Statistics
| Branch: | Revision:

root / vl.c @ bc24a225

History | View | Annotate | Download (154.1 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <unistd.h>
25
#include <fcntl.h>
26
#include <signal.h>
27
#include <time.h>
28
#include <errno.h>
29
#include <sys/time.h>
30
#include <zlib.h>
31

    
32
/* Needed early for HOST_BSD etc. */
33
#include "config-host.h"
34

    
35
#ifndef _WIN32
36
#include <pwd.h>
37
#include <sys/times.h>
38
#include <sys/wait.h>
39
#include <termios.h>
40
#include <sys/mman.h>
41
#include <sys/ioctl.h>
42
#include <sys/resource.h>
43
#include <sys/socket.h>
44
#include <netinet/in.h>
45
#include <net/if.h>
46
#if defined(__NetBSD__)
47
#include <net/if_tap.h>
48
#endif
49
#ifdef __linux__
50
#include <linux/if_tun.h>
51
#endif
52
#include <arpa/inet.h>
53
#include <dirent.h>
54
#include <netdb.h>
55
#include <sys/select.h>
56
#ifdef HOST_BSD
57
#include <sys/stat.h>
58
#if defined(__FreeBSD__) || defined(__DragonFly__)
59
#include <libutil.h>
60
#else
61
#include <util.h>
62
#endif
63
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
64
#include <freebsd/stdlib.h>
65
#else
66
#ifdef __linux__
67
#include <pty.h>
68
#include <malloc.h>
69
#include <linux/rtc.h>
70

    
71
/* For the benefit of older linux systems which don't supply it,
72
   we use a local copy of hpet.h. */
73
/* #include <linux/hpet.h> */
74
#include "hpet.h"
75

    
76
#include <linux/ppdev.h>
77
#include <linux/parport.h>
78
#endif
79
#ifdef __sun__
80
#include <sys/stat.h>
81
#include <sys/ethernet.h>
82
#include <sys/sockio.h>
83
#include <netinet/arp.h>
84
#include <netinet/in.h>
85
#include <netinet/in_systm.h>
86
#include <netinet/ip.h>
87
#include <netinet/ip_icmp.h> // must come after ip.h
88
#include <netinet/udp.h>
89
#include <netinet/tcp.h>
90
#include <net/if.h>
91
#include <syslog.h>
92
#include <stropts.h>
93
#endif
94
#endif
95
#endif
96

    
97
#if defined(__OpenBSD__)
98
#include <util.h>
99
#endif
100

    
101
#if defined(CONFIG_VDE)
102
#include <libvdeplug.h>
103
#endif
104

    
105
#ifdef _WIN32
106
#include <windows.h>
107
#include <malloc.h>
108
#include <sys/timeb.h>
109
#include <mmsystem.h>
110
#define getopt_long_only getopt_long
111
#define memalign(align, size) malloc(size)
112
#endif
113

    
114
#ifdef CONFIG_SDL
115
#ifdef __APPLE__
116
#include <SDL/SDL.h>
117
int qemu_main(int argc, char **argv, char **envp);
118
int main(int argc, char **argv)
119
{
120
    qemu_main(argc, argv, NULL);
121
}
122
#undef main
123
#define main qemu_main
124
#endif
125
#endif /* CONFIG_SDL */
126

    
127
#ifdef CONFIG_COCOA
128
#undef main
129
#define main qemu_main
130
#endif /* CONFIG_COCOA */
131

    
132
#include "hw/hw.h"
133
#include "hw/boards.h"
134
#include "hw/usb.h"
135
#include "hw/pcmcia.h"
136
#include "hw/pc.h"
137
#include "hw/audiodev.h"
138
#include "hw/isa.h"
139
#include "hw/baum.h"
140
#include "hw/bt.h"
141
#include "hw/watchdog.h"
142
#include "hw/smbios.h"
143
#include "hw/xen.h"
144
#include "bt-host.h"
145
#include "net.h"
146
#include "monitor.h"
147
#include "console.h"
148
#include "sysemu.h"
149
#include "gdbstub.h"
150
#include "qemu-timer.h"
151
#include "qemu-char.h"
152
#include "cache-utils.h"
153
#include "block.h"
154
#include "dma.h"
155
#include "audio/audio.h"
156
#include "migration.h"
157
#include "kvm.h"
158
#include "balloon.h"
159

    
160
#include "disas.h"
161

    
162
#include "exec-all.h"
163

    
164
#include "qemu_socket.h"
165

    
166
#if defined(CONFIG_SLIRP)
167
#include "libslirp.h"
168
#endif
169

    
170
//#define DEBUG_UNUSED_IOPORT
171
//#define DEBUG_IOPORT
172
//#define DEBUG_NET
173
//#define DEBUG_SLIRP
174

    
175

    
176
#ifdef DEBUG_IOPORT
177
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178
#else
179
#  define LOG_IOPORT(...) do { } while (0)
180
#endif
181

    
182
#define DEFAULT_RAM_SIZE 128
183

    
184
/* Max number of USB devices that can be specified on the commandline.  */
185
#define MAX_USB_CMDLINE 8
186

    
187
/* Max number of bluetooth switches on the commandline.  */
188
#define MAX_BT_CMDLINE 10
189

    
190
/* XXX: use a two level table to limit memory usage */
191
#define MAX_IOPORTS 65536
192

    
193
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
194
const char *bios_name = NULL;
195
static void *ioport_opaque[MAX_IOPORTS];
196
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199
   to store the VM snapshots */
200
DriveInfo drives_table[MAX_DRIVES+1];
201
int nb_drives;
202
static int vga_ram_size;
203
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
204
static DisplayState *display_state;
205
int nographic;
206
static int curses;
207
static int sdl;
208
const char* keyboard_layout = NULL;
209
int64_t ticks_per_sec;
210
ram_addr_t ram_size;
211
int nb_nics;
212
NICInfo nd_table[MAX_NICS];
213
int vm_running;
214
static int autostart;
215
static int rtc_utc = 1;
216
static int rtc_date_offset = -1; /* -1 means no change */
217
int cirrus_vga_enabled = 1;
218
int std_vga_enabled = 0;
219
int vmsvga_enabled = 0;
220
int xenfb_enabled = 0;
221
#ifdef TARGET_SPARC
222
int graphic_width = 1024;
223
int graphic_height = 768;
224
int graphic_depth = 8;
225
#else
226
int graphic_width = 800;
227
int graphic_height = 600;
228
int graphic_depth = 15;
229
#endif
230
static int full_screen = 0;
231
#ifdef CONFIG_SDL
232
static int no_frame = 0;
233
#endif
234
int no_quit = 0;
235
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
236
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
237
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
238
#ifdef TARGET_I386
239
int win2k_install_hack = 0;
240
int rtc_td_hack = 0;
241
#endif
242
int usb_enabled = 0;
243
int singlestep = 0;
244
int smp_cpus = 1;
245
const char *vnc_display;
246
int acpi_enabled = 1;
247
int no_hpet = 0;
248
int fd_bootchk = 1;
249
int no_reboot = 0;
250
int no_shutdown = 0;
251
int cursor_hide = 1;
252
int graphic_rotate = 0;
253
#ifndef _WIN32
254
int daemonize = 0;
255
#endif
256
WatchdogTimerModel *watchdog = NULL;
257
int watchdog_action = WDT_RESET;
258
const char *option_rom[MAX_OPTION_ROMS];
259
int nb_option_roms;
260
int semihosting_enabled = 0;
261
#ifdef TARGET_ARM
262
int old_param = 0;
263
#endif
264
const char *qemu_name;
265
int alt_grab = 0;
266
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
267
unsigned int nb_prom_envs = 0;
268
const char *prom_envs[MAX_PROM_ENVS];
269
#endif
270
int nb_drives_opt;
271
struct drive_opt drives_opt[MAX_DRIVES];
272

    
273
int nb_numa_nodes;
274
uint64_t node_mem[MAX_NODES];
275
uint64_t node_cpumask[MAX_NODES];
276

    
277
static CPUState *cur_cpu;
278
static CPUState *next_cpu;
279
static int timer_alarm_pending = 1;
280
/* Conversion factor from emulated instructions to virtual clock ticks.  */
281
static int icount_time_shift;
282
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
283
#define MAX_ICOUNT_SHIFT 10
284
/* Compensate for varying guest execution speed.  */
285
static int64_t qemu_icount_bias;
286
static QEMUTimer *icount_rt_timer;
287
static QEMUTimer *icount_vm_timer;
288
static QEMUTimer *nographic_timer;
289

    
290
uint8_t qemu_uuid[16];
291

    
292
/***********************************************************/
293
/* x86 ISA bus support */
294

    
295
target_phys_addr_t isa_mem_base = 0;
296
PicState2 *isa_pic;
297

    
298
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
299
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300

    
301
static uint32_t ioport_read(int index, uint32_t address)
302
{
303
    static IOPortReadFunc *default_func[3] = {
304
        default_ioport_readb,
305
        default_ioport_readw,
306
        default_ioport_readl
307
    };
308
    IOPortReadFunc *func = ioport_read_table[index][address];
309
    if (!func)
310
        func = default_func[index];
311
    return func(ioport_opaque[address], address);
312
}
313

    
314
static void ioport_write(int index, uint32_t address, uint32_t data)
315
{
316
    static IOPortWriteFunc *default_func[3] = {
317
        default_ioport_writeb,
318
        default_ioport_writew,
319
        default_ioport_writel
320
    };
321
    IOPortWriteFunc *func = ioport_write_table[index][address];
322
    if (!func)
323
        func = default_func[index];
324
    func(ioport_opaque[address], address, data);
325
}
326

    
327
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328
{
329
#ifdef DEBUG_UNUSED_IOPORT
330
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
331
#endif
332
    return 0xff;
333
}
334

    
335
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336
{
337
#ifdef DEBUG_UNUSED_IOPORT
338
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
339
#endif
340
}
341

    
342
/* default is to make two byte accesses */
343
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
344
{
345
    uint32_t data;
346
    data = ioport_read(0, address);
347
    address = (address + 1) & (MAX_IOPORTS - 1);
348
    data |= ioport_read(0, address) << 8;
349
    return data;
350
}
351

    
352
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353
{
354
    ioport_write(0, address, data & 0xff);
355
    address = (address + 1) & (MAX_IOPORTS - 1);
356
    ioport_write(0, address, (data >> 8) & 0xff);
357
}
358

    
359
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360
{
361
#ifdef DEBUG_UNUSED_IOPORT
362
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
363
#endif
364
    return 0xffffffff;
365
}
366

    
367
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368
{
369
#ifdef DEBUG_UNUSED_IOPORT
370
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
371
#endif
372
}
373

    
374
/* size is the word size in byte */
375
int register_ioport_read(int start, int length, int size,
376
                         IOPortReadFunc *func, void *opaque)
377
{
378
    int i, bsize;
379

    
380
    if (size == 1) {
381
        bsize = 0;
382
    } else if (size == 2) {
383
        bsize = 1;
384
    } else if (size == 4) {
385
        bsize = 2;
386
    } else {
387
        hw_error("register_ioport_read: invalid size");
388
        return -1;
389
    }
390
    for(i = start; i < start + length; i += size) {
391
        ioport_read_table[bsize][i] = func;
392
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
393
            hw_error("register_ioport_read: invalid opaque");
394
        ioport_opaque[i] = opaque;
395
    }
396
    return 0;
397
}
398

    
399
/* size is the word size in byte */
400
int register_ioport_write(int start, int length, int size,
401
                          IOPortWriteFunc *func, void *opaque)
402
{
403
    int i, bsize;
404

    
405
    if (size == 1) {
406
        bsize = 0;
407
    } else if (size == 2) {
408
        bsize = 1;
409
    } else if (size == 4) {
410
        bsize = 2;
411
    } else {
412
        hw_error("register_ioport_write: invalid size");
413
        return -1;
414
    }
415
    for(i = start; i < start + length; i += size) {
416
        ioport_write_table[bsize][i] = func;
417
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
418
            hw_error("register_ioport_write: invalid opaque");
419
        ioport_opaque[i] = opaque;
420
    }
421
    return 0;
422
}
423

    
424
void isa_unassign_ioport(int start, int length)
425
{
426
    int i;
427

    
428
    for(i = start; i < start + length; i++) {
429
        ioport_read_table[0][i] = default_ioport_readb;
430
        ioport_read_table[1][i] = default_ioport_readw;
431
        ioport_read_table[2][i] = default_ioport_readl;
432

    
433
        ioport_write_table[0][i] = default_ioport_writeb;
434
        ioport_write_table[1][i] = default_ioport_writew;
435
        ioport_write_table[2][i] = default_ioport_writel;
436

    
437
        ioport_opaque[i] = NULL;
438
    }
439
}
440

    
441
/***********************************************************/
442

    
443
void cpu_outb(CPUState *env, int addr, int val)
444
{
445
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
446
    ioport_write(0, addr, val);
447
#ifdef CONFIG_KQEMU
448
    if (env)
449
        env->last_io_time = cpu_get_time_fast();
450
#endif
451
}
452

    
453
void cpu_outw(CPUState *env, int addr, int val)
454
{
455
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
456
    ioport_write(1, addr, val);
457
#ifdef CONFIG_KQEMU
458
    if (env)
459
        env->last_io_time = cpu_get_time_fast();
460
#endif
461
}
462

    
463
void cpu_outl(CPUState *env, int addr, int val)
464
{
465
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
466
    ioport_write(2, addr, val);
467
#ifdef CONFIG_KQEMU
468
    if (env)
469
        env->last_io_time = cpu_get_time_fast();
470
#endif
471
}
472

    
473
int cpu_inb(CPUState *env, int addr)
474
{
475
    int val;
476
    val = ioport_read(0, addr);
477
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
478
#ifdef CONFIG_KQEMU
479
    if (env)
480
        env->last_io_time = cpu_get_time_fast();
481
#endif
482
    return val;
483
}
484

    
485
int cpu_inw(CPUState *env, int addr)
486
{
487
    int val;
488
    val = ioport_read(1, addr);
489
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
490
#ifdef CONFIG_KQEMU
491
    if (env)
492
        env->last_io_time = cpu_get_time_fast();
493
#endif
494
    return val;
495
}
496

    
497
int cpu_inl(CPUState *env, int addr)
498
{
499
    int val;
500
    val = ioport_read(2, addr);
501
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
502
#ifdef CONFIG_KQEMU
503
    if (env)
504
        env->last_io_time = cpu_get_time_fast();
505
#endif
506
    return val;
507
}
508

    
509
/***********************************************************/
510
void hw_error(const char *fmt, ...)
511
{
512
    va_list ap;
513
    CPUState *env;
514

    
515
    va_start(ap, fmt);
516
    fprintf(stderr, "qemu: hardware error: ");
517
    vfprintf(stderr, fmt, ap);
518
    fprintf(stderr, "\n");
519
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
520
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
521
#ifdef TARGET_I386
522
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
523
#else
524
        cpu_dump_state(env, stderr, fprintf, 0);
525
#endif
526
    }
527
    va_end(ap);
528
    abort();
529
}
530
 
531
/***************/
532
/* ballooning */
533

    
534
static QEMUBalloonEvent *qemu_balloon_event;
535
void *qemu_balloon_event_opaque;
536

    
537
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538
{
539
    qemu_balloon_event = func;
540
    qemu_balloon_event_opaque = opaque;
541
}
542

    
543
void qemu_balloon(ram_addr_t target)
544
{
545
    if (qemu_balloon_event)
546
        qemu_balloon_event(qemu_balloon_event_opaque, target);
547
}
548

    
549
ram_addr_t qemu_balloon_status(void)
550
{
551
    if (qemu_balloon_event)
552
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
553
    return 0;
554
}
555

    
556
/***********************************************************/
557
/* keyboard/mouse */
558

    
559
static QEMUPutKBDEvent *qemu_put_kbd_event;
560
static void *qemu_put_kbd_event_opaque;
561
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
562
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563

    
564
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565
{
566
    qemu_put_kbd_event_opaque = opaque;
567
    qemu_put_kbd_event = func;
568
}
569

    
570
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
571
                                                void *opaque, int absolute,
572
                                                const char *name)
573
{
574
    QEMUPutMouseEntry *s, *cursor;
575

    
576
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577

    
578
    s->qemu_put_mouse_event = func;
579
    s->qemu_put_mouse_event_opaque = opaque;
580
    s->qemu_put_mouse_event_absolute = absolute;
581
    s->qemu_put_mouse_event_name = qemu_strdup(name);
582
    s->next = NULL;
583

    
584
    if (!qemu_put_mouse_event_head) {
585
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
586
        return s;
587
    }
588

    
589
    cursor = qemu_put_mouse_event_head;
590
    while (cursor->next != NULL)
591
        cursor = cursor->next;
592

    
593
    cursor->next = s;
594
    qemu_put_mouse_event_current = s;
595

    
596
    return s;
597
}
598

    
599
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600
{
601
    QEMUPutMouseEntry *prev = NULL, *cursor;
602

    
603
    if (!qemu_put_mouse_event_head || entry == NULL)
604
        return;
605

    
606
    cursor = qemu_put_mouse_event_head;
607
    while (cursor != NULL && cursor != entry) {
608
        prev = cursor;
609
        cursor = cursor->next;
610
    }
611

    
612
    if (cursor == NULL) // does not exist or list empty
613
        return;
614
    else if (prev == NULL) { // entry is head
615
        qemu_put_mouse_event_head = cursor->next;
616
        if (qemu_put_mouse_event_current == entry)
617
            qemu_put_mouse_event_current = cursor->next;
618
        qemu_free(entry->qemu_put_mouse_event_name);
619
        qemu_free(entry);
620
        return;
621
    }
622

    
623
    prev->next = entry->next;
624

    
625
    if (qemu_put_mouse_event_current == entry)
626
        qemu_put_mouse_event_current = prev;
627

    
628
    qemu_free(entry->qemu_put_mouse_event_name);
629
    qemu_free(entry);
630
}
631

    
632
void kbd_put_keycode(int keycode)
633
{
634
    if (qemu_put_kbd_event) {
635
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
636
    }
637
}
638

    
639
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640
{
641
    QEMUPutMouseEvent *mouse_event;
642
    void *mouse_event_opaque;
643
    int width;
644

    
645
    if (!qemu_put_mouse_event_current) {
646
        return;
647
    }
648

    
649
    mouse_event =
650
        qemu_put_mouse_event_current->qemu_put_mouse_event;
651
    mouse_event_opaque =
652
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
653

    
654
    if (mouse_event) {
655
        if (graphic_rotate) {
656
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
657
                width = 0x7fff;
658
            else
659
                width = graphic_width - 1;
660
            mouse_event(mouse_event_opaque,
661
                                 width - dy, dx, dz, buttons_state);
662
        } else
663
            mouse_event(mouse_event_opaque,
664
                                 dx, dy, dz, buttons_state);
665
    }
666
}
667

    
668
int kbd_mouse_is_absolute(void)
669
{
670
    if (!qemu_put_mouse_event_current)
671
        return 0;
672

    
673
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
674
}
675

    
676
void do_info_mice(Monitor *mon)
677
{
678
    QEMUPutMouseEntry *cursor;
679
    int index = 0;
680

    
681
    if (!qemu_put_mouse_event_head) {
682
        monitor_printf(mon, "No mouse devices connected\n");
683
        return;
684
    }
685

    
686
    monitor_printf(mon, "Mouse devices available:\n");
687
    cursor = qemu_put_mouse_event_head;
688
    while (cursor != NULL) {
689
        monitor_printf(mon, "%c Mouse #%d: %s\n",
690
                       (cursor == qemu_put_mouse_event_current ? '*' : ' '),
691
                       index, cursor->qemu_put_mouse_event_name);
692
        index++;
693
        cursor = cursor->next;
694
    }
695
}
696

    
697
void do_mouse_set(Monitor *mon, int index)
698
{
699
    QEMUPutMouseEntry *cursor;
700
    int i = 0;
701

    
702
    if (!qemu_put_mouse_event_head) {
703
        monitor_printf(mon, "No mouse devices connected\n");
704
        return;
705
    }
706

    
707
    cursor = qemu_put_mouse_event_head;
708
    while (cursor != NULL && index != i) {
709
        i++;
710
        cursor = cursor->next;
711
    }
712

    
713
    if (cursor != NULL)
714
        qemu_put_mouse_event_current = cursor;
715
    else
716
        monitor_printf(mon, "Mouse at given index not found\n");
717
}
718

    
719
/* compute with 96 bit intermediate result: (a*b)/c */
720
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
721
{
722
    union {
723
        uint64_t ll;
724
        struct {
725
#ifdef WORDS_BIGENDIAN
726
            uint32_t high, low;
727
#else
728
            uint32_t low, high;
729
#endif
730
        } l;
731
    } u, res;
732
    uint64_t rl, rh;
733

    
734
    u.ll = a;
735
    rl = (uint64_t)u.l.low * (uint64_t)b;
736
    rh = (uint64_t)u.l.high * (uint64_t)b;
737
    rh += (rl >> 32);
738
    res.l.high = rh / c;
739
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
740
    return res.ll;
741
}
742

    
743
/***********************************************************/
744
/* real time host monotonic timer */
745

    
746
#define QEMU_TIMER_BASE 1000000000LL
747

    
748
#ifdef WIN32
749

    
750
static int64_t clock_freq;
751

    
752
static void init_get_clock(void)
753
{
754
    LARGE_INTEGER freq;
755
    int ret;
756
    ret = QueryPerformanceFrequency(&freq);
757
    if (ret == 0) {
758
        fprintf(stderr, "Could not calibrate ticks\n");
759
        exit(1);
760
    }
761
    clock_freq = freq.QuadPart;
762
}
763

    
764
static int64_t get_clock(void)
765
{
766
    LARGE_INTEGER ti;
767
    QueryPerformanceCounter(&ti);
768
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
769
}
770

    
771
#else
772

    
773
static int use_rt_clock;
774

    
775
static void init_get_clock(void)
776
{
777
    use_rt_clock = 0;
778
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
779
    || defined(__DragonFly__)
780
    {
781
        struct timespec ts;
782
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
783
            use_rt_clock = 1;
784
        }
785
    }
786
#endif
787
}
788

    
789
static int64_t get_clock(void)
790
{
791
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
792
        || defined(__DragonFly__)
793
    if (use_rt_clock) {
794
        struct timespec ts;
795
        clock_gettime(CLOCK_MONOTONIC, &ts);
796
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
797
    } else
798
#endif
799
    {
800
        /* XXX: using gettimeofday leads to problems if the date
801
           changes, so it should be avoided. */
802
        struct timeval tv;
803
        gettimeofday(&tv, NULL);
804
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
805
    }
806
}
807
#endif
808

    
809
/* Return the virtual CPU time, based on the instruction counter.  */
810
static int64_t cpu_get_icount(void)
811
{
812
    int64_t icount;
813
    CPUState *env = cpu_single_env;;
814
    icount = qemu_icount;
815
    if (env) {
816
        if (!can_do_io(env))
817
            fprintf(stderr, "Bad clock read\n");
818
        icount -= (env->icount_decr.u16.low + env->icount_extra);
819
    }
820
    return qemu_icount_bias + (icount << icount_time_shift);
821
}
822

    
823
/***********************************************************/
824
/* guest cycle counter */
825

    
826
static int64_t cpu_ticks_prev;
827
static int64_t cpu_ticks_offset;
828
static int64_t cpu_clock_offset;
829
static int cpu_ticks_enabled;
830

    
831
/* return the host CPU cycle counter and handle stop/restart */
832
int64_t cpu_get_ticks(void)
833
{
834
    if (use_icount) {
835
        return cpu_get_icount();
836
    }
837
    if (!cpu_ticks_enabled) {
838
        return cpu_ticks_offset;
839
    } else {
840
        int64_t ticks;
841
        ticks = cpu_get_real_ticks();
842
        if (cpu_ticks_prev > ticks) {
843
            /* Note: non increasing ticks may happen if the host uses
844
               software suspend */
845
            cpu_ticks_offset += cpu_ticks_prev - ticks;
846
        }
847
        cpu_ticks_prev = ticks;
848
        return ticks + cpu_ticks_offset;
849
    }
850
}
851

    
852
/* return the host CPU monotonic timer and handle stop/restart */
853
static int64_t cpu_get_clock(void)
854
{
855
    int64_t ti;
856
    if (!cpu_ticks_enabled) {
857
        return cpu_clock_offset;
858
    } else {
859
        ti = get_clock();
860
        return ti + cpu_clock_offset;
861
    }
862
}
863

    
864
/* enable cpu_get_ticks() */
865
void cpu_enable_ticks(void)
866
{
867
    if (!cpu_ticks_enabled) {
868
        cpu_ticks_offset -= cpu_get_real_ticks();
869
        cpu_clock_offset -= get_clock();
870
        cpu_ticks_enabled = 1;
871
    }
872
}
873

    
874
/* disable cpu_get_ticks() : the clock is stopped. You must not call
875
   cpu_get_ticks() after that.  */
876
void cpu_disable_ticks(void)
877
{
878
    if (cpu_ticks_enabled) {
879
        cpu_ticks_offset = cpu_get_ticks();
880
        cpu_clock_offset = cpu_get_clock();
881
        cpu_ticks_enabled = 0;
882
    }
883
}
884

    
885
/***********************************************************/
886
/* timers */
887

    
888
#define QEMU_TIMER_REALTIME 0
889
#define QEMU_TIMER_VIRTUAL  1
890

    
891
struct QEMUClock {
892
    int type;
893
    /* XXX: add frequency */
894
};
895

    
896
struct QEMUTimer {
897
    QEMUClock *clock;
898
    int64_t expire_time;
899
    QEMUTimerCB *cb;
900
    void *opaque;
901
    struct QEMUTimer *next;
902
};
903

    
904
struct qemu_alarm_timer {
905
    char const *name;
906
    unsigned int flags;
907

    
908
    int (*start)(struct qemu_alarm_timer *t);
909
    void (*stop)(struct qemu_alarm_timer *t);
910
    void (*rearm)(struct qemu_alarm_timer *t);
911
    void *priv;
912
};
913

    
914
#define ALARM_FLAG_DYNTICKS  0x1
915
#define ALARM_FLAG_EXPIRED   0x2
916

    
917
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918
{
919
    return t->flags & ALARM_FLAG_DYNTICKS;
920
}
921

    
922
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923
{
924
    if (!alarm_has_dynticks(t))
925
        return;
926

    
927
    t->rearm(t);
928
}
929

    
930
/* TODO: MIN_TIMER_REARM_US should be optimized */
931
#define MIN_TIMER_REARM_US 250
932

    
933
static struct qemu_alarm_timer *alarm_timer;
934

    
935
#ifdef _WIN32
936

    
937
struct qemu_alarm_win32 {
938
    MMRESULT timerId;
939
    unsigned int period;
940
} alarm_win32_data = {0, -1};
941

    
942
static int win32_start_timer(struct qemu_alarm_timer *t);
943
static void win32_stop_timer(struct qemu_alarm_timer *t);
944
static void win32_rearm_timer(struct qemu_alarm_timer *t);
945

    
946
#else
947

    
948
static int unix_start_timer(struct qemu_alarm_timer *t);
949
static void unix_stop_timer(struct qemu_alarm_timer *t);
950

    
951
#ifdef __linux__
952

    
953
static int dynticks_start_timer(struct qemu_alarm_timer *t);
954
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
955
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956

    
957
static int hpet_start_timer(struct qemu_alarm_timer *t);
958
static void hpet_stop_timer(struct qemu_alarm_timer *t);
959

    
960
static int rtc_start_timer(struct qemu_alarm_timer *t);
961
static void rtc_stop_timer(struct qemu_alarm_timer *t);
962

    
963
#endif /* __linux__ */
964

    
965
#endif /* _WIN32 */
966

    
967
/* Correlation between real and virtual time is always going to be
968
   fairly approximate, so ignore small variation.
969
   When the guest is idle real and virtual time will be aligned in
970
   the IO wait loop.  */
971
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972

    
973
static void icount_adjust(void)
974
{
975
    int64_t cur_time;
976
    int64_t cur_icount;
977
    int64_t delta;
978
    static int64_t last_delta;
979
    /* If the VM is not running, then do nothing.  */
980
    if (!vm_running)
981
        return;
982

    
983
    cur_time = cpu_get_clock();
984
    cur_icount = qemu_get_clock(vm_clock);
985
    delta = cur_icount - cur_time;
986
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
987
    if (delta > 0
988
        && last_delta + ICOUNT_WOBBLE < delta * 2
989
        && icount_time_shift > 0) {
990
        /* The guest is getting too far ahead.  Slow time down.  */
991
        icount_time_shift--;
992
    }
993
    if (delta < 0
994
        && last_delta - ICOUNT_WOBBLE > delta * 2
995
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
996
        /* The guest is getting too far behind.  Speed time up.  */
997
        icount_time_shift++;
998
    }
999
    last_delta = delta;
1000
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1001
}
1002

    
1003
static void icount_adjust_rt(void * opaque)
1004
{
1005
    qemu_mod_timer(icount_rt_timer,
1006
                   qemu_get_clock(rt_clock) + 1000);
1007
    icount_adjust();
1008
}
1009

    
1010
static void icount_adjust_vm(void * opaque)
1011
{
1012
    qemu_mod_timer(icount_vm_timer,
1013
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1014
    icount_adjust();
1015
}
1016

    
1017
static void init_icount_adjust(void)
1018
{
1019
    /* Have both realtime and virtual time triggers for speed adjustment.
1020
       The realtime trigger catches emulated time passing too slowly,
1021
       the virtual time trigger catches emulated time passing too fast.
1022
       Realtime triggers occur even when idle, so use them less frequently
1023
       than VM triggers.  */
1024
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1025
    qemu_mod_timer(icount_rt_timer,
1026
                   qemu_get_clock(rt_clock) + 1000);
1027
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1028
    qemu_mod_timer(icount_vm_timer,
1029
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1030
}
1031

    
1032
static struct qemu_alarm_timer alarm_timers[] = {
1033
#ifndef _WIN32
1034
#ifdef __linux__
1035
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1036
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1037
    /* HPET - if available - is preferred */
1038
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1039
    /* ...otherwise try RTC */
1040
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1041
#endif
1042
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1043
#else
1044
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1045
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1046
    {"win32", 0, win32_start_timer,
1047
     win32_stop_timer, NULL, &alarm_win32_data},
1048
#endif
1049
    {NULL, }
1050
};
1051

    
1052
static void show_available_alarms(void)
1053
{
1054
    int i;
1055

    
1056
    printf("Available alarm timers, in order of precedence:\n");
1057
    for (i = 0; alarm_timers[i].name; i++)
1058
        printf("%s\n", alarm_timers[i].name);
1059
}
1060

    
1061
static void configure_alarms(char const *opt)
1062
{
1063
    int i;
1064
    int cur = 0;
1065
    int count = ARRAY_SIZE(alarm_timers) - 1;
1066
    char *arg;
1067
    char *name;
1068
    struct qemu_alarm_timer tmp;
1069

    
1070
    if (!strcmp(opt, "?")) {
1071
        show_available_alarms();
1072
        exit(0);
1073
    }
1074

    
1075
    arg = strdup(opt);
1076

    
1077
    /* Reorder the array */
1078
    name = strtok(arg, ",");
1079
    while (name) {
1080
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1081
            if (!strcmp(alarm_timers[i].name, name))
1082
                break;
1083
        }
1084

    
1085
        if (i == count) {
1086
            fprintf(stderr, "Unknown clock %s\n", name);
1087
            goto next;
1088
        }
1089

    
1090
        if (i < cur)
1091
            /* Ignore */
1092
            goto next;
1093

    
1094
        /* Swap */
1095
        tmp = alarm_timers[i];
1096
        alarm_timers[i] = alarm_timers[cur];
1097
        alarm_timers[cur] = tmp;
1098

    
1099
        cur++;
1100
next:
1101
        name = strtok(NULL, ",");
1102
    }
1103

    
1104
    free(arg);
1105

    
1106
    if (cur) {
1107
        /* Disable remaining timers */
1108
        for (i = cur; i < count; i++)
1109
            alarm_timers[i].name = NULL;
1110
    } else {
1111
        show_available_alarms();
1112
        exit(1);
1113
    }
1114
}
1115

    
1116
QEMUClock *rt_clock;
1117
QEMUClock *vm_clock;
1118

    
1119
static QEMUTimer *active_timers[2];
1120

    
1121
static QEMUClock *qemu_new_clock(int type)
1122
{
1123
    QEMUClock *clock;
1124
    clock = qemu_mallocz(sizeof(QEMUClock));
1125
    clock->type = type;
1126
    return clock;
1127
}
1128

    
1129
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1130
{
1131
    QEMUTimer *ts;
1132

    
1133
    ts = qemu_mallocz(sizeof(QEMUTimer));
1134
    ts->clock = clock;
1135
    ts->cb = cb;
1136
    ts->opaque = opaque;
1137
    return ts;
1138
}
1139

    
1140
void qemu_free_timer(QEMUTimer *ts)
1141
{
1142
    qemu_free(ts);
1143
}
1144

    
1145
/* stop a timer, but do not dealloc it */
1146
void qemu_del_timer(QEMUTimer *ts)
1147
{
1148
    QEMUTimer **pt, *t;
1149

    
1150
    /* NOTE: this code must be signal safe because
1151
       qemu_timer_expired() can be called from a signal. */
1152
    pt = &active_timers[ts->clock->type];
1153
    for(;;) {
1154
        t = *pt;
1155
        if (!t)
1156
            break;
1157
        if (t == ts) {
1158
            *pt = t->next;
1159
            break;
1160
        }
1161
        pt = &t->next;
1162
    }
1163
}
1164

    
1165
/* modify the current timer so that it will be fired when current_time
1166
   >= expire_time. The corresponding callback will be called. */
1167
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1168
{
1169
    QEMUTimer **pt, *t;
1170

    
1171
    qemu_del_timer(ts);
1172

    
1173
    /* add the timer in the sorted list */
1174
    /* NOTE: this code must be signal safe because
1175
       qemu_timer_expired() can be called from a signal. */
1176
    pt = &active_timers[ts->clock->type];
1177
    for(;;) {
1178
        t = *pt;
1179
        if (!t)
1180
            break;
1181
        if (t->expire_time > expire_time)
1182
            break;
1183
        pt = &t->next;
1184
    }
1185
    ts->expire_time = expire_time;
1186
    ts->next = *pt;
1187
    *pt = ts;
1188

    
1189
    /* Rearm if necessary  */
1190
    if (pt == &active_timers[ts->clock->type]) {
1191
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1192
            qemu_rearm_alarm_timer(alarm_timer);
1193
        }
1194
        /* Interrupt execution to force deadline recalculation.  */
1195
        if (use_icount)
1196
            qemu_notify_event();
1197
    }
1198
}
1199

    
1200
int qemu_timer_pending(QEMUTimer *ts)
1201
{
1202
    QEMUTimer *t;
1203
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1204
        if (t == ts)
1205
            return 1;
1206
    }
1207
    return 0;
1208
}
1209

    
1210
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1211
{
1212
    if (!timer_head)
1213
        return 0;
1214
    return (timer_head->expire_time <= current_time);
1215
}
1216

    
1217
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1218
{
1219
    QEMUTimer *ts;
1220

    
1221
    for(;;) {
1222
        ts = *ptimer_head;
1223
        if (!ts || ts->expire_time > current_time)
1224
            break;
1225
        /* remove timer from the list before calling the callback */
1226
        *ptimer_head = ts->next;
1227
        ts->next = NULL;
1228

    
1229
        /* run the callback (the timer list can be modified) */
1230
        ts->cb(ts->opaque);
1231
    }
1232
}
1233

    
1234
int64_t qemu_get_clock(QEMUClock *clock)
1235
{
1236
    switch(clock->type) {
1237
    case QEMU_TIMER_REALTIME:
1238
        return get_clock() / 1000000;
1239
    default:
1240
    case QEMU_TIMER_VIRTUAL:
1241
        if (use_icount) {
1242
            return cpu_get_icount();
1243
        } else {
1244
            return cpu_get_clock();
1245
        }
1246
    }
1247
}
1248

    
1249
static void init_timers(void)
1250
{
1251
    init_get_clock();
1252
    ticks_per_sec = QEMU_TIMER_BASE;
1253
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1254
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1255
}
1256

    
1257
/* save a timer */
1258
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259
{
1260
    uint64_t expire_time;
1261

    
1262
    if (qemu_timer_pending(ts)) {
1263
        expire_time = ts->expire_time;
1264
    } else {
1265
        expire_time = -1;
1266
    }
1267
    qemu_put_be64(f, expire_time);
1268
}
1269

    
1270
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271
{
1272
    uint64_t expire_time;
1273

    
1274
    expire_time = qemu_get_be64(f);
1275
    if (expire_time != -1) {
1276
        qemu_mod_timer(ts, expire_time);
1277
    } else {
1278
        qemu_del_timer(ts);
1279
    }
1280
}
1281

    
1282
static void timer_save(QEMUFile *f, void *opaque)
1283
{
1284
    if (cpu_ticks_enabled) {
1285
        hw_error("cannot save state if virtual timers are running");
1286
    }
1287
    qemu_put_be64(f, cpu_ticks_offset);
1288
    qemu_put_be64(f, ticks_per_sec);
1289
    qemu_put_be64(f, cpu_clock_offset);
1290
}
1291

    
1292
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293
{
1294
    if (version_id != 1 && version_id != 2)
1295
        return -EINVAL;
1296
    if (cpu_ticks_enabled) {
1297
        return -EINVAL;
1298
    }
1299
    cpu_ticks_offset=qemu_get_be64(f);
1300
    ticks_per_sec=qemu_get_be64(f);
1301
    if (version_id == 2) {
1302
        cpu_clock_offset=qemu_get_be64(f);
1303
    }
1304
    return 0;
1305
}
1306

    
1307
static void qemu_event_increment(void);
1308

    
1309
#ifdef _WIN32
1310
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1311
                                        DWORD_PTR dwUser, DWORD_PTR dw1,
1312
                                        DWORD_PTR dw2)
1313
#else
1314
static void host_alarm_handler(int host_signum)
1315
#endif
1316
{
1317
#if 0
1318
#define DISP_FREQ 1000
1319
    {
1320
        static int64_t delta_min = INT64_MAX;
1321
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1322
        static int count;
1323
        ti = qemu_get_clock(vm_clock);
1324
        if (last_clock != 0) {
1325
            delta = ti - last_clock;
1326
            if (delta < delta_min)
1327
                delta_min = delta;
1328
            if (delta > delta_max)
1329
                delta_max = delta;
1330
            delta_cum += delta;
1331
            if (++count == DISP_FREQ) {
1332
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1333
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1334
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1335
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1336
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1337
                count = 0;
1338
                delta_min = INT64_MAX;
1339
                delta_max = 0;
1340
                delta_cum = 0;
1341
            }
1342
        }
1343
        last_clock = ti;
1344
    }
1345
#endif
1346
    if (alarm_has_dynticks(alarm_timer) ||
1347
        (!use_icount &&
1348
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1349
                               qemu_get_clock(vm_clock))) ||
1350
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1351
                           qemu_get_clock(rt_clock))) {
1352
        qemu_event_increment();
1353
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354

    
1355
#ifndef CONFIG_IOTHREAD
1356
        if (next_cpu) {
1357
            /* stop the currently executing cpu because a timer occured */
1358
            cpu_exit(next_cpu);
1359
#ifdef CONFIG_KQEMU
1360
            if (next_cpu->kqemu_enabled) {
1361
                kqemu_cpu_interrupt(next_cpu);
1362
            }
1363
#endif
1364
        }
1365
#endif
1366
        timer_alarm_pending = 1;
1367
        qemu_notify_event();
1368
    }
1369
}
1370

    
1371
static int64_t qemu_next_deadline(void)
1372
{
1373
    int64_t delta;
1374

    
1375
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1376
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1377
                     qemu_get_clock(vm_clock);
1378
    } else {
1379
        /* To avoid problems with overflow limit this to 2^32.  */
1380
        delta = INT32_MAX;
1381
    }
1382

    
1383
    if (delta < 0)
1384
        delta = 0;
1385

    
1386
    return delta;
1387
}
1388

    
1389
#if defined(__linux__) || defined(_WIN32)
1390
static uint64_t qemu_next_deadline_dyntick(void)
1391
{
1392
    int64_t delta;
1393
    int64_t rtdelta;
1394

    
1395
    if (use_icount)
1396
        delta = INT32_MAX;
1397
    else
1398
        delta = (qemu_next_deadline() + 999) / 1000;
1399

    
1400
    if (active_timers[QEMU_TIMER_REALTIME]) {
1401
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1402
                 qemu_get_clock(rt_clock))*1000;
1403
        if (rtdelta < delta)
1404
            delta = rtdelta;
1405
    }
1406

    
1407
    if (delta < MIN_TIMER_REARM_US)
1408
        delta = MIN_TIMER_REARM_US;
1409

    
1410
    return delta;
1411
}
1412
#endif
1413

    
1414
#ifndef _WIN32
1415

    
1416
/* Sets a specific flag */
1417
static int fcntl_setfl(int fd, int flag)
1418
{
1419
    int flags;
1420

    
1421
    flags = fcntl(fd, F_GETFL);
1422
    if (flags == -1)
1423
        return -errno;
1424

    
1425
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1426
        return -errno;
1427

    
1428
    return 0;
1429
}
1430

    
1431
#if defined(__linux__)
1432

    
1433
#define RTC_FREQ 1024
1434

    
1435
static void enable_sigio_timer(int fd)
1436
{
1437
    struct sigaction act;
1438

    
1439
    /* timer signal */
1440
    sigfillset(&act.sa_mask);
1441
    act.sa_flags = 0;
1442
    act.sa_handler = host_alarm_handler;
1443

    
1444
    sigaction(SIGIO, &act, NULL);
1445
    fcntl_setfl(fd, O_ASYNC);
1446
    fcntl(fd, F_SETOWN, getpid());
1447
}
1448

    
1449
static int hpet_start_timer(struct qemu_alarm_timer *t)
1450
{
1451
    struct hpet_info info;
1452
    int r, fd;
1453

    
1454
    fd = open("/dev/hpet", O_RDONLY);
1455
    if (fd < 0)
1456
        return -1;
1457

    
1458
    /* Set frequency */
1459
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1460
    if (r < 0) {
1461
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1462
                "error, but for better emulation accuracy type:\n"
1463
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1464
        goto fail;
1465
    }
1466

    
1467
    /* Check capabilities */
1468
    r = ioctl(fd, HPET_INFO, &info);
1469
    if (r < 0)
1470
        goto fail;
1471

    
1472
    /* Enable periodic mode */
1473
    r = ioctl(fd, HPET_EPI, 0);
1474
    if (info.hi_flags && (r < 0))
1475
        goto fail;
1476

    
1477
    /* Enable interrupt */
1478
    r = ioctl(fd, HPET_IE_ON, 0);
1479
    if (r < 0)
1480
        goto fail;
1481

    
1482
    enable_sigio_timer(fd);
1483
    t->priv = (void *)(long)fd;
1484

    
1485
    return 0;
1486
fail:
1487
    close(fd);
1488
    return -1;
1489
}
1490

    
1491
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492
{
1493
    int fd = (long)t->priv;
1494

    
1495
    close(fd);
1496
}
1497

    
1498
static int rtc_start_timer(struct qemu_alarm_timer *t)
1499
{
1500
    int rtc_fd;
1501
    unsigned long current_rtc_freq = 0;
1502

    
1503
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1504
    if (rtc_fd < 0)
1505
        return -1;
1506
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1507
    if (current_rtc_freq != RTC_FREQ &&
1508
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1509
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1510
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1511
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1512
        goto fail;
1513
    }
1514
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1515
    fail:
1516
        close(rtc_fd);
1517
        return -1;
1518
    }
1519

    
1520
    enable_sigio_timer(rtc_fd);
1521

    
1522
    t->priv = (void *)(long)rtc_fd;
1523

    
1524
    return 0;
1525
}
1526

    
1527
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528
{
1529
    int rtc_fd = (long)t->priv;
1530

    
1531
    close(rtc_fd);
1532
}
1533

    
1534
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1535
{
1536
    struct sigevent ev;
1537
    timer_t host_timer;
1538
    struct sigaction act;
1539

    
1540
    sigfillset(&act.sa_mask);
1541
    act.sa_flags = 0;
1542
    act.sa_handler = host_alarm_handler;
1543

    
1544
    sigaction(SIGALRM, &act, NULL);
1545

    
1546
    ev.sigev_value.sival_int = 0;
1547
    ev.sigev_notify = SIGEV_SIGNAL;
1548
    ev.sigev_signo = SIGALRM;
1549

    
1550
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1551
        perror("timer_create");
1552

    
1553
        /* disable dynticks */
1554
        fprintf(stderr, "Dynamic Ticks disabled\n");
1555

    
1556
        return -1;
1557
    }
1558

    
1559
    t->priv = (void *)(long)host_timer;
1560

    
1561
    return 0;
1562
}
1563

    
1564
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1565
{
1566
    timer_t host_timer = (timer_t)(long)t->priv;
1567

    
1568
    timer_delete(host_timer);
1569
}
1570

    
1571
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1572
{
1573
    timer_t host_timer = (timer_t)(long)t->priv;
1574
    struct itimerspec timeout;
1575
    int64_t nearest_delta_us = INT64_MAX;
1576
    int64_t current_us;
1577

    
1578
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1579
                !active_timers[QEMU_TIMER_VIRTUAL])
1580
        return;
1581

    
1582
    nearest_delta_us = qemu_next_deadline_dyntick();
1583

    
1584
    /* check whether a timer is already running */
1585
    if (timer_gettime(host_timer, &timeout)) {
1586
        perror("gettime");
1587
        fprintf(stderr, "Internal timer error: aborting\n");
1588
        exit(1);
1589
    }
1590
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1591
    if (current_us && current_us <= nearest_delta_us)
1592
        return;
1593

    
1594
    timeout.it_interval.tv_sec = 0;
1595
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1596
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1597
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1598
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1599
        perror("settime");
1600
        fprintf(stderr, "Internal timer error: aborting\n");
1601
        exit(1);
1602
    }
1603
}
1604

    
1605
#endif /* defined(__linux__) */
1606

    
1607
static int unix_start_timer(struct qemu_alarm_timer *t)
1608
{
1609
    struct sigaction act;
1610
    struct itimerval itv;
1611
    int err;
1612

    
1613
    /* timer signal */
1614
    sigfillset(&act.sa_mask);
1615
    act.sa_flags = 0;
1616
    act.sa_handler = host_alarm_handler;
1617

    
1618
    sigaction(SIGALRM, &act, NULL);
1619

    
1620
    itv.it_interval.tv_sec = 0;
1621
    /* for i386 kernel 2.6 to get 1 ms */
1622
    itv.it_interval.tv_usec = 999;
1623
    itv.it_value.tv_sec = 0;
1624
    itv.it_value.tv_usec = 10 * 1000;
1625

    
1626
    err = setitimer(ITIMER_REAL, &itv, NULL);
1627
    if (err)
1628
        return -1;
1629

    
1630
    return 0;
1631
}
1632

    
1633
static void unix_stop_timer(struct qemu_alarm_timer *t)
1634
{
1635
    struct itimerval itv;
1636

    
1637
    memset(&itv, 0, sizeof(itv));
1638
    setitimer(ITIMER_REAL, &itv, NULL);
1639
}
1640

    
1641
#endif /* !defined(_WIN32) */
1642

    
1643

    
1644
#ifdef _WIN32
1645

    
1646
static int win32_start_timer(struct qemu_alarm_timer *t)
1647
{
1648
    TIMECAPS tc;
1649
    struct qemu_alarm_win32 *data = t->priv;
1650
    UINT flags;
1651

    
1652
    memset(&tc, 0, sizeof(tc));
1653
    timeGetDevCaps(&tc, sizeof(tc));
1654

    
1655
    if (data->period < tc.wPeriodMin)
1656
        data->period = tc.wPeriodMin;
1657

    
1658
    timeBeginPeriod(data->period);
1659

    
1660
    flags = TIME_CALLBACK_FUNCTION;
1661
    if (alarm_has_dynticks(t))
1662
        flags |= TIME_ONESHOT;
1663
    else
1664
        flags |= TIME_PERIODIC;
1665

    
1666
    data->timerId = timeSetEvent(1,         // interval (ms)
1667
                        data->period,       // resolution
1668
                        host_alarm_handler, // function
1669
                        (DWORD)t,           // parameter
1670
                        flags);
1671

    
1672
    if (!data->timerId) {
1673
        perror("Failed to initialize win32 alarm timer");
1674
        timeEndPeriod(data->period);
1675
        return -1;
1676
    }
1677

    
1678
    return 0;
1679
}
1680

    
1681
static void win32_stop_timer(struct qemu_alarm_timer *t)
1682
{
1683
    struct qemu_alarm_win32 *data = t->priv;
1684

    
1685
    timeKillEvent(data->timerId);
1686
    timeEndPeriod(data->period);
1687
}
1688

    
1689
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1690
{
1691
    struct qemu_alarm_win32 *data = t->priv;
1692
    uint64_t nearest_delta_us;
1693

    
1694
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1695
                !active_timers[QEMU_TIMER_VIRTUAL])
1696
        return;
1697

    
1698
    nearest_delta_us = qemu_next_deadline_dyntick();
1699
    nearest_delta_us /= 1000;
1700

    
1701
    timeKillEvent(data->timerId);
1702

    
1703
    data->timerId = timeSetEvent(1,
1704
                        data->period,
1705
                        host_alarm_handler,
1706
                        (DWORD)t,
1707
                        TIME_ONESHOT | TIME_PERIODIC);
1708

    
1709
    if (!data->timerId) {
1710
        perror("Failed to re-arm win32 alarm timer");
1711

    
1712
        timeEndPeriod(data->period);
1713
        exit(1);
1714
    }
1715
}
1716

    
1717
#endif /* _WIN32 */
1718

    
1719
static int init_timer_alarm(void)
1720
{
1721
    struct qemu_alarm_timer *t = NULL;
1722
    int i, err = -1;
1723

    
1724
    for (i = 0; alarm_timers[i].name; i++) {
1725
        t = &alarm_timers[i];
1726

    
1727
        err = t->start(t);
1728
        if (!err)
1729
            break;
1730
    }
1731

    
1732
    if (err) {
1733
        err = -ENOENT;
1734
        goto fail;
1735
    }
1736

    
1737
    alarm_timer = t;
1738

    
1739
    return 0;
1740

    
1741
fail:
1742
    return err;
1743
}
1744

    
1745
static void quit_timers(void)
1746
{
1747
    alarm_timer->stop(alarm_timer);
1748
    alarm_timer = NULL;
1749
}
1750

    
1751
/***********************************************************/
1752
/* host time/date access */
1753
void qemu_get_timedate(struct tm *tm, int offset)
1754
{
1755
    time_t ti;
1756
    struct tm *ret;
1757

    
1758
    time(&ti);
1759
    ti += offset;
1760
    if (rtc_date_offset == -1) {
1761
        if (rtc_utc)
1762
            ret = gmtime(&ti);
1763
        else
1764
            ret = localtime(&ti);
1765
    } else {
1766
        ti -= rtc_date_offset;
1767
        ret = gmtime(&ti);
1768
    }
1769

    
1770
    memcpy(tm, ret, sizeof(struct tm));
1771
}
1772

    
1773
int qemu_timedate_diff(struct tm *tm)
1774
{
1775
    time_t seconds;
1776

    
1777
    if (rtc_date_offset == -1)
1778
        if (rtc_utc)
1779
            seconds = mktimegm(tm);
1780
        else
1781
            seconds = mktime(tm);
1782
    else
1783
        seconds = mktimegm(tm) + rtc_date_offset;
1784

    
1785
    return seconds - time(NULL);
1786
}
1787

    
1788
#ifdef _WIN32
1789
static void socket_cleanup(void)
1790
{
1791
    WSACleanup();
1792
}
1793

    
1794
static int socket_init(void)
1795
{
1796
    WSADATA Data;
1797
    int ret, err;
1798

    
1799
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1800
    if (ret != 0) {
1801
        err = WSAGetLastError();
1802
        fprintf(stderr, "WSAStartup: %d\n", err);
1803
        return -1;
1804
    }
1805
    atexit(socket_cleanup);
1806
    return 0;
1807
}
1808
#endif
1809

    
1810
const char *get_opt_name(char *buf, int buf_size, const char *p, char delim)
1811
{
1812
    char *q;
1813

    
1814
    q = buf;
1815
    while (*p != '\0' && *p != delim) {
1816
        if (q && (q - buf) < buf_size - 1)
1817
            *q++ = *p;
1818
        p++;
1819
    }
1820
    if (q)
1821
        *q = '\0';
1822

    
1823
    return p;
1824
}
1825

    
1826
const char *get_opt_value(char *buf, int buf_size, const char *p)
1827
{
1828
    char *q;
1829

    
1830
    q = buf;
1831
    while (*p != '\0') {
1832
        if (*p == ',') {
1833
            if (*(p + 1) != ',')
1834
                break;
1835
            p++;
1836
        }
1837
        if (q && (q - buf) < buf_size - 1)
1838
            *q++ = *p;
1839
        p++;
1840
    }
1841
    if (q)
1842
        *q = '\0';
1843

    
1844
    return p;
1845
}
1846

    
1847
int get_param_value(char *buf, int buf_size,
1848
                    const char *tag, const char *str)
1849
{
1850
    const char *p;
1851
    char option[128];
1852

    
1853
    p = str;
1854
    for(;;) {
1855
        p = get_opt_name(option, sizeof(option), p, '=');
1856
        if (*p != '=')
1857
            break;
1858
        p++;
1859
        if (!strcmp(tag, option)) {
1860
            (void)get_opt_value(buf, buf_size, p);
1861
            return strlen(buf);
1862
        } else {
1863
            p = get_opt_value(NULL, 0, p);
1864
        }
1865
        if (*p != ',')
1866
            break;
1867
        p++;
1868
    }
1869
    return 0;
1870
}
1871

    
1872
int check_params(const char * const *params, const char *str)
1873
{
1874
    int name_buf_size = 1;
1875
    const char *p;
1876
    char *name_buf;
1877
    int i, len;
1878
    int ret = 0;
1879

    
1880
    for (i = 0; params[i] != NULL; i++) {
1881
        len = strlen(params[i]) + 1;
1882
        if (len > name_buf_size) {
1883
            name_buf_size = len;
1884
        }
1885
    }
1886
    name_buf = qemu_malloc(name_buf_size);
1887

    
1888
    p = str;
1889
    while (*p != '\0') {
1890
        p = get_opt_name(name_buf, name_buf_size, p, '=');
1891
        if (*p != '=') {
1892
            ret = -1;
1893
            break;
1894
        }
1895
        p++;
1896
        for(i = 0; params[i] != NULL; i++)
1897
            if (!strcmp(params[i], name_buf))
1898
                break;
1899
        if (params[i] == NULL) {
1900
            ret = -1;
1901
            break;
1902
        }
1903
        p = get_opt_value(NULL, 0, p);
1904
        if (*p != ',')
1905
            break;
1906
        p++;
1907
    }
1908

    
1909
    qemu_free(name_buf);
1910
    return ret;
1911
}
1912

    
1913
/***********************************************************/
1914
/* Bluetooth support */
1915
static int nb_hcis;
1916
static int cur_hci;
1917
static struct HCIInfo *hci_table[MAX_NICS];
1918

    
1919
static struct bt_vlan_s {
1920
    struct bt_scatternet_s net;
1921
    int id;
1922
    struct bt_vlan_s *next;
1923
} *first_bt_vlan;
1924

    
1925
/* find or alloc a new bluetooth "VLAN" */
1926
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1927
{
1928
    struct bt_vlan_s **pvlan, *vlan;
1929
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1930
        if (vlan->id == id)
1931
            return &vlan->net;
1932
    }
1933
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1934
    vlan->id = id;
1935
    pvlan = &first_bt_vlan;
1936
    while (*pvlan != NULL)
1937
        pvlan = &(*pvlan)->next;
1938
    *pvlan = vlan;
1939
    return &vlan->net;
1940
}
1941

    
1942
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1943
{
1944
}
1945

    
1946
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1947
{
1948
    return -ENOTSUP;
1949
}
1950

    
1951
static struct HCIInfo null_hci = {
1952
    .cmd_send = null_hci_send,
1953
    .sco_send = null_hci_send,
1954
    .acl_send = null_hci_send,
1955
    .bdaddr_set = null_hci_addr_set,
1956
};
1957

    
1958
struct HCIInfo *qemu_next_hci(void)
1959
{
1960
    if (cur_hci == nb_hcis)
1961
        return &null_hci;
1962

    
1963
    return hci_table[cur_hci++];
1964
}
1965

    
1966
static struct HCIInfo *hci_init(const char *str)
1967
{
1968
    char *endp;
1969
    struct bt_scatternet_s *vlan = 0;
1970

    
1971
    if (!strcmp(str, "null"))
1972
        /* null */
1973
        return &null_hci;
1974
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1975
        /* host[:hciN] */
1976
        return bt_host_hci(str[4] ? str + 5 : "hci0");
1977
    else if (!strncmp(str, "hci", 3)) {
1978
        /* hci[,vlan=n] */
1979
        if (str[3]) {
1980
            if (!strncmp(str + 3, ",vlan=", 6)) {
1981
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1982
                if (*endp)
1983
                    vlan = 0;
1984
            }
1985
        } else
1986
            vlan = qemu_find_bt_vlan(0);
1987
        if (vlan)
1988
           return bt_new_hci(vlan);
1989
    }
1990

    
1991
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1992

    
1993
    return 0;
1994
}
1995

    
1996
static int bt_hci_parse(const char *str)
1997
{
1998
    struct HCIInfo *hci;
1999
    bdaddr_t bdaddr;
2000

    
2001
    if (nb_hcis >= MAX_NICS) {
2002
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2003
        return -1;
2004
    }
2005

    
2006
    hci = hci_init(str);
2007
    if (!hci)
2008
        return -1;
2009

    
2010
    bdaddr.b[0] = 0x52;
2011
    bdaddr.b[1] = 0x54;
2012
    bdaddr.b[2] = 0x00;
2013
    bdaddr.b[3] = 0x12;
2014
    bdaddr.b[4] = 0x34;
2015
    bdaddr.b[5] = 0x56 + nb_hcis;
2016
    hci->bdaddr_set(hci, bdaddr.b);
2017

    
2018
    hci_table[nb_hcis++] = hci;
2019

    
2020
    return 0;
2021
}
2022

    
2023
static void bt_vhci_add(int vlan_id)
2024
{
2025
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2026

    
2027
    if (!vlan->slave)
2028
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2029
                        "an empty scatternet %i\n", vlan_id);
2030

    
2031
    bt_vhci_init(bt_new_hci(vlan));
2032
}
2033

    
2034
static struct bt_device_s *bt_device_add(const char *opt)
2035
{
2036
    struct bt_scatternet_s *vlan;
2037
    int vlan_id = 0;
2038
    char *endp = strstr(opt, ",vlan=");
2039
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2040
    char devname[10];
2041

    
2042
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2043

    
2044
    if (endp) {
2045
        vlan_id = strtol(endp + 6, &endp, 0);
2046
        if (*endp) {
2047
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2048
            return 0;
2049
        }
2050
    }
2051

    
2052
    vlan = qemu_find_bt_vlan(vlan_id);
2053

    
2054
    if (!vlan->slave)
2055
        fprintf(stderr, "qemu: warning: adding a slave device to "
2056
                        "an empty scatternet %i\n", vlan_id);
2057

    
2058
    if (!strcmp(devname, "keyboard"))
2059
        return bt_keyboard_init(vlan);
2060

    
2061
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2062
    return 0;
2063
}
2064

    
2065
static int bt_parse(const char *opt)
2066
{
2067
    const char *endp, *p;
2068
    int vlan;
2069

    
2070
    if (strstart(opt, "hci", &endp)) {
2071
        if (!*endp || *endp == ',') {
2072
            if (*endp)
2073
                if (!strstart(endp, ",vlan=", 0))
2074
                    opt = endp + 1;
2075

    
2076
            return bt_hci_parse(opt);
2077
       }
2078
    } else if (strstart(opt, "vhci", &endp)) {
2079
        if (!*endp || *endp == ',') {
2080
            if (*endp) {
2081
                if (strstart(endp, ",vlan=", &p)) {
2082
                    vlan = strtol(p, (char **) &endp, 0);
2083
                    if (*endp) {
2084
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2085
                        return 1;
2086
                    }
2087
                } else {
2088
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2089
                    return 1;
2090
                }
2091
            } else
2092
                vlan = 0;
2093

    
2094
            bt_vhci_add(vlan);
2095
            return 0;
2096
        }
2097
    } else if (strstart(opt, "device:", &endp))
2098
        return !bt_device_add(endp);
2099

    
2100
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2101
    return 1;
2102
}
2103

    
2104
/***********************************************************/
2105
/* QEMU Block devices */
2106

    
2107
#define HD_ALIAS "index=%d,media=disk"
2108
#define CDROM_ALIAS "index=2,media=cdrom"
2109
#define FD_ALIAS "index=%d,if=floppy"
2110
#define PFLASH_ALIAS "if=pflash"
2111
#define MTD_ALIAS "if=mtd"
2112
#define SD_ALIAS "index=0,if=sd"
2113

    
2114
static int drive_opt_get_free_idx(void)
2115
{
2116
    int index;
2117

    
2118
    for (index = 0; index < MAX_DRIVES; index++)
2119
        if (!drives_opt[index].used) {
2120
            drives_opt[index].used = 1;
2121
            return index;
2122
        }
2123

    
2124
    return -1;
2125
}
2126

    
2127
static int drive_get_free_idx(void)
2128
{
2129
    int index;
2130

    
2131
    for (index = 0; index < MAX_DRIVES; index++)
2132
        if (!drives_table[index].used) {
2133
            drives_table[index].used = 1;
2134
            return index;
2135
        }
2136

    
2137
    return -1;
2138
}
2139

    
2140
int drive_add(const char *file, const char *fmt, ...)
2141
{
2142
    va_list ap;
2143
    int index = drive_opt_get_free_idx();
2144

    
2145
    if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2146
        fprintf(stderr, "qemu: too many drives\n");
2147
        return -1;
2148
    }
2149

    
2150
    drives_opt[index].file = file;
2151
    va_start(ap, fmt);
2152
    vsnprintf(drives_opt[index].opt,
2153
              sizeof(drives_opt[0].opt), fmt, ap);
2154
    va_end(ap);
2155

    
2156
    nb_drives_opt++;
2157
    return index;
2158
}
2159

    
2160
void drive_remove(int index)
2161
{
2162
    drives_opt[index].used = 0;
2163
    nb_drives_opt--;
2164
}
2165

    
2166
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2167
{
2168
    int index;
2169

    
2170
    /* seek interface, bus and unit */
2171

    
2172
    for (index = 0; index < MAX_DRIVES; index++)
2173
        if (drives_table[index].type == type &&
2174
            drives_table[index].bus == bus &&
2175
            drives_table[index].unit == unit &&
2176
            drives_table[index].used)
2177
        return index;
2178

    
2179
    return -1;
2180
}
2181

    
2182
int drive_get_max_bus(BlockInterfaceType type)
2183
{
2184
    int max_bus;
2185
    int index;
2186

    
2187
    max_bus = -1;
2188
    for (index = 0; index < nb_drives; index++) {
2189
        if(drives_table[index].type == type &&
2190
           drives_table[index].bus > max_bus)
2191
            max_bus = drives_table[index].bus;
2192
    }
2193
    return max_bus;
2194
}
2195

    
2196
const char *drive_get_serial(BlockDriverState *bdrv)
2197
{
2198
    int index;
2199

    
2200
    for (index = 0; index < nb_drives; index++)
2201
        if (drives_table[index].bdrv == bdrv)
2202
            return drives_table[index].serial;
2203

    
2204
    return "\0";
2205
}
2206

    
2207
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2208
{
2209
    int index;
2210

    
2211
    for (index = 0; index < nb_drives; index++)
2212
        if (drives_table[index].bdrv == bdrv)
2213
            return drives_table[index].onerror;
2214

    
2215
    return BLOCK_ERR_STOP_ENOSPC;
2216
}
2217

    
2218
static void bdrv_format_print(void *opaque, const char *name)
2219
{
2220
    fprintf(stderr, " %s", name);
2221
}
2222

    
2223
void drive_uninit(BlockDriverState *bdrv)
2224
{
2225
    int i;
2226

    
2227
    for (i = 0; i < MAX_DRIVES; i++)
2228
        if (drives_table[i].bdrv == bdrv) {
2229
            drives_table[i].bdrv = NULL;
2230
            drives_table[i].used = 0;
2231
            drive_remove(drives_table[i].drive_opt_idx);
2232
            nb_drives--;
2233
            break;
2234
        }
2235
}
2236

    
2237
int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2238
{
2239
    char buf[128];
2240
    char file[1024];
2241
    char devname[128];
2242
    char serial[21];
2243
    const char *mediastr = "";
2244
    BlockInterfaceType type;
2245
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2246
    int bus_id, unit_id;
2247
    int cyls, heads, secs, translation;
2248
    BlockDriverState *bdrv;
2249
    BlockDriver *drv = NULL;
2250
    QEMUMachine *machine = opaque;
2251
    int max_devs;
2252
    int index;
2253
    int cache;
2254
    int bdrv_flags, onerror;
2255
    int drives_table_idx;
2256
    char *str = arg->opt;
2257
    static const char * const params[] = { "bus", "unit", "if", "index",
2258
                                           "cyls", "heads", "secs", "trans",
2259
                                           "media", "snapshot", "file",
2260
                                           "cache", "format", "serial", "werror",
2261
                                           NULL };
2262

    
2263
    if (check_params(params, str) < 0) {
2264
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2265
                         buf, str);
2266
         return -1;
2267
    }
2268

    
2269
    file[0] = 0;
2270
    cyls = heads = secs = 0;
2271
    bus_id = 0;
2272
    unit_id = -1;
2273
    translation = BIOS_ATA_TRANSLATION_AUTO;
2274
    index = -1;
2275
    cache = 3;
2276

    
2277
    if (machine->use_scsi) {
2278
        type = IF_SCSI;
2279
        max_devs = MAX_SCSI_DEVS;
2280
        pstrcpy(devname, sizeof(devname), "scsi");
2281
    } else {
2282
        type = IF_IDE;
2283
        max_devs = MAX_IDE_DEVS;
2284
        pstrcpy(devname, sizeof(devname), "ide");
2285
    }
2286
    media = MEDIA_DISK;
2287

    
2288
    /* extract parameters */
2289

    
2290
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2291
        bus_id = strtol(buf, NULL, 0);
2292
        if (bus_id < 0) {
2293
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2294
            return -1;
2295
        }
2296
    }
2297

    
2298
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2299
        unit_id = strtol(buf, NULL, 0);
2300
        if (unit_id < 0) {
2301
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2302
            return -1;
2303
        }
2304
    }
2305

    
2306
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2307
        pstrcpy(devname, sizeof(devname), buf);
2308
        if (!strcmp(buf, "ide")) {
2309
            type = IF_IDE;
2310
            max_devs = MAX_IDE_DEVS;
2311
        } else if (!strcmp(buf, "scsi")) {
2312
            type = IF_SCSI;
2313
            max_devs = MAX_SCSI_DEVS;
2314
        } else if (!strcmp(buf, "floppy")) {
2315
            type = IF_FLOPPY;
2316
            max_devs = 0;
2317
        } else if (!strcmp(buf, "pflash")) {
2318
            type = IF_PFLASH;
2319
            max_devs = 0;
2320
        } else if (!strcmp(buf, "mtd")) {
2321
            type = IF_MTD;
2322
            max_devs = 0;
2323
        } else if (!strcmp(buf, "sd")) {
2324
            type = IF_SD;
2325
            max_devs = 0;
2326
        } else if (!strcmp(buf, "virtio")) {
2327
            type = IF_VIRTIO;
2328
            max_devs = 0;
2329
        } else if (!strcmp(buf, "xen")) {
2330
            type = IF_XEN;
2331
            max_devs = 0;
2332
        } else {
2333
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2334
            return -1;
2335
        }
2336
    }
2337

    
2338
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2339
        index = strtol(buf, NULL, 0);
2340
        if (index < 0) {
2341
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2342
            return -1;
2343
        }
2344
    }
2345

    
2346
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2347
        cyls = strtol(buf, NULL, 0);
2348
    }
2349

    
2350
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2351
        heads = strtol(buf, NULL, 0);
2352
    }
2353

    
2354
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2355
        secs = strtol(buf, NULL, 0);
2356
    }
2357

    
2358
    if (cyls || heads || secs) {
2359
        if (cyls < 1 || cyls > 16383) {
2360
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2361
            return -1;
2362
        }
2363
        if (heads < 1 || heads > 16) {
2364
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2365
            return -1;
2366
        }
2367
        if (secs < 1 || secs > 63) {
2368
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2369
            return -1;
2370
        }
2371
    }
2372

    
2373
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2374
        if (!cyls) {
2375
            fprintf(stderr,
2376
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2377
                    str);
2378
            return -1;
2379
        }
2380
        if (!strcmp(buf, "none"))
2381
            translation = BIOS_ATA_TRANSLATION_NONE;
2382
        else if (!strcmp(buf, "lba"))
2383
            translation = BIOS_ATA_TRANSLATION_LBA;
2384
        else if (!strcmp(buf, "auto"))
2385
            translation = BIOS_ATA_TRANSLATION_AUTO;
2386
        else {
2387
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2388
            return -1;
2389
        }
2390
    }
2391

    
2392
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2393
        if (!strcmp(buf, "disk")) {
2394
            media = MEDIA_DISK;
2395
        } else if (!strcmp(buf, "cdrom")) {
2396
            if (cyls || secs || heads) {
2397
                fprintf(stderr,
2398
                        "qemu: '%s' invalid physical CHS format\n", str);
2399
                return -1;
2400
            }
2401
            media = MEDIA_CDROM;
2402
        } else {
2403
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2404
            return -1;
2405
        }
2406
    }
2407

    
2408
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2409
        if (!strcmp(buf, "on"))
2410
            snapshot = 1;
2411
        else if (!strcmp(buf, "off"))
2412
            snapshot = 0;
2413
        else {
2414
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2415
            return -1;
2416
        }
2417
    }
2418

    
2419
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2420
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2421
            cache = 0;
2422
        else if (!strcmp(buf, "writethrough"))
2423
            cache = 1;
2424
        else if (!strcmp(buf, "writeback"))
2425
            cache = 2;
2426
        else {
2427
           fprintf(stderr, "qemu: invalid cache option\n");
2428
           return -1;
2429
        }
2430
    }
2431

    
2432
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2433
       if (strcmp(buf, "?") == 0) {
2434
            fprintf(stderr, "qemu: Supported formats:");
2435
            bdrv_iterate_format(bdrv_format_print, NULL);
2436
            fprintf(stderr, "\n");
2437
            return -1;
2438
        }
2439
        drv = bdrv_find_format(buf);
2440
        if (!drv) {
2441
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2442
            return -1;
2443
        }
2444
    }
2445

    
2446
    if (arg->file == NULL)
2447
        get_param_value(file, sizeof(file), "file", str);
2448
    else
2449
        pstrcpy(file, sizeof(file), arg->file);
2450

    
2451
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2452
            memset(serial, 0,  sizeof(serial));
2453

    
2454
    onerror = BLOCK_ERR_STOP_ENOSPC;
2455
    if (get_param_value(buf, sizeof(serial), "werror", str)) {
2456
        if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2457
            fprintf(stderr, "werror is no supported by this format\n");
2458
            return -1;
2459
        }
2460
        if (!strcmp(buf, "ignore"))
2461
            onerror = BLOCK_ERR_IGNORE;
2462
        else if (!strcmp(buf, "enospc"))
2463
            onerror = BLOCK_ERR_STOP_ENOSPC;
2464
        else if (!strcmp(buf, "stop"))
2465
            onerror = BLOCK_ERR_STOP_ANY;
2466
        else if (!strcmp(buf, "report"))
2467
            onerror = BLOCK_ERR_REPORT;
2468
        else {
2469
            fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2470
            return -1;
2471
        }
2472
    }
2473

    
2474
    /* compute bus and unit according index */
2475

    
2476
    if (index != -1) {
2477
        if (bus_id != 0 || unit_id != -1) {
2478
            fprintf(stderr,
2479
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2480
            return -1;
2481
        }
2482
        if (max_devs == 0)
2483
        {
2484
            unit_id = index;
2485
            bus_id = 0;
2486
        } else {
2487
            unit_id = index % max_devs;
2488
            bus_id = index / max_devs;
2489
        }
2490
    }
2491

    
2492
    /* if user doesn't specify a unit_id,
2493
     * try to find the first free
2494
     */
2495

    
2496
    if (unit_id == -1) {
2497
       unit_id = 0;
2498
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2499
           unit_id++;
2500
           if (max_devs && unit_id >= max_devs) {
2501
               unit_id -= max_devs;
2502
               bus_id++;
2503
           }
2504
       }
2505
    }
2506

    
2507
    /* check unit id */
2508

    
2509
    if (max_devs && unit_id >= max_devs) {
2510
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2511
                        str, unit_id, max_devs - 1);
2512
        return -1;
2513
    }
2514

    
2515
    /*
2516
     * ignore multiple definitions
2517
     */
2518

    
2519
    if (drive_get_index(type, bus_id, unit_id) != -1)
2520
        return -2;
2521

    
2522
    /* init */
2523

    
2524
    if (type == IF_IDE || type == IF_SCSI)
2525
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2526
    if (max_devs)
2527
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2528
                 devname, bus_id, mediastr, unit_id);
2529
    else
2530
        snprintf(buf, sizeof(buf), "%s%s%i",
2531
                 devname, mediastr, unit_id);
2532
    bdrv = bdrv_new(buf);
2533
    drives_table_idx = drive_get_free_idx();
2534
    drives_table[drives_table_idx].bdrv = bdrv;
2535
    drives_table[drives_table_idx].type = type;
2536
    drives_table[drives_table_idx].bus = bus_id;
2537
    drives_table[drives_table_idx].unit = unit_id;
2538
    drives_table[drives_table_idx].onerror = onerror;
2539
    drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2540
    strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2541
    nb_drives++;
2542

    
2543
    switch(type) {
2544
    case IF_IDE:
2545
    case IF_SCSI:
2546
    case IF_XEN:
2547
        switch(media) {
2548
        case MEDIA_DISK:
2549
            if (cyls != 0) {
2550
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2551
                bdrv_set_translation_hint(bdrv, translation);
2552
            }
2553
            break;
2554
        case MEDIA_CDROM:
2555
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2556
            break;
2557
        }
2558
        break;
2559
    case IF_SD:
2560
        /* FIXME: This isn't really a floppy, but it's a reasonable
2561
           approximation.  */
2562
    case IF_FLOPPY:
2563
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2564
        break;
2565
    case IF_PFLASH:
2566
    case IF_MTD:
2567
    case IF_VIRTIO:
2568
        break;
2569
    }
2570
    if (!file[0])
2571
        return -2;
2572
    bdrv_flags = 0;
2573
    if (snapshot) {
2574
        bdrv_flags |= BDRV_O_SNAPSHOT;
2575
        cache = 2; /* always use write-back with snapshot */
2576
    }
2577
    if (cache == 0) /* no caching */
2578
        bdrv_flags |= BDRV_O_NOCACHE;
2579
    else if (cache == 2) /* write-back */
2580
        bdrv_flags |= BDRV_O_CACHE_WB;
2581
    else if (cache == 3) /* not specified */
2582
        bdrv_flags |= BDRV_O_CACHE_DEF;
2583
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2584
        fprintf(stderr, "qemu: could not open disk image %s\n",
2585
                        file);
2586
        return -1;
2587
    }
2588
    if (bdrv_key_required(bdrv))
2589
        autostart = 0;
2590
    return drives_table_idx;
2591
}
2592

    
2593
static void numa_add(const char *optarg)
2594
{
2595
    char option[128];
2596
    char *endptr;
2597
    unsigned long long value, endvalue;
2598
    int nodenr;
2599

    
2600
    optarg = get_opt_name(option, 128, optarg, ',') + 1;
2601
    if (!strcmp(option, "node")) {
2602
        if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2603
            nodenr = nb_numa_nodes;
2604
        } else {
2605
            nodenr = strtoull(option, NULL, 10);
2606
        }
2607

    
2608
        if (get_param_value(option, 128, "mem", optarg) == 0) {
2609
            node_mem[nodenr] = 0;
2610
        } else {
2611
            value = strtoull(option, &endptr, 0);
2612
            switch (*endptr) {
2613
            case 0: case 'M': case 'm':
2614
                value <<= 20;
2615
                break;
2616
            case 'G': case 'g':
2617
                value <<= 30;
2618
                break;
2619
            }
2620
            node_mem[nodenr] = value;
2621
        }
2622
        if (get_param_value(option, 128, "cpus", optarg) == 0) {
2623
            node_cpumask[nodenr] = 0;
2624
        } else {
2625
            value = strtoull(option, &endptr, 10);
2626
            if (value >= 64) {
2627
                value = 63;
2628
                fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2629
            } else {
2630
                if (*endptr == '-') {
2631
                    endvalue = strtoull(endptr+1, &endptr, 10);
2632
                    if (endvalue >= 63) {
2633
                        endvalue = 62;
2634
                        fprintf(stderr,
2635
                            "only 63 CPUs in NUMA mode supported.\n");
2636
                    }
2637
                    value = (1 << (endvalue + 1)) - (1 << value);
2638
                } else {
2639
                    value = 1 << value;
2640
                }
2641
            }
2642
            node_cpumask[nodenr] = value;
2643
        }
2644
        nb_numa_nodes++;
2645
    }
2646
    return;
2647
}
2648

    
2649
/***********************************************************/
2650
/* USB devices */
2651

    
2652
static USBPort *used_usb_ports;
2653
static USBPort *free_usb_ports;
2654

    
2655
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2656
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2657
                            usb_attachfn attach)
2658
{
2659
    port->opaque = opaque;
2660
    port->index = index;
2661
    port->attach = attach;
2662
    port->next = free_usb_ports;
2663
    free_usb_ports = port;
2664
}
2665

    
2666
int usb_device_add_dev(USBDevice *dev)
2667
{
2668
    USBPort *port;
2669

    
2670
    /* Find a USB port to add the device to.  */
2671
    port = free_usb_ports;
2672
    if (!port->next) {
2673
        USBDevice *hub;
2674

    
2675
        /* Create a new hub and chain it on.  */
2676
        free_usb_ports = NULL;
2677
        port->next = used_usb_ports;
2678
        used_usb_ports = port;
2679

    
2680
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2681
        usb_attach(port, hub);
2682
        port = free_usb_ports;
2683
    }
2684

    
2685
    free_usb_ports = port->next;
2686
    port->next = used_usb_ports;
2687
    used_usb_ports = port;
2688
    usb_attach(port, dev);
2689
    return 0;
2690
}
2691

    
2692
static void usb_msd_password_cb(void *opaque, int err)
2693
{
2694
    USBDevice *dev = opaque;
2695

    
2696
    if (!err)
2697
        usb_device_add_dev(dev);
2698
    else
2699
        dev->handle_destroy(dev);
2700
}
2701

    
2702
static int usb_device_add(const char *devname, int is_hotplug)
2703
{
2704
    const char *p;
2705
    USBDevice *dev;
2706

    
2707
    if (!free_usb_ports)
2708
        return -1;
2709

    
2710
    if (strstart(devname, "host:", &p)) {
2711
        dev = usb_host_device_open(p);
2712
    } else if (!strcmp(devname, "mouse")) {
2713
        dev = usb_mouse_init();
2714
    } else if (!strcmp(devname, "tablet")) {
2715
        dev = usb_tablet_init();
2716
    } else if (!strcmp(devname, "keyboard")) {
2717
        dev = usb_keyboard_init();
2718
    } else if (strstart(devname, "disk:", &p)) {
2719
        BlockDriverState *bs;
2720

    
2721
        dev = usb_msd_init(p);
2722
        if (!dev)
2723
            return -1;
2724
        bs = usb_msd_get_bdrv(dev);
2725
        if (bdrv_key_required(bs)) {
2726
            autostart = 0;
2727
            if (is_hotplug) {
2728
                monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2729
                                            dev);
2730
                return 0;
2731
            }
2732
        }
2733
    } else if (!strcmp(devname, "wacom-tablet")) {
2734
        dev = usb_wacom_init();
2735
    } else if (strstart(devname, "serial:", &p)) {
2736
        dev = usb_serial_init(p);
2737
#ifdef CONFIG_BRLAPI
2738
    } else if (!strcmp(devname, "braille")) {
2739
        dev = usb_baum_init();
2740
#endif
2741
    } else if (strstart(devname, "net:", &p)) {
2742
        int nic = nb_nics;
2743

    
2744
        if (net_client_init("nic", p) < 0)
2745
            return -1;
2746
        nd_table[nic].model = "usb";
2747
        dev = usb_net_init(&nd_table[nic]);
2748
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2749
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2750
                        bt_new_hci(qemu_find_bt_vlan(0)));
2751
    } else {
2752
        return -1;
2753
    }
2754
    if (!dev)
2755
        return -1;
2756

    
2757
    return usb_device_add_dev(dev);
2758
}
2759

    
2760
int usb_device_del_addr(int bus_num, int addr)
2761
{
2762
    USBPort *port;
2763
    USBPort **lastp;
2764
    USBDevice *dev;
2765

    
2766
    if (!used_usb_ports)
2767
        return -1;
2768

    
2769
    if (bus_num != 0)
2770
        return -1;
2771

    
2772
    lastp = &used_usb_ports;
2773
    port = used_usb_ports;
2774
    while (port && port->dev->addr != addr) {
2775
        lastp = &port->next;
2776
        port = port->next;
2777
    }
2778

    
2779
    if (!port)
2780
        return -1;
2781

    
2782
    dev = port->dev;
2783
    *lastp = port->next;
2784
    usb_attach(port, NULL);
2785
    dev->handle_destroy(dev);
2786
    port->next = free_usb_ports;
2787
    free_usb_ports = port;
2788
    return 0;
2789
}
2790

    
2791
static int usb_device_del(const char *devname)
2792
{
2793
    int bus_num, addr;
2794
    const char *p;
2795

    
2796
    if (strstart(devname, "host:", &p))
2797
        return usb_host_device_close(p);
2798

    
2799
    if (!used_usb_ports)
2800
        return -1;
2801

    
2802
    p = strchr(devname, '.');
2803
    if (!p)
2804
        return -1;
2805
    bus_num = strtoul(devname, NULL, 0);
2806
    addr = strtoul(p + 1, NULL, 0);
2807

    
2808
    return usb_device_del_addr(bus_num, addr);
2809
}
2810

    
2811
void do_usb_add(Monitor *mon, const char *devname)
2812
{
2813
    usb_device_add(devname, 1);
2814
}
2815

    
2816
void do_usb_del(Monitor *mon, const char *devname)
2817
{
2818
    usb_device_del(devname);
2819
}
2820

    
2821
void usb_info(Monitor *mon)
2822
{
2823
    USBDevice *dev;
2824
    USBPort *port;
2825
    const char *speed_str;
2826

    
2827
    if (!usb_enabled) {
2828
        monitor_printf(mon, "USB support not enabled\n");
2829
        return;
2830
    }
2831

    
2832
    for (port = used_usb_ports; port; port = port->next) {
2833
        dev = port->dev;
2834
        if (!dev)
2835
            continue;
2836
        switch(dev->speed) {
2837
        case USB_SPEED_LOW:
2838
            speed_str = "1.5";
2839
            break;
2840
        case USB_SPEED_FULL:
2841
            speed_str = "12";
2842
            break;
2843
        case USB_SPEED_HIGH:
2844
            speed_str = "480";
2845
            break;
2846
        default:
2847
            speed_str = "?";
2848
            break;
2849
        }
2850
        monitor_printf(mon, "  Device %d.%d, Speed %s Mb/s, Product %s\n",
2851
                       0, dev->addr, speed_str, dev->devname);
2852
    }
2853
}
2854

    
2855
/***********************************************************/
2856
/* PCMCIA/Cardbus */
2857

    
2858
static struct pcmcia_socket_entry_s {
2859
    PCMCIASocket *socket;
2860
    struct pcmcia_socket_entry_s *next;
2861
} *pcmcia_sockets = 0;
2862

    
2863
void pcmcia_socket_register(PCMCIASocket *socket)
2864
{
2865
    struct pcmcia_socket_entry_s *entry;
2866

    
2867
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2868
    entry->socket = socket;
2869
    entry->next = pcmcia_sockets;
2870
    pcmcia_sockets = entry;
2871
}
2872

    
2873
void pcmcia_socket_unregister(PCMCIASocket *socket)
2874
{
2875
    struct pcmcia_socket_entry_s *entry, **ptr;
2876

    
2877
    ptr = &pcmcia_sockets;
2878
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2879
        if (entry->socket == socket) {
2880
            *ptr = entry->next;
2881
            qemu_free(entry);
2882
        }
2883
}
2884

    
2885
void pcmcia_info(Monitor *mon)
2886
{
2887
    struct pcmcia_socket_entry_s *iter;
2888

    
2889
    if (!pcmcia_sockets)
2890
        monitor_printf(mon, "No PCMCIA sockets\n");
2891

    
2892
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2893
        monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2894
                       iter->socket->attached ? iter->socket->card_string :
2895
                       "Empty");
2896
}
2897

    
2898
/***********************************************************/
2899
/* register display */
2900

    
2901
struct DisplayAllocator default_allocator = {
2902
    defaultallocator_create_displaysurface,
2903
    defaultallocator_resize_displaysurface,
2904
    defaultallocator_free_displaysurface
2905
};
2906

    
2907
void register_displaystate(DisplayState *ds)
2908
{
2909
    DisplayState **s;
2910
    s = &display_state;
2911
    while (*s != NULL)
2912
        s = &(*s)->next;
2913
    ds->next = NULL;
2914
    *s = ds;
2915
}
2916

    
2917
DisplayState *get_displaystate(void)
2918
{
2919
    return display_state;
2920
}
2921

    
2922
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2923
{
2924
    if(ds->allocator ==  &default_allocator) ds->allocator = da;
2925
    return ds->allocator;
2926
}
2927

    
2928
/* dumb display */
2929

    
2930
static void dumb_display_init(void)
2931
{
2932
    DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2933
    ds->allocator = &default_allocator;
2934
    ds->surface = qemu_create_displaysurface(ds, 640, 480);
2935
    register_displaystate(ds);
2936
}
2937

    
2938
/***********************************************************/
2939
/* I/O handling */
2940

    
2941
typedef struct IOHandlerRecord {
2942
    int fd;
2943
    IOCanRWHandler *fd_read_poll;
2944
    IOHandler *fd_read;
2945
    IOHandler *fd_write;
2946
    int deleted;
2947
    void *opaque;
2948
    /* temporary data */
2949
    struct pollfd *ufd;
2950
    struct IOHandlerRecord *next;
2951
} IOHandlerRecord;
2952

    
2953
static IOHandlerRecord *first_io_handler;
2954

    
2955
/* XXX: fd_read_poll should be suppressed, but an API change is
2956
   necessary in the character devices to suppress fd_can_read(). */
2957
int qemu_set_fd_handler2(int fd,
2958
                         IOCanRWHandler *fd_read_poll,
2959
                         IOHandler *fd_read,
2960
                         IOHandler *fd_write,
2961
                         void *opaque)
2962
{
2963
    IOHandlerRecord **pioh, *ioh;
2964

    
2965
    if (!fd_read && !fd_write) {
2966
        pioh = &first_io_handler;
2967
        for(;;) {
2968
            ioh = *pioh;
2969
            if (ioh == NULL)
2970
                break;
2971
            if (ioh->fd == fd) {
2972
                ioh->deleted = 1;
2973
                break;
2974
            }
2975
            pioh = &ioh->next;
2976
        }
2977
    } else {
2978
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2979
            if (ioh->fd == fd)
2980
                goto found;
2981
        }
2982
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2983
        ioh->next = first_io_handler;
2984
        first_io_handler = ioh;
2985
    found:
2986
        ioh->fd = fd;
2987
        ioh->fd_read_poll = fd_read_poll;
2988
        ioh->fd_read = fd_read;
2989
        ioh->fd_write = fd_write;
2990
        ioh->opaque = opaque;
2991
        ioh->deleted = 0;
2992
    }
2993
    return 0;
2994
}
2995

    
2996
int qemu_set_fd_handler(int fd,
2997
                        IOHandler *fd_read,
2998
                        IOHandler *fd_write,
2999
                        void *opaque)
3000
{
3001
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
3002
}
3003

    
3004
#ifdef _WIN32
3005
/***********************************************************/
3006
/* Polling handling */
3007

    
3008
typedef struct PollingEntry {
3009
    PollingFunc *func;
3010
    void *opaque;
3011
    struct PollingEntry *next;
3012
} PollingEntry;
3013

    
3014
static PollingEntry *first_polling_entry;
3015

    
3016
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
3017
{
3018
    PollingEntry **ppe, *pe;
3019
    pe = qemu_mallocz(sizeof(PollingEntry));
3020
    pe->func = func;
3021
    pe->opaque = opaque;
3022
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3023
    *ppe = pe;
3024
    return 0;
3025
}
3026

    
3027
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3028
{
3029
    PollingEntry **ppe, *pe;
3030
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3031
        pe = *ppe;
3032
        if (pe->func == func && pe->opaque == opaque) {
3033
            *ppe = pe->next;
3034
            qemu_free(pe);
3035
            break;
3036
        }
3037
    }
3038
}
3039

    
3040
/***********************************************************/
3041
/* Wait objects support */
3042
typedef struct WaitObjects {
3043
    int num;
3044
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3045
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3046
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3047
} WaitObjects;
3048

    
3049
static WaitObjects wait_objects = {0};
3050

    
3051
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3052
{
3053
    WaitObjects *w = &wait_objects;
3054

    
3055
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
3056
        return -1;
3057
    w->events[w->num] = handle;
3058
    w->func[w->num] = func;
3059
    w->opaque[w->num] = opaque;
3060
    w->num++;
3061
    return 0;
3062
}
3063

    
3064
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3065
{
3066
    int i, found;
3067
    WaitObjects *w = &wait_objects;
3068

    
3069
    found = 0;
3070
    for (i = 0; i < w->num; i++) {
3071
        if (w->events[i] == handle)
3072
            found = 1;
3073
        if (found) {
3074
            w->events[i] = w->events[i + 1];
3075
            w->func[i] = w->func[i + 1];
3076
            w->opaque[i] = w->opaque[i + 1];
3077
        }
3078
    }
3079
    if (found)
3080
        w->num--;
3081
}
3082
#endif
3083

    
3084
/***********************************************************/
3085
/* ram save/restore */
3086

    
3087
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3088
{
3089
    int v;
3090

    
3091
    v = qemu_get_byte(f);
3092
    switch(v) {
3093
    case 0:
3094
        if (qemu_get_buffer(f, buf, len) != len)
3095
            return -EIO;
3096
        break;
3097
    case 1:
3098
        v = qemu_get_byte(f);
3099
        memset(buf, v, len);
3100
        break;
3101
    default:
3102
        return -EINVAL;
3103
    }
3104

    
3105
    if (qemu_file_has_error(f))
3106
        return -EIO;
3107

    
3108
    return 0;
3109
}
3110

    
3111
static int ram_load_v1(QEMUFile *f, void *opaque)
3112
{
3113
    int ret;
3114
    ram_addr_t i;
3115

    
3116
    if (qemu_get_be32(f) != last_ram_offset)
3117
        return -EINVAL;
3118
    for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3119
        ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3120
        if (ret)
3121
            return ret;
3122
    }
3123
    return 0;
3124
}
3125

    
3126
#define BDRV_HASH_BLOCK_SIZE 1024
3127
#define IOBUF_SIZE 4096
3128
#define RAM_CBLOCK_MAGIC 0xfabe
3129

    
3130
typedef struct RamDecompressState {
3131
    z_stream zstream;
3132
    QEMUFile *f;
3133
    uint8_t buf[IOBUF_SIZE];
3134
} RamDecompressState;
3135

    
3136
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3137
{
3138
    int ret;
3139
    memset(s, 0, sizeof(*s));
3140
    s->f = f;
3141
    ret = inflateInit(&s->zstream);
3142
    if (ret != Z_OK)
3143
        return -1;
3144
    return 0;
3145
}
3146

    
3147
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3148
{
3149
    int ret, clen;
3150

    
3151
    s->zstream.avail_out = len;
3152
    s->zstream.next_out = buf;
3153
    while (s->zstream.avail_out > 0) {
3154
        if (s->zstream.avail_in == 0) {
3155
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3156
                return -1;
3157
            clen = qemu_get_be16(s->f);
3158
            if (clen > IOBUF_SIZE)
3159
                return -1;
3160
            qemu_get_buffer(s->f, s->buf, clen);
3161
            s->zstream.avail_in = clen;
3162
            s->zstream.next_in = s->buf;
3163
        }
3164
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3165
        if (ret != Z_OK && ret != Z_STREAM_END) {
3166
            return -1;
3167
        }
3168
    }
3169
    return 0;
3170
}
3171

    
3172
static void ram_decompress_close(RamDecompressState *s)
3173
{
3174
    inflateEnd(&s->zstream);
3175
}
3176

    
3177
#define RAM_SAVE_FLAG_FULL        0x01
3178
#define RAM_SAVE_FLAG_COMPRESS        0x02
3179
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3180
#define RAM_SAVE_FLAG_PAGE        0x08
3181
#define RAM_SAVE_FLAG_EOS        0x10
3182

    
3183
static int is_dup_page(uint8_t *page, uint8_t ch)
3184
{
3185
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3186
    uint32_t *array = (uint32_t *)page;
3187
    int i;
3188

    
3189
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3190
        if (array[i] != val)
3191
            return 0;
3192
    }
3193

    
3194
    return 1;
3195
}
3196

    
3197
static int ram_save_block(QEMUFile *f)
3198
{
3199
    static ram_addr_t current_addr = 0;
3200
    ram_addr_t saved_addr = current_addr;
3201
    ram_addr_t addr = 0;
3202
    int found = 0;
3203

    
3204
    while (addr < last_ram_offset) {
3205
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3206
            uint8_t *p;
3207

    
3208
            cpu_physical_memory_reset_dirty(current_addr,
3209
                                            current_addr + TARGET_PAGE_SIZE,
3210
                                            MIGRATION_DIRTY_FLAG);
3211

    
3212
            p = qemu_get_ram_ptr(current_addr);
3213

    
3214
            if (is_dup_page(p, *p)) {
3215
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3216
                qemu_put_byte(f, *p);
3217
            } else {
3218
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3219
                qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3220
            }
3221

    
3222
            found = 1;
3223
            break;
3224
        }
3225
        addr += TARGET_PAGE_SIZE;
3226
        current_addr = (saved_addr + addr) % last_ram_offset;
3227
    }
3228

    
3229
    return found;
3230
}
3231

    
3232
static ram_addr_t ram_save_threshold = 10;
3233

    
3234
static ram_addr_t ram_save_remaining(void)
3235
{
3236
    ram_addr_t addr;
3237
    ram_addr_t count = 0;
3238

    
3239
    for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3240
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3241
            count++;
3242
    }
3243

    
3244
    return count;
3245
}
3246

    
3247
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3248
{
3249
    ram_addr_t addr;
3250

    
3251
    if (stage == 1) {
3252
        /* Make sure all dirty bits are set */
3253
        for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3254
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3255
                cpu_physical_memory_set_dirty(addr);
3256
        }
3257
        
3258
        /* Enable dirty memory tracking */
3259
        cpu_physical_memory_set_dirty_tracking(1);
3260

    
3261
        qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3262
    }
3263

    
3264
    while (!qemu_file_rate_limit(f)) {
3265
        int ret;
3266

    
3267
        ret = ram_save_block(f);
3268
        if (ret == 0) /* no more blocks */
3269
            break;
3270
    }
3271

    
3272
    /* try transferring iterative blocks of memory */
3273

    
3274
    if (stage == 3) {
3275

    
3276
        /* flush all remaining blocks regardless of rate limiting */
3277
        while (ram_save_block(f) != 0);
3278
        cpu_physical_memory_set_dirty_tracking(0);
3279
    }
3280

    
3281
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3282

    
3283
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3284
}
3285

    
3286
static int ram_load_dead(QEMUFile *f, void *opaque)
3287
{
3288
    RamDecompressState s1, *s = &s1;
3289
    uint8_t buf[10];
3290
    ram_addr_t i;
3291

    
3292
    if (ram_decompress_open(s, f) < 0)
3293
        return -EINVAL;
3294
    for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3295
        if (ram_decompress_buf(s, buf, 1) < 0) {
3296
            fprintf(stderr, "Error while reading ram block header\n");
3297
            goto error;
3298
        }
3299
        if (buf[0] == 0) {
3300
            if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3301
                                   BDRV_HASH_BLOCK_SIZE) < 0) {
3302
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3303
                goto error;
3304
            }
3305
        } else {
3306
        error:
3307
            printf("Error block header\n");
3308
            return -EINVAL;
3309
        }
3310
    }
3311
    ram_decompress_close(s);
3312

    
3313
    return 0;
3314
}
3315

    
3316
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3317
{
3318
    ram_addr_t addr;
3319
    int flags;
3320

    
3321
    if (version_id == 1)
3322
        return ram_load_v1(f, opaque);
3323

    
3324
    if (version_id == 2) {
3325
        if (qemu_get_be32(f) != last_ram_offset)
3326
            return -EINVAL;
3327
        return ram_load_dead(f, opaque);
3328
    }
3329

    
3330
    if (version_id != 3)
3331
        return -EINVAL;
3332

    
3333
    do {
3334
        addr = qemu_get_be64(f);
3335

    
3336
        flags = addr & ~TARGET_PAGE_MASK;
3337
        addr &= TARGET_PAGE_MASK;
3338

    
3339
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3340
            if (addr != last_ram_offset)
3341
                return -EINVAL;
3342
        }
3343

    
3344
        if (flags & RAM_SAVE_FLAG_FULL) {
3345
            if (ram_load_dead(f, opaque) < 0)
3346
                return -EINVAL;
3347
        }
3348
        
3349
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3350
            uint8_t ch = qemu_get_byte(f);
3351
            memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3352
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3353
            qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3354
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3355

    
3356
    return 0;
3357
}
3358

    
3359
void qemu_service_io(void)
3360
{
3361
    qemu_notify_event();
3362
}
3363

    
3364
/***********************************************************/
3365
/* bottom halves (can be seen as timers which expire ASAP) */
3366

    
3367
struct QEMUBH {
3368
    QEMUBHFunc *cb;
3369
    void *opaque;
3370
    int scheduled;
3371
    int idle;
3372
    int deleted;
3373
    QEMUBH *next;
3374
};
3375

    
3376
static QEMUBH *first_bh = NULL;
3377

    
3378
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3379
{
3380
    QEMUBH *bh;
3381
    bh = qemu_mallocz(sizeof(QEMUBH));
3382
    bh->cb = cb;
3383
    bh->opaque = opaque;
3384
    bh->next = first_bh;
3385
    first_bh = bh;
3386
    return bh;
3387
}
3388

    
3389
int qemu_bh_poll(void)
3390
{
3391
    QEMUBH *bh, **bhp;
3392
    int ret;
3393

    
3394
    ret = 0;
3395
    for (bh = first_bh; bh; bh = bh->next) {
3396
        if (!bh->deleted && bh->scheduled) {
3397
            bh->scheduled = 0;
3398
            if (!bh->idle)
3399
                ret = 1;
3400
            bh->idle = 0;
3401
            bh->cb(bh->opaque);
3402
        }
3403
    }
3404

    
3405
    /* remove deleted bhs */
3406
    bhp = &first_bh;
3407
    while (*bhp) {
3408
        bh = *bhp;
3409
        if (bh->deleted) {
3410
            *bhp = bh->next;
3411
            qemu_free(bh);
3412
        } else
3413
            bhp = &bh->next;
3414
    }
3415

    
3416
    return ret;
3417
}
3418

    
3419
void qemu_bh_schedule_idle(QEMUBH *bh)
3420
{
3421
    if (bh->scheduled)
3422
        return;
3423
    bh->scheduled = 1;
3424
    bh->idle = 1;
3425
}
3426

    
3427
void qemu_bh_schedule(QEMUBH *bh)
3428
{
3429
    if (bh->scheduled)
3430
        return;
3431
    bh->scheduled = 1;
3432
    bh->idle = 0;
3433
    /* stop the currently executing CPU to execute the BH ASAP */
3434
    qemu_notify_event();
3435
}
3436

    
3437
void qemu_bh_cancel(QEMUBH *bh)
3438
{
3439
    bh->scheduled = 0;
3440
}
3441

    
3442
void qemu_bh_delete(QEMUBH *bh)
3443
{
3444
    bh->scheduled = 0;
3445
    bh->deleted = 1;
3446
}
3447

    
3448
static void qemu_bh_update_timeout(int *timeout)
3449
{
3450
    QEMUBH *bh;
3451

    
3452
    for (bh = first_bh; bh; bh = bh->next) {
3453
        if (!bh->deleted && bh->scheduled) {
3454
            if (bh->idle) {
3455
                /* idle bottom halves will be polled at least
3456
                 * every 10ms */
3457
                *timeout = MIN(10, *timeout);
3458
            } else {
3459
                /* non-idle bottom halves will be executed
3460
                 * immediately */
3461
                *timeout = 0;
3462
                break;
3463
            }
3464
        }
3465
    }
3466
}
3467

    
3468
/***********************************************************/
3469
/* machine registration */
3470

    
3471
static QEMUMachine *first_machine = NULL;
3472
QEMUMachine *current_machine = NULL;
3473

    
3474
int qemu_register_machine(QEMUMachine *m)
3475
{
3476
    QEMUMachine **pm;
3477
    pm = &first_machine;
3478
    while (*pm != NULL)
3479
        pm = &(*pm)->next;
3480
    m->next = NULL;
3481
    *pm = m;
3482
    return 0;
3483
}
3484

    
3485
static QEMUMachine *find_machine(const char *name)
3486
{
3487
    QEMUMachine *m;
3488

    
3489
    for(m = first_machine; m != NULL; m = m->next) {
3490
        if (!strcmp(m->name, name))
3491
            return m;
3492
    }
3493
    return NULL;
3494
}
3495

    
3496
/***********************************************************/
3497
/* main execution loop */
3498

    
3499
static void gui_update(void *opaque)
3500
{
3501
    uint64_t interval = GUI_REFRESH_INTERVAL;
3502
    DisplayState *ds = opaque;
3503
    DisplayChangeListener *dcl = ds->listeners;
3504

    
3505
    dpy_refresh(ds);
3506

    
3507
    while (dcl != NULL) {
3508
        if (dcl->gui_timer_interval &&
3509
            dcl->gui_timer_interval < interval)
3510
            interval = dcl->gui_timer_interval;
3511
        dcl = dcl->next;
3512
    }
3513
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3514
}
3515

    
3516
static void nographic_update(void *opaque)
3517
{
3518
    uint64_t interval = GUI_REFRESH_INTERVAL;
3519

    
3520
    qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3521
}
3522

    
3523
struct vm_change_state_entry {
3524
    VMChangeStateHandler *cb;
3525
    void *opaque;
3526
    LIST_ENTRY (vm_change_state_entry) entries;
3527
};
3528

    
3529
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3530

    
3531
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3532
                                                     void *opaque)
3533
{
3534
    VMChangeStateEntry *e;
3535

    
3536
    e = qemu_mallocz(sizeof (*e));
3537

    
3538
    e->cb = cb;
3539
    e->opaque = opaque;
3540
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3541
    return e;
3542
}
3543

    
3544
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3545
{
3546
    LIST_REMOVE (e, entries);
3547
    qemu_free (e);
3548
}
3549

    
3550
static void vm_state_notify(int running, int reason)
3551
{
3552
    VMChangeStateEntry *e;
3553

    
3554
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3555
        e->cb(e->opaque, running, reason);
3556
    }
3557
}
3558

    
3559
static void resume_all_vcpus(void);
3560
static void pause_all_vcpus(void);
3561

    
3562
void vm_start(void)
3563
{
3564
    if (!vm_running) {
3565
        cpu_enable_ticks();
3566
        vm_running = 1;
3567
        vm_state_notify(1, 0);
3568
        qemu_rearm_alarm_timer(alarm_timer);
3569
        resume_all_vcpus();
3570
    }
3571
}
3572

    
3573
/* reset/shutdown handler */
3574

    
3575
typedef struct QEMUResetEntry {
3576
    QEMUResetHandler *func;
3577
    void *opaque;
3578
    struct QEMUResetEntry *next;
3579
} QEMUResetEntry;
3580

    
3581
static QEMUResetEntry *first_reset_entry;
3582
static int reset_requested;
3583
static int shutdown_requested;
3584
static int powerdown_requested;
3585
static int debug_requested;
3586
static int vmstop_requested;
3587

    
3588
int qemu_shutdown_requested(void)
3589
{
3590
    int r = shutdown_requested;
3591
    shutdown_requested = 0;
3592
    return r;
3593
}
3594

    
3595
int qemu_reset_requested(void)
3596
{
3597
    int r = reset_requested;
3598
    reset_requested = 0;
3599
    return r;
3600
}
3601

    
3602
int qemu_powerdown_requested(void)
3603
{
3604
    int r = powerdown_requested;
3605
    powerdown_requested = 0;
3606
    return r;
3607
}
3608

    
3609
static int qemu_debug_requested(void)
3610
{
3611
    int r = debug_requested;
3612
    debug_requested = 0;
3613
    return r;
3614
}
3615

    
3616
static int qemu_vmstop_requested(void)
3617
{
3618
    int r = vmstop_requested;
3619
    vmstop_requested = 0;
3620
    return r;
3621
}
3622

    
3623
static void do_vm_stop(int reason)
3624
{
3625
    if (vm_running) {
3626
        cpu_disable_ticks();
3627
        vm_running = 0;
3628
        pause_all_vcpus();
3629
        vm_state_notify(0, reason);
3630
    }
3631
}
3632

    
3633
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3634
{
3635
    QEMUResetEntry **pre, *re;
3636

    
3637
    pre = &first_reset_entry;
3638
    while (*pre != NULL)
3639
        pre = &(*pre)->next;
3640
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3641
    re->func = func;
3642
    re->opaque = opaque;
3643
    re->next = NULL;
3644
    *pre = re;
3645
}
3646

    
3647
void qemu_system_reset(void)
3648
{
3649
    QEMUResetEntry *re;
3650

    
3651
    /* reset all devices */
3652
    for(re = first_reset_entry; re != NULL; re = re->next) {
3653
        re->func(re->opaque);
3654
    }
3655
    if (kvm_enabled())
3656
        kvm_sync_vcpus();
3657
}
3658

    
3659
void qemu_system_reset_request(void)
3660
{
3661
    if (no_reboot) {
3662
        shutdown_requested = 1;
3663
    } else {
3664
        reset_requested = 1;
3665
    }
3666
    qemu_notify_event();
3667
}
3668

    
3669
void qemu_system_shutdown_request(void)
3670
{
3671
    shutdown_requested = 1;
3672
    qemu_notify_event();
3673
}
3674

    
3675
void qemu_system_powerdown_request(void)
3676
{
3677
    powerdown_requested = 1;
3678
    qemu_notify_event();
3679
}
3680

    
3681
#ifdef CONFIG_IOTHREAD
3682
static void qemu_system_vmstop_request(int reason)
3683
{
3684
    vmstop_requested = reason;
3685
    qemu_notify_event();
3686
}
3687
#endif
3688

    
3689
#ifndef _WIN32
3690
static int io_thread_fd = -1;
3691

    
3692
static void qemu_event_increment(void)
3693
{
3694
    static const char byte = 0;
3695

    
3696
    if (io_thread_fd == -1)
3697
        return;
3698

    
3699
    write(io_thread_fd, &byte, sizeof(byte));
3700
}
3701

    
3702
static void qemu_event_read(void *opaque)
3703
{
3704
    int fd = (unsigned long)opaque;
3705
    ssize_t len;
3706

    
3707
    /* Drain the notify pipe */
3708
    do {
3709
        char buffer[512];
3710
        len = read(fd, buffer, sizeof(buffer));
3711
    } while ((len == -1 && errno == EINTR) || len > 0);
3712
}
3713

    
3714
static int qemu_event_init(void)
3715
{
3716
    int err;
3717
    int fds[2];
3718

    
3719
    err = pipe(fds);
3720
    if (err == -1)
3721
        return -errno;
3722

    
3723
    err = fcntl_setfl(fds[0], O_NONBLOCK);
3724
    if (err < 0)
3725
        goto fail;
3726

    
3727
    err = fcntl_setfl(fds[1], O_NONBLOCK);
3728
    if (err < 0)
3729
        goto fail;
3730

    
3731
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3732
                         (void *)(unsigned long)fds[0]);
3733

    
3734
    io_thread_fd = fds[1];
3735
    return 0;
3736

    
3737
fail:
3738
    close(fds[0]);
3739
    close(fds[1]);
3740
    return err;
3741
}
3742
#else
3743
HANDLE qemu_event_handle;
3744

    
3745
static void dummy_event_handler(void *opaque)
3746
{
3747
}
3748

    
3749
static int qemu_event_init(void)
3750
{
3751
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3752
    if (!qemu_event_handle) {
3753
        perror("Failed CreateEvent");
3754
        return -1;
3755
    }
3756
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3757
    return 0;
3758
}
3759

    
3760
static void qemu_event_increment(void)
3761
{
3762
    SetEvent(qemu_event_handle);
3763
}
3764
#endif
3765

    
3766
static int cpu_can_run(CPUState *env)
3767
{
3768
    if (env->stop)
3769
        return 0;
3770
    if (env->stopped)
3771
        return 0;
3772
    return 1;
3773
}
3774

    
3775
#ifndef CONFIG_IOTHREAD
3776
static int qemu_init_main_loop(void)
3777
{
3778
    return qemu_event_init();
3779
}
3780

    
3781
void qemu_init_vcpu(void *_env)
3782
{
3783
    CPUState *env = _env;
3784

    
3785
    if (kvm_enabled())
3786
        kvm_init_vcpu(env);
3787
    return;
3788
}
3789

    
3790
int qemu_cpu_self(void *env)
3791
{
3792
    return 1;
3793
}
3794

    
3795
static void resume_all_vcpus(void)
3796
{
3797
}
3798

    
3799
static void pause_all_vcpus(void)
3800
{
3801
}
3802

    
3803
void qemu_cpu_kick(void *env)
3804
{
3805
    return;
3806
}
3807

    
3808
void qemu_notify_event(void)
3809
{
3810
    CPUState *env = cpu_single_env;
3811

    
3812
    if (env) {
3813
        cpu_exit(env);
3814
#ifdef USE_KQEMU
3815
        if (env->kqemu_enabled)
3816
            kqemu_cpu_interrupt(env);
3817
#endif
3818
     }
3819
}
3820

    
3821
#define qemu_mutex_lock_iothread() do { } while (0)
3822
#define qemu_mutex_unlock_iothread() do { } while (0)
3823

    
3824
void vm_stop(int reason)
3825
{
3826
    do_vm_stop(reason);
3827
}
3828

    
3829
#else /* CONFIG_IOTHREAD */
3830

    
3831
#include "qemu-thread.h"
3832

    
3833
QemuMutex qemu_global_mutex;
3834
static QemuMutex qemu_fair_mutex;
3835

    
3836
static QemuThread io_thread;
3837

    
3838
static QemuThread *tcg_cpu_thread;
3839
static QemuCond *tcg_halt_cond;
3840

    
3841
static int qemu_system_ready;
3842
/* cpu creation */
3843
static QemuCond qemu_cpu_cond;
3844
/* system init */
3845
static QemuCond qemu_system_cond;
3846
static QemuCond qemu_pause_cond;
3847

    
3848
static void block_io_signals(void);
3849
static void unblock_io_signals(void);
3850
static int tcg_has_work(void);
3851

    
3852
static int qemu_init_main_loop(void)
3853
{
3854
    int ret;
3855

    
3856
    ret = qemu_event_init();
3857
    if (ret)
3858
        return ret;
3859

    
3860
    qemu_cond_init(&qemu_pause_cond);
3861
    qemu_mutex_init(&qemu_fair_mutex);
3862
    qemu_mutex_init(&qemu_global_mutex);
3863
    qemu_mutex_lock(&qemu_global_mutex);
3864

    
3865
    unblock_io_signals();
3866
    qemu_thread_self(&io_thread);
3867

    
3868
    return 0;
3869
}
3870

    
3871
static void qemu_wait_io_event(CPUState *env)
3872
{
3873
    while (!tcg_has_work())
3874
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3875

    
3876
    qemu_mutex_unlock(&qemu_global_mutex);
3877

    
3878
    /*
3879
     * Users of qemu_global_mutex can be starved, having no chance
3880
     * to acquire it since this path will get to it first.
3881
     * So use another lock to provide fairness.
3882
     */
3883
    qemu_mutex_lock(&qemu_fair_mutex);
3884
    qemu_mutex_unlock(&qemu_fair_mutex);
3885

    
3886
    qemu_mutex_lock(&qemu_global_mutex);
3887
    if (env->stop) {
3888
        env->stop = 0;
3889
        env->stopped = 1;
3890
        qemu_cond_signal(&qemu_pause_cond);
3891
    }
3892
}
3893

    
3894
static int qemu_cpu_exec(CPUState *env);
3895

    
3896
static void *kvm_cpu_thread_fn(void *arg)
3897
{
3898
    CPUState *env = arg;
3899

    
3900
    block_io_signals();
3901
    qemu_thread_self(env->thread);
3902

    
3903
    /* signal CPU creation */
3904
    qemu_mutex_lock(&qemu_global_mutex);
3905
    env->created = 1;
3906
    qemu_cond_signal(&qemu_cpu_cond);
3907

    
3908
    /* and wait for machine initialization */
3909
    while (!qemu_system_ready)
3910
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3911

    
3912
    while (1) {
3913
        if (cpu_can_run(env))
3914
            qemu_cpu_exec(env);
3915
        qemu_wait_io_event(env);
3916
    }
3917

    
3918
    return NULL;
3919
}
3920

    
3921
static void tcg_cpu_exec(void);
3922

    
3923
static void *tcg_cpu_thread_fn(void *arg)
3924
{
3925
    CPUState *env = arg;
3926

    
3927
    block_io_signals();
3928
    qemu_thread_self(env->thread);
3929

    
3930
    /* signal CPU creation */
3931
    qemu_mutex_lock(&qemu_global_mutex);
3932
    for (env = first_cpu; env != NULL; env = env->next_cpu)
3933
        env->created = 1;
3934
    qemu_cond_signal(&qemu_cpu_cond);
3935

    
3936
    /* and wait for machine initialization */
3937
    while (!qemu_system_ready)
3938
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3939

    
3940
    while (1) {
3941
        tcg_cpu_exec();
3942
        qemu_wait_io_event(cur_cpu);
3943
    }
3944

    
3945
    return NULL;
3946
}
3947

    
3948
void qemu_cpu_kick(void *_env)
3949
{
3950
    CPUState *env = _env;
3951
    qemu_cond_broadcast(env->halt_cond);
3952
    if (kvm_enabled())
3953
        qemu_thread_signal(env->thread, SIGUSR1);
3954
}
3955

    
3956
int qemu_cpu_self(void *env)
3957
{
3958
    return (cpu_single_env != NULL);
3959
}
3960

    
3961
static void cpu_signal(int sig)
3962
{
3963
    if (cpu_single_env)
3964
        cpu_exit(cpu_single_env);
3965
}
3966

    
3967
static void block_io_signals(void)
3968
{
3969
    sigset_t set;
3970
    struct sigaction sigact;
3971

    
3972
    sigemptyset(&set);
3973
    sigaddset(&set, SIGUSR2);
3974
    sigaddset(&set, SIGIO);
3975
    sigaddset(&set, SIGALRM);
3976
    pthread_sigmask(SIG_BLOCK, &set, NULL);
3977

    
3978
    sigemptyset(&set);
3979
    sigaddset(&set, SIGUSR1);
3980
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3981

    
3982
    memset(&sigact, 0, sizeof(sigact));
3983
    sigact.sa_handler = cpu_signal;
3984
    sigaction(SIGUSR1, &sigact, NULL);
3985
}
3986

    
3987
static void unblock_io_signals(void)
3988
{
3989
    sigset_t set;
3990

    
3991
    sigemptyset(&set);
3992
    sigaddset(&set, SIGUSR2);
3993
    sigaddset(&set, SIGIO);
3994
    sigaddset(&set, SIGALRM);
3995
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3996

    
3997
    sigemptyset(&set);
3998
    sigaddset(&set, SIGUSR1);
3999
    pthread_sigmask(SIG_BLOCK, &set, NULL);
4000
}
4001

    
4002
static void qemu_signal_lock(unsigned int msecs)
4003
{
4004
    qemu_mutex_lock(&qemu_fair_mutex);
4005

    
4006
    while (qemu_mutex_trylock(&qemu_global_mutex)) {
4007
        qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4008
        if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4009
            break;
4010
    }
4011
    qemu_mutex_unlock(&qemu_fair_mutex);
4012
}
4013

    
4014
static void qemu_mutex_lock_iothread(void)
4015
{
4016
    if (kvm_enabled()) {
4017
        qemu_mutex_lock(&qemu_fair_mutex);
4018
        qemu_mutex_lock(&qemu_global_mutex);
4019
        qemu_mutex_unlock(&qemu_fair_mutex);
4020
    } else
4021
        qemu_signal_lock(100);
4022
}
4023

    
4024
static void qemu_mutex_unlock_iothread(void)
4025
{
4026
    qemu_mutex_unlock(&qemu_global_mutex);
4027
}
4028

    
4029
static int all_vcpus_paused(void)
4030
{
4031
    CPUState *penv = first_cpu;
4032

    
4033
    while (penv) {
4034
        if (!penv->stopped)
4035
            return 0;
4036
        penv = (CPUState *)penv->next_cpu;
4037
    }
4038

    
4039
    return 1;
4040
}
4041

    
4042
static void pause_all_vcpus(void)
4043
{
4044
    CPUState *penv = first_cpu;
4045

    
4046
    while (penv) {
4047
        penv->stop = 1;
4048
        qemu_thread_signal(penv->thread, SIGUSR1);
4049
        qemu_cpu_kick(penv);
4050
        penv = (CPUState *)penv->next_cpu;
4051
    }
4052

    
4053
    while (!all_vcpus_paused()) {
4054
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4055
        penv = first_cpu;
4056
        while (penv) {
4057
            qemu_thread_signal(penv->thread, SIGUSR1);
4058
            penv = (CPUState *)penv->next_cpu;
4059
        }
4060
    }
4061
}
4062

    
4063
static void resume_all_vcpus(void)
4064
{
4065
    CPUState *penv = first_cpu;
4066

    
4067
    while (penv) {
4068
        penv->stop = 0;
4069
        penv->stopped = 0;
4070
        qemu_thread_signal(penv->thread, SIGUSR1);
4071
        qemu_cpu_kick(penv);
4072
        penv = (CPUState *)penv->next_cpu;
4073
    }
4074
}
4075

    
4076
static void tcg_init_vcpu(void *_env)
4077
{
4078
    CPUState *env = _env;
4079
    /* share a single thread for all cpus with TCG */
4080
    if (!tcg_cpu_thread) {
4081
        env->thread = qemu_mallocz(sizeof(QemuThread));
4082
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4083
        qemu_cond_init(env->halt_cond);
4084
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4085
        while (env->created == 0)
4086
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4087
        tcg_cpu_thread = env->thread;
4088
        tcg_halt_cond = env->halt_cond;
4089
    } else {
4090
        env->thread = tcg_cpu_thread;
4091
        env->halt_cond = tcg_halt_cond;
4092
    }
4093
}
4094

    
4095
static void kvm_start_vcpu(CPUState *env)
4096
{
4097
    kvm_init_vcpu(env);
4098
    env->thread = qemu_mallocz(sizeof(QemuThread));
4099
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4100
    qemu_cond_init(env->halt_cond);
4101
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4102
    while (env->created == 0)
4103
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4104
}
4105

    
4106
void qemu_init_vcpu(void *_env)
4107
{
4108
    CPUState *env = _env;
4109

    
4110
    if (kvm_enabled())
4111
        kvm_start_vcpu(env);
4112
    else
4113
        tcg_init_vcpu(env);
4114
}
4115

    
4116
void qemu_notify_event(void)
4117
{
4118
    qemu_event_increment();
4119
}
4120

    
4121
void vm_stop(int reason)
4122
{
4123
    QemuThread me;
4124
    qemu_thread_self(&me);
4125

    
4126
    if (!qemu_thread_equal(&me, &io_thread)) {
4127
        qemu_system_vmstop_request(reason);
4128
        /*
4129
         * FIXME: should not return to device code in case
4130
         * vm_stop() has been requested.
4131
         */
4132
        if (cpu_single_env) {
4133
            cpu_exit(cpu_single_env);
4134
            cpu_single_env->stop = 1;
4135
        }
4136
        return;
4137
    }
4138
    do_vm_stop(reason);
4139
}
4140

    
4141
#endif
4142

    
4143

    
4144
#ifdef _WIN32
4145
static void host_main_loop_wait(int *timeout)
4146
{
4147
    int ret, ret2, i;
4148
    PollingEntry *pe;
4149

    
4150

    
4151
    /* XXX: need to suppress polling by better using win32 events */
4152
    ret = 0;
4153
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4154
        ret |= pe->func(pe->opaque);
4155
    }
4156
    if (ret == 0) {
4157
        int err;
4158
        WaitObjects *w = &wait_objects;
4159

    
4160
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4161
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4162
            if (w->func[ret - WAIT_OBJECT_0])
4163
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4164

    
4165
            /* Check for additional signaled events */
4166
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4167

    
4168
                /* Check if event is signaled */
4169
                ret2 = WaitForSingleObject(w->events[i], 0);
4170
                if(ret2 == WAIT_OBJECT_0) {
4171
                    if (w->func[i])
4172
                        w->func[i](w->opaque[i]);
4173
                } else if (ret2 == WAIT_TIMEOUT) {
4174
                } else {
4175
                    err = GetLastError();
4176
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4177
                }
4178
            }
4179
        } else if (ret == WAIT_TIMEOUT) {
4180
        } else {
4181
            err = GetLastError();
4182
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4183
        }
4184
    }
4185

    
4186
    *timeout = 0;
4187
}
4188
#else
4189
static void host_main_loop_wait(int *timeout)
4190
{
4191
}
4192
#endif
4193

    
4194
void main_loop_wait(int timeout)
4195
{
4196
    IOHandlerRecord *ioh;
4197
    fd_set rfds, wfds, xfds;
4198
    int ret, nfds;
4199
    struct timeval tv;
4200

    
4201
    qemu_bh_update_timeout(&timeout);
4202

    
4203
    host_main_loop_wait(&timeout);
4204

    
4205
    /* poll any events */
4206
    /* XXX: separate device handlers from system ones */
4207
    nfds = -1;
4208
    FD_ZERO(&rfds);
4209
    FD_ZERO(&wfds);
4210
    FD_ZERO(&xfds);
4211
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4212
        if (ioh->deleted)
4213
            continue;
4214
        if (ioh->fd_read &&
4215
            (!ioh->fd_read_poll ||
4216
             ioh->fd_read_poll(ioh->opaque) != 0)) {
4217
            FD_SET(ioh->fd, &rfds);
4218
            if (ioh->fd > nfds)
4219
                nfds = ioh->fd;
4220
        }
4221
        if (ioh->fd_write) {
4222
            FD_SET(ioh->fd, &wfds);
4223
            if (ioh->fd > nfds)
4224
                nfds = ioh->fd;
4225
        }
4226
    }
4227

    
4228
    tv.tv_sec = timeout / 1000;
4229
    tv.tv_usec = (timeout % 1000) * 1000;
4230

    
4231
#if defined(CONFIG_SLIRP)
4232
    if (slirp_is_inited()) {
4233
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4234
    }
4235
#endif
4236
    qemu_mutex_unlock_iothread();
4237
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4238
    qemu_mutex_lock_iothread();
4239
    if (ret > 0) {
4240
        IOHandlerRecord **pioh;
4241

    
4242
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4243
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4244
                ioh->fd_read(ioh->opaque);
4245
            }
4246
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4247
                ioh->fd_write(ioh->opaque);
4248
            }
4249
        }
4250

    
4251
        /* remove deleted IO handlers */
4252
        pioh = &first_io_handler;
4253
        while (*pioh) {
4254
            ioh = *pioh;
4255
            if (ioh->deleted) {
4256
                *pioh = ioh->next;
4257
                qemu_free(ioh);
4258
            } else
4259
                pioh = &ioh->next;
4260
        }
4261
    }
4262
#if defined(CONFIG_SLIRP)
4263
    if (slirp_is_inited()) {
4264
        if (ret < 0) {
4265
            FD_ZERO(&rfds);
4266
            FD_ZERO(&wfds);
4267
            FD_ZERO(&xfds);
4268
        }
4269
        slirp_select_poll(&rfds, &wfds, &xfds);
4270
    }
4271
#endif
4272

    
4273
    /* rearm timer, if not periodic */
4274
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4275
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4276
        qemu_rearm_alarm_timer(alarm_timer);
4277
    }
4278

    
4279
    /* vm time timers */
4280
    if (vm_running) {
4281
        if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4282
            qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4283
                qemu_get_clock(vm_clock));
4284
    }
4285

    
4286
    /* real time timers */
4287
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4288
                    qemu_get_clock(rt_clock));
4289

    
4290
    /* Check bottom-halves last in case any of the earlier events triggered
4291
       them.  */
4292
    qemu_bh_poll();
4293

    
4294
}
4295

    
4296
static int qemu_cpu_exec(CPUState *env)
4297
{
4298
    int ret;
4299
#ifdef CONFIG_PROFILER
4300
    int64_t ti;
4301
#endif
4302

    
4303
#ifdef CONFIG_PROFILER
4304
    ti = profile_getclock();
4305
#endif
4306
    if (use_icount) {
4307
        int64_t count;
4308
        int decr;
4309
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4310
        env->icount_decr.u16.low = 0;
4311
        env->icount_extra = 0;
4312
        count = qemu_next_deadline();
4313
        count = (count + (1 << icount_time_shift) - 1)
4314
                >> icount_time_shift;
4315
        qemu_icount += count;
4316
        decr = (count > 0xffff) ? 0xffff : count;
4317
        count -= decr;
4318
        env->icount_decr.u16.low = decr;
4319
        env->icount_extra = count;
4320
    }
4321
    ret = cpu_exec(env);
4322
#ifdef CONFIG_PROFILER
4323
    qemu_time += profile_getclock() - ti;
4324
#endif
4325
    if (use_icount) {
4326
        /* Fold pending instructions back into the
4327
           instruction counter, and clear the interrupt flag.  */
4328
        qemu_icount -= (env->icount_decr.u16.low
4329
                        + env->icount_extra);
4330
        env->icount_decr.u32 = 0;
4331
        env->icount_extra = 0;
4332
    }
4333
    return ret;
4334
}
4335

    
4336
static void tcg_cpu_exec(void)
4337
{
4338
    int ret = 0;
4339

    
4340
    if (next_cpu == NULL)
4341
        next_cpu = first_cpu;
4342
    for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4343
        CPUState *env = cur_cpu = next_cpu;
4344

    
4345
        if (!vm_running)
4346
            break;
4347
        if (timer_alarm_pending) {
4348
            timer_alarm_pending = 0;
4349
            break;
4350
        }
4351
        if (cpu_can_run(env))
4352
            ret = qemu_cpu_exec(env);
4353
        if (ret == EXCP_DEBUG) {
4354
            gdb_set_stop_cpu(env);
4355
            debug_requested = 1;
4356
            break;
4357
        }
4358
    }
4359
}
4360

    
4361
static int cpu_has_work(CPUState *env)
4362
{
4363
    if (env->stop)
4364
        return 1;
4365
    if (env->stopped)
4366
        return 0;
4367
    if (!env->halted)
4368
        return 1;
4369
    if (qemu_cpu_has_work(env))
4370
        return 1;
4371
    return 0;
4372
}
4373

    
4374
static int tcg_has_work(void)
4375
{
4376
    CPUState *env;
4377

    
4378
    for (env = first_cpu; env != NULL; env = env->next_cpu)
4379
        if (cpu_has_work(env))
4380
            return 1;
4381
    return 0;
4382
}
4383

    
4384
static int qemu_calculate_timeout(void)
4385
{
4386
    int timeout;
4387

    
4388
    if (!vm_running)
4389
        timeout = 5000;
4390
    else if (tcg_has_work())
4391
        timeout = 0;
4392
    else if (!use_icount)
4393
        timeout = 5000;
4394
    else {
4395
     /* XXX: use timeout computed from timers */
4396
        int64_t add;
4397
        int64_t delta;
4398
        /* Advance virtual time to the next event.  */
4399
        if (use_icount == 1) {
4400
            /* When not using an adaptive execution frequency
4401
               we tend to get badly out of sync with real time,
4402
               so just delay for a reasonable amount of time.  */
4403
            delta = 0;
4404
        } else {
4405
            delta = cpu_get_icount() - cpu_get_clock();
4406
        }
4407
        if (delta > 0) {
4408
            /* If virtual time is ahead of real time then just
4409
               wait for IO.  */
4410
            timeout = (delta / 1000000) + 1;
4411
        } else {
4412
            /* Wait for either IO to occur or the next
4413
               timer event.  */
4414
            add = qemu_next_deadline();
4415
            /* We advance the timer before checking for IO.
4416
               Limit the amount we advance so that early IO
4417
               activity won't get the guest too far ahead.  */
4418
            if (add > 10000000)
4419
                add = 10000000;
4420
            delta += add;
4421
            add = (add + (1 << icount_time_shift) - 1)
4422
                  >> icount_time_shift;
4423
            qemu_icount += add;
4424
            timeout = delta / 1000000;
4425
            if (timeout < 0)
4426
                timeout = 0;
4427
        }
4428
    }
4429

    
4430
    return timeout;
4431
}
4432

    
4433
static int vm_can_run(void)
4434
{
4435
    if (powerdown_requested)
4436
        return 0;
4437
    if (reset_requested)
4438
        return 0;
4439
    if (shutdown_requested)
4440
        return 0;
4441
    if (debug_requested)
4442
        return 0;
4443
    return 1;
4444
}
4445

    
4446
static void main_loop(void)
4447
{
4448
    int r;
4449

    
4450
#ifdef CONFIG_IOTHREAD
4451
    qemu_system_ready = 1;
4452
    qemu_cond_broadcast(&qemu_system_cond);
4453
#endif
4454

    
4455
    for (;;) {
4456
        do {
4457
#ifdef CONFIG_PROFILER
4458
            int64_t ti;
4459
#endif
4460
#ifndef CONFIG_IOTHREAD
4461
            tcg_cpu_exec();
4462
#endif
4463
#ifdef CONFIG_PROFILER
4464
            ti = profile_getclock();
4465
#endif
4466
#ifdef CONFIG_IOTHREAD
4467
            main_loop_wait(1000);
4468
#else
4469
            main_loop_wait(qemu_calculate_timeout());
4470
#endif
4471
#ifdef CONFIG_PROFILER
4472
            dev_time += profile_getclock() - ti;
4473
#endif
4474
        } while (vm_can_run());
4475

    
4476
        if (qemu_debug_requested())
4477
            vm_stop(EXCP_DEBUG);
4478
        if (qemu_shutdown_requested()) {
4479
            if (no_shutdown) {
4480
                vm_stop(0);
4481
                no_shutdown = 0;
4482
            } else
4483
                break;
4484
        }
4485
        if (qemu_reset_requested()) {
4486
            pause_all_vcpus();
4487
            qemu_system_reset();
4488
            resume_all_vcpus();
4489
        }
4490
        if (qemu_powerdown_requested())
4491
            qemu_system_powerdown();
4492
        if ((r = qemu_vmstop_requested()))
4493
            vm_stop(r);
4494
    }
4495
    pause_all_vcpus();
4496
}
4497

    
4498
static void version(void)
4499
{
4500
    printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4501
}
4502

    
4503
static void help(int exitcode)
4504
{
4505
    version();
4506
    printf("usage: %s [options] [disk_image]\n"
4507
           "\n"
4508
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4509
           "\n"
4510
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4511
           opt_help
4512
#define DEFHEADING(text) stringify(text) "\n"
4513
#include "qemu-options.h"
4514
#undef DEF
4515
#undef DEFHEADING
4516
#undef GEN_DOCS
4517
           "\n"
4518
           "During emulation, the following keys are useful:\n"
4519
           "ctrl-alt-f      toggle full screen\n"
4520
           "ctrl-alt-n      switch to virtual console 'n'\n"
4521
           "ctrl-alt        toggle mouse and keyboard grab\n"
4522
           "\n"
4523
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4524
           ,
4525
           "qemu",
4526
           DEFAULT_RAM_SIZE,
4527
#ifndef _WIN32
4528
           DEFAULT_NETWORK_SCRIPT,
4529
           DEFAULT_NETWORK_DOWN_SCRIPT,
4530
#endif
4531
           DEFAULT_GDBSTUB_PORT,
4532
           "/tmp/qemu.log");
4533
    exit(exitcode);
4534
}
4535

    
4536
#define HAS_ARG 0x0001
4537

    
4538
enum {
4539
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4540
    opt_enum,
4541
#define DEFHEADING(text)
4542
#include "qemu-options.h"
4543
#undef DEF
4544
#undef DEFHEADING
4545
#undef GEN_DOCS
4546
};
4547

    
4548
typedef struct QEMUOption {
4549
    const char *name;
4550
    int flags;
4551
    int index;
4552
} QEMUOption;
4553

    
4554
static const QEMUOption qemu_options[] = {
4555
    { "h", 0, QEMU_OPTION_h },
4556
#define DEF(option, opt_arg, opt_enum, opt_help)        \
4557
    { option, opt_arg, opt_enum },
4558
#define DEFHEADING(text)
4559
#include "qemu-options.h"
4560
#undef DEF
4561
#undef DEFHEADING
4562
#undef GEN_DOCS
4563
    { NULL },
4564
};
4565

    
4566
#ifdef HAS_AUDIO
4567
struct soundhw soundhw[] = {
4568
#ifdef HAS_AUDIO_CHOICE
4569
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4570
    {
4571
        "pcspk",
4572
        "PC speaker",
4573
        0,
4574
        1,
4575
        { .init_isa = pcspk_audio_init }
4576
    },
4577
#endif
4578

    
4579
#ifdef CONFIG_SB16
4580
    {
4581
        "sb16",
4582
        "Creative Sound Blaster 16",
4583
        0,
4584
        1,
4585
        { .init_isa = SB16_init }
4586
    },
4587
#endif
4588

    
4589
#ifdef CONFIG_CS4231A
4590
    {
4591
        "cs4231a",
4592
        "CS4231A",
4593
        0,
4594
        1,
4595
        { .init_isa = cs4231a_init }
4596
    },
4597
#endif
4598

    
4599
#ifdef CONFIG_ADLIB
4600
    {
4601
        "adlib",
4602
#ifdef HAS_YMF262
4603
        "Yamaha YMF262 (OPL3)",
4604
#else
4605
        "Yamaha YM3812 (OPL2)",
4606
#endif
4607
        0,
4608
        1,
4609
        { .init_isa = Adlib_init }
4610
    },
4611
#endif
4612

    
4613
#ifdef CONFIG_GUS
4614
    {
4615
        "gus",
4616
        "Gravis Ultrasound GF1",
4617
        0,
4618
        1,
4619
        { .init_isa = GUS_init }
4620
    },
4621
#endif
4622

    
4623
#ifdef CONFIG_AC97
4624
    {
4625
        "ac97",
4626
        "Intel 82801AA AC97 Audio",
4627
        0,
4628
        0,
4629
        { .init_pci = ac97_init }
4630
    },
4631
#endif
4632

    
4633
#ifdef CONFIG_ES1370
4634
    {
4635
        "es1370",
4636
        "ENSONIQ AudioPCI ES1370",
4637
        0,
4638
        0,
4639
        { .init_pci = es1370_init }
4640
    },
4641
#endif
4642

    
4643
#endif /* HAS_AUDIO_CHOICE */
4644

    
4645
    { NULL, NULL, 0, 0, { NULL } }
4646
};
4647

    
4648
static void select_soundhw (const char *optarg)
4649
{
4650
    struct soundhw *c;
4651

    
4652
    if (*optarg == '?') {
4653
    show_valid_cards:
4654

    
4655
        printf ("Valid sound card names (comma separated):\n");
4656
        for (c = soundhw; c->name; ++c) {
4657
            printf ("%-11s %s\n", c->name, c->descr);
4658
        }
4659
        printf ("\n-soundhw all will enable all of the above\n");
4660
        exit (*optarg != '?');
4661
    }
4662
    else {
4663
        size_t l;
4664
        const char *p;
4665
        char *e;
4666
        int bad_card = 0;
4667

    
4668
        if (!strcmp (optarg, "all")) {
4669
            for (c = soundhw; c->name; ++c) {
4670
                c->enabled = 1;
4671
            }
4672
            return;
4673
        }
4674

    
4675
        p = optarg;
4676
        while (*p) {
4677
            e = strchr (p, ',');
4678
            l = !e ? strlen (p) : (size_t) (e - p);
4679

    
4680
            for (c = soundhw; c->name; ++c) {
4681
                if (!strncmp (c->name, p, l)) {
4682
                    c->enabled = 1;
4683
                    break;
4684
                }
4685
            }
4686

    
4687
            if (!c->name) {
4688
                if (l > 80) {
4689
                    fprintf (stderr,
4690
                             "Unknown sound card name (too big to show)\n");
4691
                }
4692
                else {
4693
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4694
                             (int) l, p);
4695
                }
4696
                bad_card = 1;
4697
            }
4698
            p += l + (e != NULL);
4699
        }
4700

    
4701
        if (bad_card)
4702
            goto show_valid_cards;
4703
    }
4704
}
4705
#endif
4706

    
4707
static void select_vgahw (const char *p)
4708
{
4709
    const char *opts;
4710

    
4711
    cirrus_vga_enabled = 0;
4712
    std_vga_enabled = 0;
4713
    vmsvga_enabled = 0;
4714
    xenfb_enabled = 0;
4715
    if (strstart(p, "std", &opts)) {
4716
        std_vga_enabled = 1;
4717
    } else if (strstart(p, "cirrus", &opts)) {
4718
        cirrus_vga_enabled = 1;
4719
    } else if (strstart(p, "vmware", &opts)) {
4720
        vmsvga_enabled = 1;
4721
    } else if (strstart(p, "xenfb", &opts)) {
4722
        xenfb_enabled = 1;
4723
    } else if (!strstart(p, "none", &opts)) {
4724
    invalid_vga:
4725
        fprintf(stderr, "Unknown vga type: %s\n", p);
4726
        exit(1);
4727
    }
4728
    while (*opts) {
4729
        const char *nextopt;
4730

    
4731
        if (strstart(opts, ",retrace=", &nextopt)) {
4732
            opts = nextopt;
4733
            if (strstart(opts, "dumb", &nextopt))
4734
                vga_retrace_method = VGA_RETRACE_DUMB;
4735
            else if (strstart(opts, "precise", &nextopt))
4736
                vga_retrace_method = VGA_RETRACE_PRECISE;
4737
            else goto invalid_vga;
4738
        } else goto invalid_vga;
4739
        opts = nextopt;
4740
    }
4741
}
4742

    
4743
#ifdef _WIN32
4744
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4745
{
4746
    exit(STATUS_CONTROL_C_EXIT);
4747
    return TRUE;
4748
}
4749
#endif
4750

    
4751
int qemu_uuid_parse(const char *str, uint8_t *uuid)
4752
{
4753
    int ret;
4754

    
4755
    if(strlen(str) != 36)
4756
        return -1;
4757

    
4758
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4759
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4760
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4761

    
4762
    if(ret != 16)
4763
        return -1;
4764

    
4765
#ifdef TARGET_I386
4766
    smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4767
#endif
4768

    
4769
    return 0;
4770
}
4771

    
4772
#define MAX_NET_CLIENTS 32
4773

    
4774
#ifndef _WIN32
4775

    
4776
static void termsig_handler(int signal)
4777
{
4778
    qemu_system_shutdown_request();
4779
}
4780

    
4781
static void termsig_setup(void)
4782
{
4783
    struct sigaction act;
4784

    
4785
    memset(&act, 0, sizeof(act));
4786
    act.sa_handler = termsig_handler;
4787
    sigaction(SIGINT,  &act, NULL);
4788
    sigaction(SIGHUP,  &act, NULL);
4789
    sigaction(SIGTERM, &act, NULL);
4790
}
4791

    
4792
#endif
4793

    
4794
int main(int argc, char **argv, char **envp)
4795
{
4796
    const char *gdbstub_dev = NULL;
4797
    uint32_t boot_devices_bitmap = 0;
4798
    int i;
4799
    int snapshot, linux_boot, net_boot;
4800
    const char *initrd_filename;
4801
    const char *kernel_filename, *kernel_cmdline;
4802
    const char *boot_devices = "";
4803
    DisplayState *ds;
4804
    DisplayChangeListener *dcl;
4805
    int cyls, heads, secs, translation;
4806
    const char *net_clients[MAX_NET_CLIENTS];
4807
    int nb_net_clients;
4808
    const char *bt_opts[MAX_BT_CMDLINE];
4809
    int nb_bt_opts;
4810
    int hda_index;
4811
    int optind;
4812
    const char *r, *optarg;
4813
    CharDriverState *monitor_hd = NULL;
4814
    const char *monitor_device;
4815
    const char *serial_devices[MAX_SERIAL_PORTS];
4816
    int serial_device_index;
4817
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4818
    int parallel_device_index;
4819
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4820
    int virtio_console_index;
4821
    const char *loadvm = NULL;
4822
    QEMUMachine *machine;
4823
    const char *cpu_model;
4824
    const char *usb_devices[MAX_USB_CMDLINE];
4825
    int usb_devices_index;
4826
#ifndef _WIN32
4827
    int fds[2];
4828
#endif
4829
    int tb_size;
4830
    const char *pid_file = NULL;
4831
    const char *incoming = NULL;
4832
#ifndef _WIN32
4833
    int fd = 0;
4834
    struct passwd *pwd = NULL;
4835
    const char *chroot_dir = NULL;
4836
    const char *run_as = NULL;
4837
#endif
4838
    CPUState *env;
4839

    
4840
    qemu_cache_utils_init(envp);
4841

    
4842
    LIST_INIT (&vm_change_state_head);
4843
#ifndef _WIN32
4844
    {
4845
        struct sigaction act;
4846
        sigfillset(&act.sa_mask);
4847
        act.sa_flags = 0;
4848
        act.sa_handler = SIG_IGN;
4849
        sigaction(SIGPIPE, &act, NULL);
4850
    }
4851
#else
4852
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4853
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4854
       QEMU to run on a single CPU */
4855
    {
4856
        HANDLE h;
4857
        DWORD mask, smask;
4858
        int i;
4859
        h = GetCurrentProcess();
4860
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4861
            for(i = 0; i < 32; i++) {
4862
                if (mask & (1 << i))
4863
                    break;
4864
            }
4865
            if (i != 32) {
4866
                mask = 1 << i;
4867
                SetProcessAffinityMask(h, mask);
4868
            }
4869
        }
4870
    }
4871
#endif
4872

    
4873
    register_machines();
4874
    machine = first_machine;
4875
    cpu_model = NULL;
4876
    initrd_filename = NULL;
4877
    ram_size = 0;
4878
    vga_ram_size = VGA_RAM_SIZE;
4879
    snapshot = 0;
4880
    nographic = 0;
4881
    curses = 0;
4882
    kernel_filename = NULL;
4883
    kernel_cmdline = "";
4884
    cyls = heads = secs = 0;
4885
    translation = BIOS_ATA_TRANSLATION_AUTO;
4886
    monitor_device = "vc:80Cx24C";
4887

    
4888
    serial_devices[0] = "vc:80Cx24C";
4889
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4890
        serial_devices[i] = NULL;
4891
    serial_device_index = 0;
4892

    
4893
    parallel_devices[0] = "vc:80Cx24C";
4894
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4895
        parallel_devices[i] = NULL;
4896
    parallel_device_index = 0;
4897

    
4898
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4899
        virtio_consoles[i] = NULL;
4900
    virtio_console_index = 0;
4901

    
4902
    for (i = 0; i < MAX_NODES; i++) {
4903
        node_mem[i] = 0;
4904
        node_cpumask[i] = 0;
4905
    }
4906

    
4907
    usb_devices_index = 0;
4908

    
4909
    nb_net_clients = 0;
4910
    nb_bt_opts = 0;
4911
    nb_drives = 0;
4912
    nb_drives_opt = 0;
4913
    nb_numa_nodes = 0;
4914
    hda_index = -1;
4915

    
4916
    nb_nics = 0;
4917

    
4918
    tb_size = 0;
4919
    autostart= 1;
4920

    
4921
    register_watchdogs();
4922

    
4923
    optind = 1;
4924
    for(;;) {
4925
        if (optind >= argc)
4926
            break;
4927
        r = argv[optind];
4928
        if (r[0] != '-') {
4929
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4930
        } else {
4931
            const QEMUOption *popt;
4932

    
4933
            optind++;
4934
            /* Treat --foo the same as -foo.  */
4935
            if (r[1] == '-')
4936
                r++;
4937
            popt = qemu_options;
4938
            for(;;) {
4939
                if (!popt->name) {
4940
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4941
                            argv[0], r);
4942
                    exit(1);
4943
                }
4944
                if (!strcmp(popt->name, r + 1))
4945
                    break;
4946
                popt++;
4947
            }
4948
            if (popt->flags & HAS_ARG) {
4949
                if (optind >= argc) {
4950
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4951
                            argv[0], r);
4952
                    exit(1);
4953
                }
4954
                optarg = argv[optind++];
4955
            } else {
4956
                optarg = NULL;
4957
            }
4958

    
4959
            switch(popt->index) {
4960
            case QEMU_OPTION_M:
4961
                machine = find_machine(optarg);
4962
                if (!machine) {
4963
                    QEMUMachine *m;
4964
                    printf("Supported machines are:\n");
4965
                    for(m = first_machine; m != NULL; m = m->next) {
4966
                        printf("%-10s %s%s\n",
4967
                               m->name, m->desc,
4968
                               m == first_machine ? " (default)" : "");
4969
                    }
4970
                    exit(*optarg != '?');
4971
                }
4972
                break;
4973
            case QEMU_OPTION_cpu:
4974
                /* hw initialization will check this */
4975
                if (*optarg == '?') {
4976
/* XXX: implement xxx_cpu_list for targets that still miss it */
4977
#if defined(cpu_list)
4978
                    cpu_list(stdout, &fprintf);
4979
#endif
4980
                    exit(0);
4981
                } else {
4982
                    cpu_model = optarg;
4983
                }
4984
                break;
4985
            case QEMU_OPTION_initrd:
4986
                initrd_filename = optarg;
4987
                break;
4988
            case QEMU_OPTION_hda:
4989
                if (cyls == 0)
4990
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4991
                else
4992
                    hda_index = drive_add(optarg, HD_ALIAS
4993
                             ",cyls=%d,heads=%d,secs=%d%s",
4994
                             0, cyls, heads, secs,
4995
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4996
                                 ",trans=lba" :
4997
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4998
                                 ",trans=none" : "");
4999
                 break;
5000
            case QEMU_OPTION_hdb:
5001
            case QEMU_OPTION_hdc:
5002
            case QEMU_OPTION_hdd:
5003
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5004
                break;
5005
            case QEMU_OPTION_drive:
5006
                drive_add(NULL, "%s", optarg);
5007
                break;
5008
            case QEMU_OPTION_mtdblock:
5009
                drive_add(optarg, MTD_ALIAS);
5010
                break;
5011
            case QEMU_OPTION_sd:
5012
                drive_add(optarg, SD_ALIAS);
5013
                break;
5014
            case QEMU_OPTION_pflash:
5015
                drive_add(optarg, PFLASH_ALIAS);
5016
                break;
5017
            case QEMU_OPTION_snapshot:
5018
                snapshot = 1;
5019
                break;
5020
            case QEMU_OPTION_hdachs:
5021
                {
5022
                    const char *p;
5023
                    p = optarg;
5024
                    cyls = strtol(p, (char **)&p, 0);
5025
                    if (cyls < 1 || cyls > 16383)
5026
                        goto chs_fail;
5027
                    if (*p != ',')
5028
                        goto chs_fail;
5029
                    p++;
5030
                    heads = strtol(p, (char **)&p, 0);
5031
                    if (heads < 1 || heads > 16)
5032
                        goto chs_fail;
5033
                    if (*p != ',')
5034
                        goto chs_fail;
5035
                    p++;
5036
                    secs = strtol(p, (char **)&p, 0);
5037
                    if (secs < 1 || secs > 63)
5038
                        goto chs_fail;
5039
                    if (*p == ',') {
5040
                        p++;
5041
                        if (!strcmp(p, "none"))
5042
                            translation = BIOS_ATA_TRANSLATION_NONE;
5043
                        else if (!strcmp(p, "lba"))
5044
                            translation = BIOS_ATA_TRANSLATION_LBA;
5045
                        else if (!strcmp(p, "auto"))
5046
                            translation = BIOS_ATA_TRANSLATION_AUTO;
5047
                        else
5048
                            goto chs_fail;
5049
                    } else if (*p != '\0') {
5050
                    chs_fail:
5051
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
5052
                        exit(1);
5053
                    }
5054
                    if (hda_index != -1)
5055
                        snprintf(drives_opt[hda_index].opt,
5056
                                 sizeof(drives_opt[hda_index].opt),
5057
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5058
                                 0, cyls, heads, secs,
5059
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
5060
                                         ",trans=lba" :
5061
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
5062
                                     ",trans=none" : "");
5063
                }
5064
                break;
5065
            case QEMU_OPTION_numa:
5066
                if (nb_numa_nodes >= MAX_NODES) {
5067
                    fprintf(stderr, "qemu: too many NUMA nodes\n");
5068
                    exit(1);
5069
                }
5070
                numa_add(optarg);
5071
                break;
5072
            case QEMU_OPTION_nographic:
5073
                nographic = 1;
5074
                break;
5075
#ifdef CONFIG_CURSES
5076
            case QEMU_OPTION_curses:
5077
                curses = 1;
5078
                break;
5079
#endif
5080
            case QEMU_OPTION_portrait:
5081
                graphic_rotate = 1;
5082
                break;
5083
            case QEMU_OPTION_kernel:
5084
                kernel_filename = optarg;
5085
                break;
5086
            case QEMU_OPTION_append:
5087
                kernel_cmdline = optarg;
5088
                break;
5089
            case QEMU_OPTION_cdrom:
5090
                drive_add(optarg, CDROM_ALIAS);
5091
                break;
5092
            case QEMU_OPTION_boot:
5093
                boot_devices = optarg;
5094
                /* We just do some generic consistency checks */
5095
                {
5096
                    /* Could easily be extended to 64 devices if needed */
5097
                    const char *p;
5098
                    
5099
                    boot_devices_bitmap = 0;
5100
                    for (p = boot_devices; *p != '\0'; p++) {
5101
                        /* Allowed boot devices are:
5102
                         * a b     : floppy disk drives
5103
                         * c ... f : IDE disk drives
5104
                         * g ... m : machine implementation dependant drives
5105
                         * n ... p : network devices
5106
                         * It's up to each machine implementation to check
5107
                         * if the given boot devices match the actual hardware
5108
                         * implementation and firmware features.
5109
                         */
5110
                        if (*p < 'a' || *p > 'q') {
5111
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
5112
                            exit(1);
5113
                        }
5114
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5115
                            fprintf(stderr,
5116
                                    "Boot device '%c' was given twice\n",*p);
5117
                            exit(1);
5118
                        }
5119
                        boot_devices_bitmap |= 1 << (*p - 'a');
5120
                    }
5121
                }
5122
                break;
5123
            case QEMU_OPTION_fda:
5124
            case QEMU_OPTION_fdb:
5125
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5126
                break;
5127
#ifdef TARGET_I386
5128
            case QEMU_OPTION_no_fd_bootchk:
5129
                fd_bootchk = 0;
5130
                break;
5131
#endif
5132
            case QEMU_OPTION_net:
5133
                if (nb_net_clients >= MAX_NET_CLIENTS) {
5134
                    fprintf(stderr, "qemu: too many network clients\n");
5135
                    exit(1);
5136
                }
5137
                net_clients[nb_net_clients] = optarg;
5138
                nb_net_clients++;
5139
                break;
5140
#ifdef CONFIG_SLIRP
5141
            case QEMU_OPTION_tftp:
5142
                tftp_prefix = optarg;
5143
                break;
5144
            case QEMU_OPTION_bootp:
5145
                bootp_filename = optarg;
5146
                break;
5147
#ifndef _WIN32
5148
            case QEMU_OPTION_smb:
5149
                net_slirp_smb(optarg);
5150
                break;
5151
#endif
5152
            case QEMU_OPTION_redir:
5153
                net_slirp_redir(NULL, optarg);
5154
                break;
5155
#endif
5156
            case QEMU_OPTION_bt:
5157
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
5158
                    fprintf(stderr, "qemu: too many bluetooth options\n");
5159
                    exit(1);
5160
                }
5161
                bt_opts[nb_bt_opts++] = optarg;
5162
                break;
5163
#ifdef HAS_AUDIO
5164
            case QEMU_OPTION_audio_help:
5165
                AUD_help ();
5166
                exit (0);
5167
                break;
5168
            case QEMU_OPTION_soundhw:
5169
                select_soundhw (optarg);
5170
                break;
5171
#endif
5172
            case QEMU_OPTION_h:
5173
                help(0);
5174
                break;
5175
            case QEMU_OPTION_version:
5176
                version();
5177
                exit(0);
5178
                break;
5179
            case QEMU_OPTION_m: {
5180
                uint64_t value;
5181
                char *ptr;
5182

    
5183
                value = strtoul(optarg, &ptr, 10);
5184
                switch (*ptr) {
5185
                case 0: case 'M': case 'm':
5186
                    value <<= 20;
5187
                    break;
5188
                case 'G': case 'g':
5189
                    value <<= 30;
5190
                    break;
5191
                default:
5192
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5193
                    exit(1);
5194
                }
5195

    
5196
                /* On 32-bit hosts, QEMU is limited by virtual address space */
5197
                if (value > (2047 << 20)
5198
#ifndef CONFIG_KQEMU
5199
                    && HOST_LONG_BITS == 32
5200
#endif
5201
                    ) {
5202
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5203
                    exit(1);
5204
                }
5205
                if (value != (uint64_t)(ram_addr_t)value) {
5206
                    fprintf(stderr, "qemu: ram size too large\n");
5207
                    exit(1);
5208
                }
5209
                ram_size = value;
5210
                break;
5211
            }
5212
            case QEMU_OPTION_d:
5213
                {
5214
                    int mask;
5215
                    const CPULogItem *item;
5216

    
5217
                    mask = cpu_str_to_log_mask(optarg);
5218
                    if (!mask) {
5219
                        printf("Log items (comma separated):\n");
5220
                    for(item = cpu_log_items; item->mask != 0; item++) {
5221
                        printf("%-10s %s\n", item->name, item->help);
5222
                    }
5223
                    exit(1);
5224
                    }
5225
                    cpu_set_log(mask);
5226
                }
5227
                break;
5228
            case QEMU_OPTION_s:
5229
                gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5230
                break;
5231
            case QEMU_OPTION_gdb:
5232
                gdbstub_dev = optarg;
5233
                break;
5234
            case QEMU_OPTION_L:
5235
                bios_dir = optarg;
5236
                break;
5237
            case QEMU_OPTION_bios:
5238
                bios_name = optarg;
5239
                break;
5240
            case QEMU_OPTION_singlestep:
5241
                singlestep = 1;
5242
                break;
5243
            case QEMU_OPTION_S:
5244
                autostart = 0;
5245
                break;
5246
#ifndef _WIN32
5247
            case QEMU_OPTION_k:
5248
                keyboard_layout = optarg;
5249
                break;
5250
#endif
5251
            case QEMU_OPTION_localtime:
5252
                rtc_utc = 0;
5253
                break;
5254
            case QEMU_OPTION_vga:
5255
                select_vgahw (optarg);
5256
                break;
5257
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
5258
            case QEMU_OPTION_g:
5259
                {
5260
                    const char *p;
5261
                    int w, h, depth;
5262
                    p = optarg;
5263
                    w = strtol(p, (char **)&p, 10);
5264
                    if (w <= 0) {
5265
                    graphic_error:
5266
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
5267
                        exit(1);
5268
                    }
5269
                    if (*p != 'x')
5270
                        goto graphic_error;
5271
                    p++;
5272
                    h = strtol(p, (char **)&p, 10);
5273
                    if (h <= 0)
5274
                        goto graphic_error;
5275
                    if (*p == 'x') {
5276
                        p++;
5277
                        depth = strtol(p, (char **)&p, 10);
5278
                        if (depth != 8 && depth != 15 && depth != 16 &&
5279
                            depth != 24 && depth != 32)
5280
                            goto graphic_error;
5281
                    } else if (*p == '\0') {
5282
                        depth = graphic_depth;
5283
                    } else {
5284
                        goto graphic_error;
5285
                    }
5286

    
5287
                    graphic_width = w;
5288
                    graphic_height = h;
5289
                    graphic_depth = depth;
5290
                }
5291
                break;
5292
#endif
5293
            case QEMU_OPTION_echr:
5294
                {
5295
                    char *r;
5296
                    term_escape_char = strtol(optarg, &r, 0);
5297
                    if (r == optarg)
5298
                        printf("Bad argument to echr\n");
5299
                    break;
5300
                }
5301
            case QEMU_OPTION_monitor:
5302
                monitor_device = optarg;
5303
                break;
5304
            case QEMU_OPTION_serial:
5305
                if (serial_device_index >= MAX_SERIAL_PORTS) {
5306
                    fprintf(stderr, "qemu: too many serial ports\n");
5307
                    exit(1);
5308
                }
5309
                serial_devices[serial_device_index] = optarg;
5310
                serial_device_index++;
5311
                break;
5312
            case QEMU_OPTION_watchdog:
5313
                i = select_watchdog(optarg);
5314
                if (i > 0)
5315
                    exit (i == 1 ? 1 : 0);
5316
                break;
5317
            case QEMU_OPTION_watchdog_action:
5318
                if (select_watchdog_action(optarg) == -1) {
5319
                    fprintf(stderr, "Unknown -watchdog-action parameter\n");
5320
                    exit(1);
5321
                }
5322
                break;
5323
            case QEMU_OPTION_virtiocon:
5324
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5325
                    fprintf(stderr, "qemu: too many virtio consoles\n");
5326
                    exit(1);
5327
                }
5328
                virtio_consoles[virtio_console_index] = optarg;
5329
                virtio_console_index++;
5330
                break;
5331
            case QEMU_OPTION_parallel:
5332
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5333
                    fprintf(stderr, "qemu: too many parallel ports\n");
5334
                    exit(1);
5335
                }
5336
                parallel_devices[parallel_device_index] = optarg;
5337
                parallel_device_index++;
5338
                break;
5339
            case QEMU_OPTION_loadvm:
5340
                loadvm = optarg;
5341
                break;
5342
            case QEMU_OPTION_full_screen:
5343
                full_screen = 1;
5344
                break;
5345
#ifdef CONFIG_SDL
5346
            case QEMU_OPTION_no_frame:
5347
                no_frame = 1;
5348
                break;
5349
            case QEMU_OPTION_alt_grab:
5350
                alt_grab = 1;
5351
                break;
5352
            case QEMU_OPTION_no_quit:
5353
                no_quit = 1;
5354
                break;
5355
            case QEMU_OPTION_sdl:
5356
                sdl = 1;
5357
                break;
5358
#endif
5359
            case QEMU_OPTION_pidfile:
5360
                pid_file = optarg;
5361
                break;
5362
#ifdef TARGET_I386
5363
            case QEMU_OPTION_win2k_hack:
5364
                win2k_install_hack = 1;
5365
                break;
5366
            case QEMU_OPTION_rtc_td_hack:
5367
                rtc_td_hack = 1;
5368
                break;
5369
            case QEMU_OPTION_acpitable:
5370
                if(acpi_table_add(optarg) < 0) {
5371
                    fprintf(stderr, "Wrong acpi table provided\n");
5372
                    exit(1);
5373
                }
5374
                break;
5375
            case QEMU_OPTION_smbios:
5376
                if(smbios_entry_add(optarg) < 0) {
5377
                    fprintf(stderr, "Wrong smbios provided\n");
5378
                    exit(1);
5379
                }
5380
                break;
5381
#endif
5382
#ifdef CONFIG_KQEMU
5383
            case QEMU_OPTION_no_kqemu:
5384
                kqemu_allowed = 0;
5385
                break;
5386
            case QEMU_OPTION_kernel_kqemu:
5387
                kqemu_allowed = 2;
5388
                break;
5389
#endif
5390
#ifdef CONFIG_KVM
5391
            case QEMU_OPTION_enable_kvm:
5392
                kvm_allowed = 1;
5393
#ifdef CONFIG_KQEMU
5394
                kqemu_allowed = 0;
5395
#endif
5396
                break;
5397
#endif
5398
            case QEMU_OPTION_usb:
5399
                usb_enabled = 1;
5400
                break;
5401
            case QEMU_OPTION_usbdevice:
5402
                usb_enabled = 1;
5403
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5404
                    fprintf(stderr, "Too many USB devices\n");
5405
                    exit(1);
5406
                }
5407
                usb_devices[usb_devices_index] = optarg;
5408
                usb_devices_index++;
5409
                break;
5410
            case QEMU_OPTION_smp:
5411
                smp_cpus = atoi(optarg);
5412
                if (smp_cpus < 1) {
5413
                    fprintf(stderr, "Invalid number of CPUs\n");
5414
                    exit(1);
5415
                }
5416
                break;
5417
            case QEMU_OPTION_vnc:
5418
                vnc_display = optarg;
5419
                break;
5420
#ifdef TARGET_I386
5421
            case QEMU_OPTION_no_acpi:
5422
                acpi_enabled = 0;
5423
                break;
5424
            case QEMU_OPTION_no_hpet:
5425
                no_hpet = 1;
5426
                break;
5427
#endif
5428
            case QEMU_OPTION_no_reboot:
5429
                no_reboot = 1;
5430
                break;
5431
            case QEMU_OPTION_no_shutdown:
5432
                no_shutdown = 1;
5433
                break;
5434
            case QEMU_OPTION_show_cursor:
5435
                cursor_hide = 0;
5436
                break;
5437
            case QEMU_OPTION_uuid:
5438
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5439
                    fprintf(stderr, "Fail to parse UUID string."
5440
                            " Wrong format.\n");
5441
                    exit(1);
5442
                }
5443
                break;
5444
#ifndef _WIN32
5445
            case QEMU_OPTION_daemonize:
5446
                daemonize = 1;
5447
                break;
5448
#endif
5449
            case QEMU_OPTION_option_rom:
5450
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5451
                    fprintf(stderr, "Too many option ROMs\n");
5452
                    exit(1);
5453
                }
5454
                option_rom[nb_option_roms] = optarg;
5455
                nb_option_roms++;
5456
                break;
5457
#if defined(TARGET_ARM) || defined(TARGET_M68K)
5458
            case QEMU_OPTION_semihosting:
5459
                semihosting_enabled = 1;
5460
                break;
5461
#endif
5462
            case QEMU_OPTION_name:
5463
                qemu_name = optarg;
5464
                break;
5465
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5466
            case QEMU_OPTION_prom_env:
5467
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5468
                    fprintf(stderr, "Too many prom variables\n");
5469
                    exit(1);
5470
                }
5471
                prom_envs[nb_prom_envs] = optarg;
5472
                nb_prom_envs++;
5473
                break;
5474
#endif
5475
#ifdef TARGET_ARM
5476
            case QEMU_OPTION_old_param:
5477
                old_param = 1;
5478
                break;
5479
#endif
5480
            case QEMU_OPTION_clock:
5481
                configure_alarms(optarg);
5482
                break;
5483
            case QEMU_OPTION_startdate:
5484
                {
5485
                    struct tm tm;
5486
                    time_t rtc_start_date;
5487
                    if (!strcmp(optarg, "now")) {
5488
                        rtc_date_offset = -1;
5489
                    } else {
5490
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5491
                               &tm.tm_year,
5492
                               &tm.tm_mon,
5493
                               &tm.tm_mday,
5494
                               &tm.tm_hour,
5495
                               &tm.tm_min,
5496
                               &tm.tm_sec) == 6) {
5497
                            /* OK */
5498
                        } else if (sscanf(optarg, "%d-%d-%d",
5499
                                          &tm.tm_year,
5500
                                          &tm.tm_mon,
5501
                                          &tm.tm_mday) == 3) {
5502
                            tm.tm_hour = 0;
5503
                            tm.tm_min = 0;
5504
                            tm.tm_sec = 0;
5505
                        } else {
5506
                            goto date_fail;
5507
                        }
5508
                        tm.tm_year -= 1900;
5509
                        tm.tm_mon--;
5510
                        rtc_start_date = mktimegm(&tm);
5511
                        if (rtc_start_date == -1) {
5512
                        date_fail:
5513
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5514
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5515
                            exit(1);
5516
                        }
5517
                        rtc_date_offset = time(NULL) - rtc_start_date;
5518
                    }
5519
                }
5520
                break;
5521
            case QEMU_OPTION_tb_size:
5522
                tb_size = strtol(optarg, NULL, 0);
5523
                if (tb_size < 0)
5524
                    tb_size = 0;
5525
                break;
5526
            case QEMU_OPTION_icount:
5527
                use_icount = 1;
5528
                if (strcmp(optarg, "auto") == 0) {
5529
                    icount_time_shift = -1;
5530
                } else {
5531
                    icount_time_shift = strtol(optarg, NULL, 0);
5532
                }
5533
                break;
5534
            case QEMU_OPTION_incoming:
5535
                incoming = optarg;
5536
                break;
5537
#ifndef _WIN32
5538
            case QEMU_OPTION_chroot:
5539
                chroot_dir = optarg;
5540
                break;
5541
            case QEMU_OPTION_runas:
5542
                run_as = optarg;
5543
                break;
5544
#endif
5545
#ifdef CONFIG_XEN
5546
            case QEMU_OPTION_xen_domid:
5547
                xen_domid = atoi(optarg);
5548
                break;
5549
            case QEMU_OPTION_xen_create:
5550
                xen_mode = XEN_CREATE;
5551
                break;
5552
            case QEMU_OPTION_xen_attach:
5553
                xen_mode = XEN_ATTACH;
5554
                break;
5555
#endif
5556
            }
5557
        }
5558
    }
5559

    
5560
#if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5561
    if (kvm_allowed && kqemu_allowed) {
5562
        fprintf(stderr,
5563
                "You can not enable both KVM and kqemu at the same time\n");
5564
        exit(1);
5565
    }
5566
#endif
5567

    
5568
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5569
    if (smp_cpus > machine->max_cpus) {
5570
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5571
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5572
                machine->max_cpus);
5573
        exit(1);
5574
    }
5575

    
5576
    if (nographic) {
5577
       if (serial_device_index == 0)
5578
           serial_devices[0] = "stdio";
5579
       if (parallel_device_index == 0)
5580
           parallel_devices[0] = "null";
5581
       if (strncmp(monitor_device, "vc", 2) == 0)
5582
           monitor_device = "stdio";
5583
    }
5584

    
5585
#ifndef _WIN32
5586
    if (daemonize) {
5587
        pid_t pid;
5588

    
5589
        if (pipe(fds) == -1)
5590
            exit(1);
5591

    
5592
        pid = fork();
5593
        if (pid > 0) {
5594
            uint8_t status;
5595
            ssize_t len;
5596

    
5597
            close(fds[1]);
5598

    
5599
        again:
5600
            len = read(fds[0], &status, 1);
5601
            if (len == -1 && (errno == EINTR))
5602
                goto again;
5603

    
5604
            if (len != 1)
5605
                exit(1);
5606
            else if (status == 1) {
5607
                fprintf(stderr, "Could not acquire pidfile\n");
5608
                exit(1);
5609
            } else
5610
                exit(0);
5611
        } else if (pid < 0)
5612
            exit(1);
5613

    
5614
        setsid();
5615

    
5616
        pid = fork();
5617
        if (pid > 0)
5618
            exit(0);
5619
        else if (pid < 0)
5620
            exit(1);
5621

    
5622
        umask(027);
5623

    
5624
        signal(SIGTSTP, SIG_IGN);
5625
        signal(SIGTTOU, SIG_IGN);
5626
        signal(SIGTTIN, SIG_IGN);
5627
    }
5628

    
5629
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5630
        if (daemonize) {
5631
            uint8_t status = 1;
5632
            write(fds[1], &status, 1);
5633
        } else
5634
            fprintf(stderr, "Could not acquire pid file\n");
5635
        exit(1);
5636
    }
5637
#endif
5638

    
5639
#ifdef CONFIG_KQEMU
5640
    if (smp_cpus > 1)
5641
        kqemu_allowed = 0;
5642
#endif
5643
    if (qemu_init_main_loop()) {
5644
        fprintf(stderr, "qemu_init_main_loop failed\n");
5645
        exit(1);
5646
    }
5647
    linux_boot = (kernel_filename != NULL);
5648
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5649

    
5650
    if (!linux_boot && *kernel_cmdline != '\0') {
5651
        fprintf(stderr, "-append only allowed with -kernel option\n");
5652
        exit(1);
5653
    }
5654

    
5655
    if (!linux_boot && initrd_filename != NULL) {
5656
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5657
        exit(1);
5658
    }
5659

    
5660
    /* boot to floppy or the default cd if no hard disk defined yet */
5661
    if (!boot_devices[0]) {
5662
        boot_devices = "cad";
5663
    }
5664
    setvbuf(stdout, NULL, _IOLBF, 0);
5665

    
5666
    init_timers();
5667
    if (init_timer_alarm() < 0) {
5668
        fprintf(stderr, "could not initialize alarm timer\n");
5669
        exit(1);
5670
    }
5671
    if (use_icount && icount_time_shift < 0) {
5672
        use_icount = 2;
5673
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5674
           It will be corrected fairly quickly anyway.  */
5675
        icount_time_shift = 3;
5676
        init_icount_adjust();
5677
    }
5678

    
5679
#ifdef _WIN32
5680
    socket_init();
5681
#endif
5682

    
5683
    /* init network clients */
5684
    if (nb_net_clients == 0) {
5685
        /* if no clients, we use a default config */
5686
        net_clients[nb_net_clients++] = "nic";
5687
#ifdef CONFIG_SLIRP
5688
        net_clients[nb_net_clients++] = "user";
5689
#endif
5690
    }
5691

    
5692
    for(i = 0;i < nb_net_clients; i++) {
5693
        if (net_client_parse(net_clients[i]) < 0)
5694
            exit(1);
5695
    }
5696
    net_client_check();
5697

    
5698
#ifdef TARGET_I386
5699
    /* XXX: this should be moved in the PC machine instantiation code */
5700
    if (net_boot != 0) {
5701
        int netroms = 0;
5702
        for (i = 0; i < nb_nics && i < 4; i++) {
5703
            const char *model = nd_table[i].model;
5704
            char buf[1024];
5705
            if (net_boot & (1 << i)) {
5706
                if (model == NULL)
5707
                    model = "ne2k_pci";
5708
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5709
                if (get_image_size(buf) > 0) {
5710
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5711
                        fprintf(stderr, "Too many option ROMs\n");
5712
                        exit(1);
5713
                    }
5714
                    option_rom[nb_option_roms] = strdup(buf);
5715
                    nb_option_roms++;
5716
                    netroms++;
5717
                }
5718
            }
5719
        }
5720
        if (netroms == 0) {
5721
            fprintf(stderr, "No valid PXE rom found for network device\n");
5722
            exit(1);
5723
        }
5724
    }
5725
#endif
5726

    
5727
    /* init the bluetooth world */
5728
    for (i = 0; i < nb_bt_opts; i++)
5729
        if (bt_parse(bt_opts[i]))
5730
            exit(1);
5731

    
5732
    /* init the memory */
5733
    if (ram_size == 0)
5734
        ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5735

    
5736
#ifdef CONFIG_KQEMU
5737
    /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5738
       guest ram allocation.  It needs to go away.  */
5739
    if (kqemu_allowed) {
5740
        kqemu_phys_ram_size = ram_size + VGA_RAM_SIZE + 4 * 1024 * 1024;
5741
        kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5742
        if (!kqemu_phys_ram_base) {
5743
            fprintf(stderr, "Could not allocate physical memory\n");
5744
            exit(1);
5745
        }
5746
    }
5747
#endif
5748

    
5749
    /* init the dynamic translator */
5750
    cpu_exec_init_all(tb_size * 1024 * 1024);
5751

    
5752
    bdrv_init();
5753
    dma_helper_init();
5754

    
5755
    /* we always create the cdrom drive, even if no disk is there */
5756

    
5757
    if (nb_drives_opt < MAX_DRIVES)
5758
        drive_add(NULL, CDROM_ALIAS);
5759

    
5760
    /* we always create at least one floppy */
5761

    
5762
    if (nb_drives_opt < MAX_DRIVES)
5763
        drive_add(NULL, FD_ALIAS, 0);
5764

    
5765
    /* we always create one sd slot, even if no card is in it */
5766

    
5767
    if (nb_drives_opt < MAX_DRIVES)
5768
        drive_add(NULL, SD_ALIAS);
5769

    
5770
    /* open the virtual block devices */
5771

    
5772
    for(i = 0; i < nb_drives_opt; i++)
5773
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5774
            exit(1);
5775

    
5776
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5777
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5778

    
5779
#ifndef _WIN32
5780
    /* must be after terminal init, SDL library changes signal handlers */
5781
    termsig_setup();
5782
#endif
5783

    
5784
    /* Maintain compatibility with multiple stdio monitors */
5785
    if (!strcmp(monitor_device,"stdio")) {
5786
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5787
            const char *devname = serial_devices[i];
5788
            if (devname && !strcmp(devname,"mon:stdio")) {
5789
                monitor_device = NULL;
5790
                break;
5791
            } else if (devname && !strcmp(devname,"stdio")) {
5792
                monitor_device = NULL;
5793
                serial_devices[i] = "mon:stdio";
5794
                break;
5795
            }
5796
        }
5797
    }
5798

    
5799
    if (nb_numa_nodes > 0) {
5800
        int i;
5801

    
5802
        if (nb_numa_nodes > smp_cpus) {
5803
            nb_numa_nodes = smp_cpus;
5804
        }
5805

    
5806
        /* If no memory size if given for any node, assume the default case
5807
         * and distribute the available memory equally across all nodes
5808
         */
5809
        for (i = 0; i < nb_numa_nodes; i++) {
5810
            if (node_mem[i] != 0)
5811
                break;
5812
        }
5813
        if (i == nb_numa_nodes) {
5814
            uint64_t usedmem = 0;
5815

    
5816
            /* On Linux, the each node's border has to be 8MB aligned,
5817
             * the final node gets the rest.
5818
             */
5819
            for (i = 0; i < nb_numa_nodes - 1; i++) {
5820
                node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5821
                usedmem += node_mem[i];
5822
            }
5823
            node_mem[i] = ram_size - usedmem;
5824
        }
5825

    
5826
        for (i = 0; i < nb_numa_nodes; i++) {
5827
            if (node_cpumask[i] != 0)
5828
                break;
5829
        }
5830
        /* assigning the VCPUs round-robin is easier to implement, guest OSes
5831
         * must cope with this anyway, because there are BIOSes out there in
5832
         * real machines which also use this scheme.
5833
         */
5834
        if (i == nb_numa_nodes) {
5835
            for (i = 0; i < smp_cpus; i++) {
5836
                node_cpumask[i % nb_numa_nodes] |= 1 << i;
5837
            }
5838
        }
5839
    }
5840

    
5841
    if (kvm_enabled()) {
5842
        int ret;
5843

    
5844
        ret = kvm_init(smp_cpus);
5845
        if (ret < 0) {
5846
            fprintf(stderr, "failed to initialize KVM\n");
5847
            exit(1);
5848
        }
5849
    }
5850

    
5851
    if (monitor_device) {
5852
        monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5853
        if (!monitor_hd) {
5854
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5855
            exit(1);
5856
        }
5857
    }
5858

    
5859
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5860
        const char *devname = serial_devices[i];
5861
        if (devname && strcmp(devname, "none")) {
5862
            char label[32];
5863
            snprintf(label, sizeof(label), "serial%d", i);
5864
            serial_hds[i] = qemu_chr_open(label, devname, NULL);
5865
            if (!serial_hds[i]) {
5866
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5867
                        devname);
5868
                exit(1);
5869
            }
5870
        }
5871
    }
5872

    
5873
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5874
        const char *devname = parallel_devices[i];
5875
        if (devname && strcmp(devname, "none")) {
5876
            char label[32];
5877
            snprintf(label, sizeof(label), "parallel%d", i);
5878
            parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5879
            if (!parallel_hds[i]) {
5880
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5881
                        devname);
5882
                exit(1);
5883
            }
5884
        }
5885
    }
5886

    
5887
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5888
        const char *devname = virtio_consoles[i];
5889
        if (devname && strcmp(devname, "none")) {
5890
            char label[32];
5891
            snprintf(label, sizeof(label), "virtcon%d", i);
5892
            virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5893
            if (!virtcon_hds[i]) {
5894
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5895
                        devname);
5896
                exit(1);
5897
            }
5898
        }
5899
    }
5900

    
5901
    machine->init(ram_size, vga_ram_size, boot_devices,
5902
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5903

    
5904

    
5905
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
5906
        for (i = 0; i < nb_numa_nodes; i++) {
5907
            if (node_cpumask[i] & (1 << env->cpu_index)) {
5908
                env->numa_node = i;
5909
            }
5910
        }
5911
    }
5912

    
5913
    current_machine = machine;
5914

    
5915
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5916
    if (kvm_enabled()) {
5917
        int ret;
5918

    
5919
        ret = kvm_sync_vcpus();
5920
        if (ret < 0) {
5921
            fprintf(stderr, "failed to initialize vcpus\n");
5922
            exit(1);
5923
        }
5924
    }
5925

    
5926
    /* init USB devices */
5927
    if (usb_enabled) {
5928
        for(i = 0; i < usb_devices_index; i++) {
5929
            if (usb_device_add(usb_devices[i], 0) < 0) {
5930
                fprintf(stderr, "Warning: could not add USB device %s\n",
5931
                        usb_devices[i]);
5932
            }
5933
        }
5934
    }
5935

    
5936
    if (!display_state)
5937
        dumb_display_init();
5938
    /* just use the first displaystate for the moment */
5939
    ds = display_state;
5940
    /* terminal init */
5941
    if (nographic) {
5942
        if (curses) {
5943
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5944
            exit(1);
5945
        }
5946
    } else { 
5947
#if defined(CONFIG_CURSES)
5948
            if (curses) {
5949
                /* At the moment curses cannot be used with other displays */
5950
                curses_display_init(ds, full_screen);
5951
            } else
5952
#endif
5953
            {
5954
                if (vnc_display != NULL) {
5955
                    vnc_display_init(ds);
5956
                    if (vnc_display_open(ds, vnc_display) < 0)
5957
                        exit(1);
5958
                }
5959
#if defined(CONFIG_SDL)
5960
                if (sdl || !vnc_display)
5961
                    sdl_display_init(ds, full_screen, no_frame);
5962
#elif defined(CONFIG_COCOA)
5963
                if (sdl || !vnc_display)
5964
                    cocoa_display_init(ds, full_screen);
5965
#endif
5966
            }
5967
    }
5968
    dpy_resize(ds);
5969

    
5970
    dcl = ds->listeners;
5971
    while (dcl != NULL) {
5972
        if (dcl->dpy_refresh != NULL) {
5973
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5974
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5975
        }
5976
        dcl = dcl->next;
5977
    }
5978

    
5979
    if (nographic || (vnc_display && !sdl)) {
5980
        nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5981
        qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5982
    }
5983

    
5984
    text_consoles_set_display(display_state);
5985
    qemu_chr_initial_reset();
5986

    
5987
    if (monitor_device && monitor_hd)
5988
        monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5989

    
5990
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5991
        const char *devname = serial_devices[i];
5992
        if (devname && strcmp(devname, "none")) {
5993
            char label[32];
5994
            snprintf(label, sizeof(label), "serial%d", i);
5995
            if (strstart(devname, "vc", 0))
5996
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5997
        }
5998
    }
5999

    
6000
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6001
        const char *devname = parallel_devices[i];
6002
        if (devname && strcmp(devname, "none")) {
6003
            char label[32];
6004
            snprintf(label, sizeof(label), "parallel%d", i);
6005
            if (strstart(devname, "vc", 0))
6006
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6007
        }
6008
    }
6009

    
6010
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6011
        const char *devname = virtio_consoles[i];
6012
        if (virtcon_hds[i] && devname) {
6013
            char label[32];
6014
            snprintf(label, sizeof(label), "virtcon%d", i);
6015
            if (strstart(devname, "vc", 0))
6016
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6017
        }
6018
    }
6019

    
6020
    if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6021
        fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6022
                gdbstub_dev);
6023
        exit(1);
6024
    }
6025

    
6026
    if (loadvm)
6027
        do_loadvm(cur_mon, loadvm);
6028

    
6029
    if (incoming) {
6030
        autostart = 0; /* fixme how to deal with -daemonize */
6031
        qemu_start_incoming_migration(incoming);
6032
    }
6033

    
6034
    if (autostart)
6035
        vm_start();
6036

    
6037
#ifndef _WIN32
6038
    if (daemonize) {
6039
        uint8_t status = 0;
6040
        ssize_t len;
6041

    
6042
    again1:
6043
        len = write(fds[1], &status, 1);
6044
        if (len == -1 && (errno == EINTR))
6045
            goto again1;
6046

    
6047
        if (len != 1)
6048
            exit(1);
6049

    
6050
        chdir("/");
6051
        TFR(fd = open("/dev/null", O_RDWR));
6052
        if (fd == -1)
6053
            exit(1);
6054
    }
6055

    
6056
    if (run_as) {
6057
        pwd = getpwnam(run_as);
6058
        if (!pwd) {
6059
            fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6060
            exit(1);
6061
        }
6062
    }
6063

    
6064
    if (chroot_dir) {
6065
        if (chroot(chroot_dir) < 0) {
6066
            fprintf(stderr, "chroot failed\n");
6067
            exit(1);
6068
        }
6069
        chdir("/");
6070
    }
6071

    
6072
    if (run_as) {
6073
        if (setgid(pwd->pw_gid) < 0) {
6074
            fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6075
            exit(1);
6076
        }
6077
        if (setuid(pwd->pw_uid) < 0) {
6078
            fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6079
            exit(1);
6080
        }
6081
        if (setuid(0) != -1) {
6082
            fprintf(stderr, "Dropping privileges failed\n");
6083
            exit(1);
6084
        }
6085
    }
6086

    
6087
    if (daemonize) {
6088
        dup2(fd, 0);
6089
        dup2(fd, 1);
6090
        dup2(fd, 2);
6091

    
6092
        close(fd);
6093
    }
6094
#endif
6095

    
6096
    main_loop();
6097
    quit_timers();
6098
    net_cleanup();
6099

    
6100
    return 0;
6101
}