if !defined(CONFIG_USER_ONLY)
1827
    ptimer_set_limit(opaque, -limit, 0);
1828
#endif
1829
}
1830
#endif