Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ bfed01fc

History | View | Annotate | Download (39.5 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#define GETPC() (__builtin_return_address(0))
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27

    
28
void do_raise_exception_err (uint32_t exception, int error_code)
29
{
30
#if 1
31
    if (logfile && exception < 0x100)
32
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33
#endif
34
    env->exception_index = exception;
35
    env->error_code = error_code;
36
    T0 = 0;
37
    cpu_loop_exit();
38
}
39

    
40
void do_raise_exception (uint32_t exception)
41
{
42
    do_raise_exception_err(exception, 0);
43
}
44

    
45
void do_restore_state (void *pc_ptr)
46
{
47
  TranslationBlock *tb;
48
  unsigned long pc = (unsigned long) pc_ptr;
49

    
50
  tb = tb_find_pc (pc);
51
  cpu_restore_state (tb, env, pc, NULL);
52
}
53

    
54
void do_raise_exception_direct_err (uint32_t exception, int error_code)
55
{
56
    do_restore_state (GETPC ());
57
    do_raise_exception_err (exception, error_code);
58
}
59

    
60
void do_raise_exception_direct (uint32_t exception)
61
{
62
    do_raise_exception_direct_err (exception, 0);
63
}
64

    
65
#define MEMSUFFIX _raw
66
#include "op_helper_mem.c"
67
#undef MEMSUFFIX
68
#if !defined(CONFIG_USER_ONLY)
69
#define MEMSUFFIX _user
70
#include "op_helper_mem.c"
71
#undef MEMSUFFIX
72
#define MEMSUFFIX _kernel
73
#include "op_helper_mem.c"
74
#undef MEMSUFFIX
75
#endif
76

    
77
#ifdef TARGET_MIPS64
78
#if TARGET_LONG_BITS > HOST_LONG_BITS
79
/* Those might call libgcc functions.  */
80
void do_dsll (void)
81
{
82
    T0 = T0 << T1;
83
}
84

    
85
void do_dsll32 (void)
86
{
87
    T0 = T0 << (T1 + 32);
88
}
89

    
90
void do_dsra (void)
91
{
92
    T0 = (int64_t)T0 >> T1;
93
}
94

    
95
void do_dsra32 (void)
96
{
97
    T0 = (int64_t)T0 >> (T1 + 32);
98
}
99

    
100
void do_dsrl (void)
101
{
102
    T0 = T0 >> T1;
103
}
104

    
105
void do_dsrl32 (void)
106
{
107
    T0 = T0 >> (T1 + 32);
108
}
109

    
110
void do_drotr (void)
111
{
112
    target_ulong tmp;
113

    
114
    if (T1) {
115
       tmp = T0 << (0x40 - T1);
116
       T0 = (T0 >> T1) | tmp;
117
    }
118
}
119

    
120
void do_drotr32 (void)
121
{
122
    target_ulong tmp;
123

    
124
    if (T1) {
125
       tmp = T0 << (0x40 - (32 + T1));
126
       T0 = (T0 >> (32 + T1)) | tmp;
127
    }
128
}
129

    
130
void do_dsllv (void)
131
{
132
    T0 = T1 << (T0 & 0x3F);
133
}
134

    
135
void do_dsrav (void)
136
{
137
    T0 = (int64_t)T1 >> (T0 & 0x3F);
138
}
139

    
140
void do_dsrlv (void)
141
{
142
    T0 = T1 >> (T0 & 0x3F);
143
}
144

    
145
void do_drotrv (void)
146
{
147
    target_ulong tmp;
148

    
149
    T0 &= 0x3F;
150
    if (T0) {
151
       tmp = T1 << (0x40 - T0);
152
       T0 = (T1 >> T0) | tmp;
153
    } else
154
       T0 = T1;
155
}
156
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
157
#endif /* TARGET_MIPS64 */
158

    
159
/* 64 bits arithmetic for 32 bits hosts */
160
#if TARGET_LONG_BITS > HOST_LONG_BITS
161
static inline uint64_t get_HILO (void)
162
{
163
    return (env->HI << 32) | (uint32_t)env->LO;
164
}
165

    
166
static inline void set_HILO (uint64_t HILO)
167
{
168
    env->LO = (int32_t)HILO;
169
    env->HI = (int32_t)(HILO >> 32);
170
}
171

    
172
void do_mult (void)
173
{
174
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
175
}
176

    
177
void do_multu (void)
178
{
179
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
180
}
181

    
182
void do_madd (void)
183
{
184
    int64_t tmp;
185

    
186
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
187
    set_HILO((int64_t)get_HILO() + tmp);
188
}
189

    
190
void do_maddu (void)
191
{
192
    uint64_t tmp;
193

    
194
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
195
    set_HILO(get_HILO() + tmp);
196
}
197

    
198
void do_msub (void)
199
{
200
    int64_t tmp;
201

    
202
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
203
    set_HILO((int64_t)get_HILO() - tmp);
204
}
205

    
206
void do_msubu (void)
207
{
208
    uint64_t tmp;
209

    
210
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
211
    set_HILO(get_HILO() - tmp);
212
}
213
#endif
214

    
215
#if HOST_LONG_BITS < 64
216
void do_div (void)
217
{
218
    /* 64bit datatypes because we may see overflow/underflow. */
219
    if (T1 != 0) {
220
        env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
221
        env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
222
    }
223
}
224
#endif
225

    
226
#ifdef TARGET_MIPS64
227
void do_ddiv (void)
228
{
229
    if (T1 != 0) {
230
        lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
231
        env->LO = res.quot;
232
        env->HI = res.rem;
233
    }
234
}
235

    
236
#if TARGET_LONG_BITS > HOST_LONG_BITS
237
void do_ddivu (void)
238
{
239
    if (T1 != 0) {
240
        env->LO = T0 / T1;
241
        env->HI = T0 % T1;
242
    }
243
}
244
#endif
245
#endif /* TARGET_MIPS64 */
246

    
247
#if defined(CONFIG_USER_ONLY) 
248
void do_mfc0_random (void)
249
{
250
    cpu_abort(env, "mfc0 random\n");
251
}
252

    
253
void do_mfc0_count (void)
254
{
255
    cpu_abort(env, "mfc0 count\n");
256
}
257

    
258
void cpu_mips_store_count(CPUState *env, uint32_t value)
259
{
260
    cpu_abort(env, "mtc0 count\n");
261
}
262

    
263
void cpu_mips_store_compare(CPUState *env, uint32_t value)
264
{
265
    cpu_abort(env, "mtc0 compare\n");
266
}
267

    
268
void cpu_mips_update_irq(CPUState *env)
269
{
270
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
271
}
272

    
273
void do_mtc0_status_debug(uint32_t old, uint32_t val)
274
{
275
    cpu_abort(env, "mtc0 status debug\n");
276
}
277

    
278
void do_mtc0_status_irqraise_debug (void)
279
{
280
    cpu_abort(env, "mtc0 status irqraise debug\n");
281
}
282

    
283
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
284
{
285
    cpu_abort(env, "mips_tlb_flush\n");
286
}
287

    
288
#else
289

    
290
/* CP0 helpers */
291
void do_mfc0_random (void)
292
{
293
    T0 = (int32_t)cpu_mips_get_random(env);
294
}
295

    
296
void do_mfc0_count (void)
297
{
298
    T0 = (int32_t)cpu_mips_get_count(env);
299
}
300

    
301
void do_mtc0_status_debug(uint32_t old, uint32_t val)
302
{
303
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
304
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
305
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
306
            env->CP0_Cause);
307
    (env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
308
                                  : fputs("\n", logfile);
309
}
310

    
311
void do_mtc0_status_irqraise_debug(void)
312
{
313
    fprintf(logfile, "Raise pending IRQs\n");
314
}
315

    
316
void fpu_handle_exception(void)
317
{
318
#ifdef CONFIG_SOFTFLOAT
319
    int flags = get_float_exception_flags(&env->fp_status);
320
    unsigned int cpuflags = 0, enable, cause = 0;
321

    
322
    enable = GET_FP_ENABLE(env->fcr31);
323

    
324
    /* determine current flags */   
325
    if (flags & float_flag_invalid) {
326
        cpuflags |= FP_INVALID;
327
        cause |= FP_INVALID & enable;
328
    }
329
    if (flags & float_flag_divbyzero) {
330
        cpuflags |= FP_DIV0;    
331
        cause |= FP_DIV0 & enable;
332
    }
333
    if (flags & float_flag_overflow) {
334
        cpuflags |= FP_OVERFLOW;    
335
        cause |= FP_OVERFLOW & enable;
336
    }
337
    if (flags & float_flag_underflow) {
338
        cpuflags |= FP_UNDERFLOW;   
339
        cause |= FP_UNDERFLOW & enable;
340
    }
341
    if (flags & float_flag_inexact) {
342
        cpuflags |= FP_INEXACT; 
343
        cause |= FP_INEXACT & enable;
344
    }
345
    SET_FP_FLAGS(env->fcr31, cpuflags);
346
    SET_FP_CAUSE(env->fcr31, cause);
347
#else
348
    SET_FP_FLAGS(env->fcr31, 0);
349
    SET_FP_CAUSE(env->fcr31, 0);
350
#endif
351
}
352

    
353
/* TLB management */
354
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
355
{
356
    /* Flush qemu's TLB and discard all shadowed entries.  */
357
    tlb_flush (env, flush_global);
358
    env->tlb_in_use = env->nb_tlb;
359
}
360

    
361
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
362
{
363
    /* Discard entries from env->tlb[first] onwards.  */
364
    while (env->tlb_in_use > first) {
365
        r4k_invalidate_tlb(env, --env->tlb_in_use, 0);
366
    }
367
}
368

    
369
static void r4k_fill_tlb (int idx)
370
{
371
    r4k_tlb_t *tlb;
372

    
373
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
374
    tlb = &env->mmu.r4k.tlb[idx];
375
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
376
#ifdef TARGET_MIPS64
377
    tlb->VPN &= 0xC00000FFFFFFFFFFULL;
378
#endif
379
    tlb->ASID = env->CP0_EntryHi & 0xFF;
380
    tlb->PageMask = env->CP0_PageMask;
381
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
382
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
383
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
384
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
385
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
386
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
387
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
388
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
389
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
390
}
391

    
392
void r4k_do_tlbwi (void)
393
{
394
    /* Discard cached TLB entries.  We could avoid doing this if the
395
       tlbwi is just upgrading access permissions on the current entry;
396
       that might be a further win.  */
397
    r4k_mips_tlb_flush_extra (env, env->nb_tlb);
398

    
399
    r4k_invalidate_tlb(env, env->CP0_Index % env->nb_tlb, 0);
400
    r4k_fill_tlb(env->CP0_Index % env->nb_tlb);
401
}
402

    
403
void r4k_do_tlbwr (void)
404
{
405
    int r = cpu_mips_get_random(env);
406

    
407
    r4k_invalidate_tlb(env, r, 1);
408
    r4k_fill_tlb(r);
409
}
410

    
411
void r4k_do_tlbp (void)
412
{
413
    r4k_tlb_t *tlb;
414
    target_ulong mask;
415
    target_ulong tag;
416
    target_ulong VPN;
417
    uint8_t ASID;
418
    int i;
419

    
420
    ASID = env->CP0_EntryHi & 0xFF;
421
    for (i = 0; i < env->nb_tlb; i++) {
422
        tlb = &env->mmu.r4k.tlb[i];
423
        /* 1k pages are not supported. */
424
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
425
        tag = env->CP0_EntryHi & ~mask;
426
        VPN = tlb->VPN & ~mask;
427
        /* Check ASID, virtual page number & size */
428
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
429
            /* TLB match */
430
            env->CP0_Index = i;
431
            break;
432
        }
433
    }
434
    if (i == env->nb_tlb) {
435
        /* No match.  Discard any shadow entries, if any of them match.  */
436
        for (i = env->nb_tlb; i < env->tlb_in_use; i++) {
437
            tlb = &env->mmu.r4k.tlb[i];
438
            /* 1k pages are not supported. */
439
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
440
            tag = env->CP0_EntryHi & ~mask;
441
            VPN = tlb->VPN & ~mask;
442
            /* Check ASID, virtual page number & size */
443
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
444
                r4k_mips_tlb_flush_extra (env, i);
445
                break;
446
            }
447
        }
448

    
449
        env->CP0_Index |= 0x80000000;
450
    }
451
}
452

    
453
void r4k_do_tlbr (void)
454
{
455
    r4k_tlb_t *tlb;
456
    uint8_t ASID;
457

    
458
    ASID = env->CP0_EntryHi & 0xFF;
459
    tlb = &env->mmu.r4k.tlb[env->CP0_Index % env->nb_tlb];
460

    
461
    /* If this will change the current ASID, flush qemu's TLB.  */
462
    if (ASID != tlb->ASID)
463
        cpu_mips_tlb_flush (env, 1);
464

    
465
    r4k_mips_tlb_flush_extra(env, env->nb_tlb);
466

    
467
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
468
    env->CP0_PageMask = tlb->PageMask;
469
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
470
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
471
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
472
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
473
}
474

    
475
#endif /* !CONFIG_USER_ONLY */
476

    
477
void dump_ldst (const unsigned char *func)
478
{
479
    if (loglevel)
480
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
481
}
482

    
483
void dump_sc (void)
484
{
485
    if (loglevel) {
486
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
487
                T1, T0, env->CP0_LLAddr);
488
    }
489
}
490

    
491
void debug_pre_eret (void)
492
{
493
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
494
            env->PC, env->CP0_EPC);
495
    if (env->CP0_Status & (1 << CP0St_ERL))
496
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
497
    if (env->hflags & MIPS_HFLAG_DM)
498
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
499
    fputs("\n", logfile);
500
}
501

    
502
void debug_post_eret (void)
503
{
504
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
505
            env->PC, env->CP0_EPC);
506
    if (env->CP0_Status & (1 << CP0St_ERL))
507
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
508
    if (env->hflags & MIPS_HFLAG_DM)
509
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
510
    if (env->hflags & MIPS_HFLAG_UM)
511
        fputs(", UM\n", logfile);
512
    else
513
        fputs("\n", logfile);
514
}
515

    
516
void do_pmon (int function)
517
{
518
    function /= 2;
519
    switch (function) {
520
    case 2: /* TODO: char inbyte(int waitflag); */
521
        if (env->gpr[4] == 0)
522
            env->gpr[2] = -1;
523
        /* Fall through */
524
    case 11: /* TODO: char inbyte (void); */
525
        env->gpr[2] = -1;
526
        break;
527
    case 3:
528
    case 12:
529
        printf("%c", (char)(env->gpr[4] & 0xFF));
530
        break;
531
    case 17:
532
        break;
533
    case 158:
534
        {
535
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4];
536
            printf("%s", fmt);
537
        }
538
        break;
539
    }
540
}
541

    
542
#if !defined(CONFIG_USER_ONLY) 
543

    
544
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
545

    
546
#define MMUSUFFIX _mmu
547
#define ALIGNED_ONLY
548

    
549
#define SHIFT 0
550
#include "softmmu_template.h"
551

    
552
#define SHIFT 1
553
#include "softmmu_template.h"
554

    
555
#define SHIFT 2
556
#include "softmmu_template.h"
557

    
558
#define SHIFT 3
559
#include "softmmu_template.h"
560

    
561
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
562
{
563
    env->CP0_BadVAddr = addr;
564
    do_restore_state (retaddr);
565
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
566
}
567

    
568
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
569
{
570
    TranslationBlock *tb;
571
    CPUState *saved_env;
572
    unsigned long pc;
573
    int ret;
574

    
575
    /* XXX: hack to restore env in all cases, even if not called from
576
       generated code */
577
    saved_env = env;
578
    env = cpu_single_env;
579
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
580
    if (ret) {
581
        if (retaddr) {
582
            /* now we have a real cpu fault */
583
            pc = (unsigned long)retaddr;
584
            tb = tb_find_pc(pc);
585
            if (tb) {
586
                /* the PC is inside the translated code. It means that we have
587
                   a virtual CPU fault */
588
                cpu_restore_state(tb, env, pc, NULL);
589
            }
590
        }
591
        do_raise_exception_err(env->exception_index, env->error_code);
592
    }
593
    env = saved_env;
594
}
595

    
596
#endif
597

    
598
/* Complex FPU operations which may need stack space. */
599

    
600
/* convert MIPS rounding mode in FCR31 to IEEE library */
601
unsigned int ieee_rm[] = {
602
    float_round_nearest_even,
603
    float_round_to_zero,
604
    float_round_up,
605
    float_round_down
606
};
607

    
608
#define RESTORE_ROUNDING_MODE \
609
    set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
610

    
611
void do_ctc1 (void)
612
{
613
    switch(T1) {
614
    case 25:
615
        if (T0 & 0xffffff00)
616
            return;
617
        env->fcr31 = (env->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
618
                     ((T0 & 0x1) << 23);
619
        break;
620
    case 26:
621
        if (T0 & 0x007c0000)
622
            return;
623
        env->fcr31 = (env->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
624
        break;
625
    case 28:
626
        if (T0 & 0x007c0000)
627
            return;
628
        env->fcr31 = (env->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
629
                     ((T0 & 0x4) << 22);
630
        break;
631
    case 31:
632
        if (T0 & 0x007c0000)
633
            return;
634
        env->fcr31 = T0;
635
        break;
636
    default:
637
        return;
638
    }
639
    /* set rounding mode */
640
    RESTORE_ROUNDING_MODE;
641
    set_float_exception_flags(0, &env->fp_status);
642
    if ((GET_FP_ENABLE(env->fcr31) | 0x20) & GET_FP_CAUSE(env->fcr31))
643
        do_raise_exception(EXCP_FPE);
644
}
645

    
646
inline char ieee_ex_to_mips(char xcpt)
647
{
648
    return (xcpt & float_flag_inexact) >> 5 |
649
           (xcpt & float_flag_underflow) >> 3 |
650
           (xcpt & float_flag_overflow) >> 1 |
651
           (xcpt & float_flag_divbyzero) << 1 |
652
           (xcpt & float_flag_invalid) << 4;
653
}
654

    
655
inline char mips_ex_to_ieee(char xcpt)
656
{
657
    return (xcpt & FP_INEXACT) << 5 |
658
           (xcpt & FP_UNDERFLOW) << 3 |
659
           (xcpt & FP_OVERFLOW) << 1 |
660
           (xcpt & FP_DIV0) >> 1 |
661
           (xcpt & FP_INVALID) >> 4;
662
}
663

    
664
inline void update_fcr31(void)
665
{
666
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fp_status));
667

    
668
    SET_FP_CAUSE(env->fcr31, tmp);
669
    if (GET_FP_ENABLE(env->fcr31) & tmp)
670
        do_raise_exception(EXCP_FPE);
671
    else
672
        UPDATE_FP_FLAGS(env->fcr31, tmp);
673
}
674

    
675
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
676

    
677
FLOAT_OP(cvtd, s)
678
{
679
    set_float_exception_flags(0, &env->fp_status);
680
    FDT2 = float32_to_float64(FST0, &env->fp_status);
681
    update_fcr31();
682
}
683
FLOAT_OP(cvtd, w)
684
{
685
    set_float_exception_flags(0, &env->fp_status);
686
    FDT2 = int32_to_float64(WT0, &env->fp_status);
687
    update_fcr31();
688
}
689
FLOAT_OP(cvtd, l)
690
{
691
    set_float_exception_flags(0, &env->fp_status);
692
    FDT2 = int64_to_float64(DT0, &env->fp_status);
693
    update_fcr31();
694
}
695
FLOAT_OP(cvtl, d)
696
{
697
    set_float_exception_flags(0, &env->fp_status);
698
    DT2 = float64_to_int64(FDT0, &env->fp_status);
699
    update_fcr31();
700
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
701
        DT2 = 0x7fffffffffffffffULL;
702
}
703
FLOAT_OP(cvtl, s)
704
{
705
    set_float_exception_flags(0, &env->fp_status);
706
    DT2 = float32_to_int64(FST0, &env->fp_status);
707
    update_fcr31();
708
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
709
        DT2 = 0x7fffffffffffffffULL;
710
}
711

    
712
FLOAT_OP(cvtps, pw)
713
{
714
    set_float_exception_flags(0, &env->fp_status);
715
    FST2 = int32_to_float32(WT0, &env->fp_status);
716
    FSTH2 = int32_to_float32(WTH0, &env->fp_status);
717
    update_fcr31();
718
}
719
FLOAT_OP(cvtpw, ps)
720
{
721
    set_float_exception_flags(0, &env->fp_status);
722
    WT2 = float32_to_int32(FST0, &env->fp_status);
723
    WTH2 = float32_to_int32(FSTH0, &env->fp_status);
724
    update_fcr31();
725
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
726
        WT2 = 0x7fffffff;
727
}
728
FLOAT_OP(cvts, d)
729
{
730
    set_float_exception_flags(0, &env->fp_status);
731
    FST2 = float64_to_float32(FDT0, &env->fp_status);
732
    update_fcr31();
733
}
734
FLOAT_OP(cvts, w)
735
{
736
    set_float_exception_flags(0, &env->fp_status);
737
    FST2 = int32_to_float32(WT0, &env->fp_status);
738
    update_fcr31();
739
}
740
FLOAT_OP(cvts, l)
741
{
742
    set_float_exception_flags(0, &env->fp_status);
743
    FST2 = int64_to_float32(DT0, &env->fp_status);
744
    update_fcr31();
745
}
746
FLOAT_OP(cvts, pl)
747
{
748
    set_float_exception_flags(0, &env->fp_status);
749
    WT2 = WT0;
750
    update_fcr31();
751
}
752
FLOAT_OP(cvts, pu)
753
{
754
    set_float_exception_flags(0, &env->fp_status);
755
    WT2 = WTH0;
756
    update_fcr31();
757
}
758
FLOAT_OP(cvtw, s)
759
{
760
    set_float_exception_flags(0, &env->fp_status);
761
    WT2 = float32_to_int32(FST0, &env->fp_status);
762
    update_fcr31();
763
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
764
        WT2 = 0x7fffffff;
765
}
766
FLOAT_OP(cvtw, d)
767
{
768
    set_float_exception_flags(0, &env->fp_status);
769
    WT2 = float64_to_int32(FDT0, &env->fp_status);
770
    update_fcr31();
771
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
772
        WT2 = 0x7fffffff;
773
}
774

    
775
FLOAT_OP(roundl, d)
776
{
777
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
778
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
779
    RESTORE_ROUNDING_MODE;
780
    update_fcr31();
781
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
782
        DT2 = 0x7fffffffffffffffULL;
783
}
784
FLOAT_OP(roundl, s)
785
{
786
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
787
    DT2 = float32_round_to_int(FST0, &env->fp_status);
788
    RESTORE_ROUNDING_MODE;
789
    update_fcr31();
790
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
791
        DT2 = 0x7fffffffffffffffULL;
792
}
793
FLOAT_OP(roundw, d)
794
{
795
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
796
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
797
    RESTORE_ROUNDING_MODE;
798
    update_fcr31();
799
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
800
        WT2 = 0x7fffffff;
801
}
802
FLOAT_OP(roundw, s)
803
{
804
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
805
    WT2 = float32_round_to_int(FST0, &env->fp_status);
806
    RESTORE_ROUNDING_MODE;
807
    update_fcr31();
808
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
809
        WT2 = 0x7fffffff;
810
}
811

    
812
FLOAT_OP(truncl, d)
813
{
814
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fp_status);
815
    update_fcr31();
816
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
817
        DT2 = 0x7fffffffffffffffULL;
818
}
819
FLOAT_OP(truncl, s)
820
{
821
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fp_status);
822
    update_fcr31();
823
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
824
        DT2 = 0x7fffffffffffffffULL;
825
}
826
FLOAT_OP(truncw, d)
827
{
828
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
829
    update_fcr31();
830
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
831
        WT2 = 0x7fffffff;
832
}
833
FLOAT_OP(truncw, s)
834
{
835
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
836
    update_fcr31();
837
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
838
        WT2 = 0x7fffffff;
839
}
840

    
841
FLOAT_OP(ceill, d)
842
{
843
    set_float_rounding_mode(float_round_up, &env->fp_status);
844
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
845
    RESTORE_ROUNDING_MODE;
846
    update_fcr31();
847
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
848
        DT2 = 0x7fffffffffffffffULL;
849
}
850
FLOAT_OP(ceill, s)
851
{
852
    set_float_rounding_mode(float_round_up, &env->fp_status);
853
    DT2 = float32_round_to_int(FST0, &env->fp_status);
854
    RESTORE_ROUNDING_MODE;
855
    update_fcr31();
856
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
857
        DT2 = 0x7fffffffffffffffULL;
858
}
859
FLOAT_OP(ceilw, d)
860
{
861
    set_float_rounding_mode(float_round_up, &env->fp_status);
862
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
863
    RESTORE_ROUNDING_MODE;
864
    update_fcr31();
865
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
866
        WT2 = 0x7fffffff;
867
}
868
FLOAT_OP(ceilw, s)
869
{
870
    set_float_rounding_mode(float_round_up, &env->fp_status);
871
    WT2 = float32_round_to_int(FST0, &env->fp_status);
872
    RESTORE_ROUNDING_MODE;
873
    update_fcr31();
874
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
875
        WT2 = 0x7fffffff;
876
}
877

    
878
FLOAT_OP(floorl, d)
879
{
880
    set_float_rounding_mode(float_round_down, &env->fp_status);
881
    DT2 = float64_round_to_int(FDT0, &env->fp_status);
882
    RESTORE_ROUNDING_MODE;
883
    update_fcr31();
884
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
885
        DT2 = 0x7fffffffffffffffULL;
886
}
887
FLOAT_OP(floorl, s)
888
{
889
    set_float_rounding_mode(float_round_down, &env->fp_status);
890
    DT2 = float32_round_to_int(FST0, &env->fp_status);
891
    RESTORE_ROUNDING_MODE;
892
    update_fcr31();
893
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
894
        DT2 = 0x7fffffffffffffffULL;
895
}
896
FLOAT_OP(floorw, d)
897
{
898
    set_float_rounding_mode(float_round_down, &env->fp_status);
899
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
900
    RESTORE_ROUNDING_MODE;
901
    update_fcr31();
902
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
903
        WT2 = 0x7fffffff;
904
}
905
FLOAT_OP(floorw, s)
906
{
907
    set_float_rounding_mode(float_round_down, &env->fp_status);
908
    WT2 = float32_round_to_int(FST0, &env->fp_status);
909
    RESTORE_ROUNDING_MODE;
910
    update_fcr31();
911
    if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
912
        WT2 = 0x7fffffff;
913
}
914

    
915
/* unary operations, MIPS specific, s and d */
916
#define FLOAT_UNOP(name)  \
917
FLOAT_OP(name, d)         \
918
{                         \
919
    set_float_exception_flags(0, &env->fp_status);            \
920
/* XXX: not implemented */ \
921
/*    FDT2 = float64_ ## name (FDT0, &env->fp_status);*/          \
922
do_raise_exception(EXCP_RI); \
923
    update_fcr31();       \
924
}                         \
925
FLOAT_OP(name, s)         \
926
{                         \
927
    set_float_exception_flags(0, &env->fp_status);            \
928
/* XXX: not implemented */ \
929
/*    FST2 = float32_ ## name (FST0, &env->fp_status);*/          \
930
do_raise_exception(EXCP_RI); \
931
    update_fcr31();       \
932
}
933
FLOAT_UNOP(rsqrt)
934
FLOAT_UNOP(recip)
935
#undef FLOAT_UNOP
936

    
937
/* unary operations, MIPS specific, s, d and ps */
938
#define FLOAT_UNOP(name)  \
939
FLOAT_OP(name, d)         \
940
{                         \
941
    set_float_exception_flags(0, &env->fp_status);            \
942
/* XXX: not implemented */ \
943
/*    FDT2 = float64_ ## name (FDT0, &env->fp_status);*/          \
944
do_raise_exception(EXCP_RI); \
945
    update_fcr31();       \
946
}                         \
947
FLOAT_OP(name, s)         \
948
{                         \
949
    set_float_exception_flags(0, &env->fp_status);            \
950
/* XXX: not implemented */ \
951
/*    FST2 = float32_ ## name (FST0, &env->fp_status);*/          \
952
do_raise_exception(EXCP_RI); \
953
    update_fcr31();       \
954
}                         \
955
FLOAT_OP(name, ps)        \
956
{                         \
957
    set_float_exception_flags(0, &env->fp_status);            \
958
/* XXX: not implemented */ \
959
/*    FST2 = float32_ ## name (FST0, &env->fp_status);*/          \
960
/*    FSTH2 = float32_ ## name (FSTH0, &env->fp_status);*/        \
961
do_raise_exception(EXCP_RI); \
962
    update_fcr31();       \
963
}
964
FLOAT_UNOP(rsqrt1)
965
FLOAT_UNOP(recip1)
966
#undef FLOAT_UNOP
967

    
968
/* binary operations */
969
#define FLOAT_BINOP(name) \
970
FLOAT_OP(name, d)         \
971
{                         \
972
    set_float_exception_flags(0, &env->fp_status);            \
973
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);    \
974
    update_fcr31();                                           \
975
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID)                \
976
        FDT2 = 0x7ff7ffffffffffffULL;                         \
977
    else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {       \
978
        if ((env->fcr31 & 0x3) == 0)                          \
979
            FDT2 &= 0x8000000000000000ULL;                    \
980
    }                     \
981
}                         \
982
FLOAT_OP(name, s)         \
983
{                         \
984
    set_float_exception_flags(0, &env->fp_status);            \
985
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
986
    update_fcr31();                                           \
987
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID)                \
988
        FST2 = 0x7fbfffff;                                    \
989
    else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {       \
990
        if ((env->fcr31 & 0x3) == 0)                          \
991
            FST2 &= 0x80000000ULL;                            \
992
    }                     \
993
}                         \
994
FLOAT_OP(name, ps)        \
995
{                         \
996
    set_float_exception_flags(0, &env->fp_status);            \
997
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
998
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status); \
999
    update_fcr31();       \
1000
    if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) {              \
1001
        FST2 = 0x7fbfffff;                                    \
1002
        FSTH2 = 0x7fbfffff;                                   \
1003
    } else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) {     \
1004
        if ((env->fcr31 & 0x3) == 0) {                        \
1005
            FST2 &= 0x80000000ULL;                            \
1006
            FSTH2 &= 0x80000000ULL;                           \
1007
        }                 \
1008
    }                     \
1009
}
1010
FLOAT_BINOP(add)
1011
FLOAT_BINOP(sub)
1012
FLOAT_BINOP(mul)
1013
FLOAT_BINOP(div)
1014
#undef FLOAT_BINOP
1015

    
1016
/* binary operations, MIPS specific */
1017
#define FLOAT_BINOP(name) \
1018
FLOAT_OP(name, d)         \
1019
{                         \
1020
    set_float_exception_flags(0, &env->fp_status);            \
1021
/* XXX: not implemented */ \
1022
/*    FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);*/    \
1023
do_raise_exception(EXCP_RI); \
1024
    update_fcr31();       \
1025
}                         \
1026
FLOAT_OP(name, s)         \
1027
{                         \
1028
    set_float_exception_flags(0, &env->fp_status);            \
1029
/* XXX: not implemented */ \
1030
/*    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);*/    \
1031
do_raise_exception(EXCP_RI); \
1032
    update_fcr31();       \
1033
}                         \
1034
FLOAT_OP(name, ps)        \
1035
{                         \
1036
    set_float_exception_flags(0, &env->fp_status);            \
1037
/* XXX: not implemented */ \
1038
/*    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);*/    \
1039
/*    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status);*/ \
1040
do_raise_exception(EXCP_RI); \
1041
    update_fcr31();       \
1042
}
1043
FLOAT_BINOP(rsqrt2)
1044
FLOAT_BINOP(recip2)
1045
#undef FLOAT_BINOP
1046

    
1047
FLOAT_OP(addr, ps)
1048
{
1049
    set_float_exception_flags(0, &env->fp_status);
1050
    FST2 = float32_add (FST0, FSTH0, &env->fp_status);
1051
    FSTH2 = float32_add (FST1, FSTH1, &env->fp_status);
1052
    update_fcr31();
1053
}
1054

    
1055
FLOAT_OP(mulr, ps)
1056
{
1057
    set_float_exception_flags(0, &env->fp_status);
1058
    FST2 = float32_mul (FST0, FSTH0, &env->fp_status);
1059
    FSTH2 = float32_mul (FST1, FSTH1, &env->fp_status);
1060
    update_fcr31();
1061
}
1062

    
1063
#define FOP_COND_D(op, cond)                   \
1064
void do_cmp_d_ ## op (long cc)                 \
1065
{                                              \
1066
    int c = cond;                              \
1067
    update_fcr31();                            \
1068
    if (c)                                     \
1069
        SET_FP_COND(cc, env);                  \
1070
    else                                       \
1071
        CLEAR_FP_COND(cc, env);                \
1072
}                                              \
1073
void do_cmpabs_d_ ## op (long cc)              \
1074
{                                              \
1075
    int c;                                     \
1076
    FDT0 &= ~(1ULL << 63);                     \
1077
    FDT1 &= ~(1ULL << 63);                     \
1078
    c = cond;                                  \
1079
    update_fcr31();                            \
1080
    if (c)                                     \
1081
        SET_FP_COND(cc, env);                  \
1082
    else                                       \
1083
        CLEAR_FP_COND(cc, env);                \
1084
}
1085

    
1086
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1087
{
1088
    if (float64_is_signaling_nan(a) ||
1089
        float64_is_signaling_nan(b) ||
1090
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1091
        float_raise(float_flag_invalid, status);
1092
        return 1;
1093
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1094
        return 1;
1095
    } else {
1096
        return 0;
1097
    }
1098
}
1099

    
1100
/* NOTE: the comma operator will make "cond" to eval to false,
1101
 * but float*_is_unordered() is still called. */
1102
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fp_status), 0))
1103
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fp_status))
1104
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
1105
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_eq(FDT0, FDT1, &env->fp_status))
1106
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
1107
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_lt(FDT0, FDT1, &env->fp_status))
1108
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
1109
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fp_status)  || float64_le(FDT0, FDT1, &env->fp_status))
1110
/* NOTE: the comma operator will make "cond" to eval to false,
1111
 * but float*_is_unordered() is still called. */
1112
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fp_status), 0))
1113
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fp_status))
1114
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
1115
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_eq(FDT0, FDT1, &env->fp_status))
1116
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
1117
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_lt(FDT0, FDT1, &env->fp_status))
1118
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
1119
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fp_status)  || float64_le(FDT0, FDT1, &env->fp_status))
1120

    
1121
#define FOP_COND_S(op, cond)                   \
1122
void do_cmp_s_ ## op (long cc)                 \
1123
{                                              \
1124
    int c = cond;                              \
1125
    update_fcr31();                            \
1126
    if (c)                                     \
1127
        SET_FP_COND(cc, env);                  \
1128
    else                                       \
1129
        CLEAR_FP_COND(cc, env);                \
1130
}                                              \
1131
void do_cmpabs_s_ ## op (long cc)              \
1132
{                                              \
1133
    int c;                                     \
1134
    FST0 &= ~(1 << 31);                        \
1135
    FST1 &= ~(1 << 31);                        \
1136
    c = cond;                                  \
1137
    update_fcr31();                            \
1138
    if (c)                                     \
1139
        SET_FP_COND(cc, env);                  \
1140
    else                                       \
1141
        CLEAR_FP_COND(cc, env);                \
1142
}
1143

    
1144
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1145
{
1146
    if (float32_is_signaling_nan(a) ||
1147
        float32_is_signaling_nan(b) ||
1148
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1149
        float_raise(float_flag_invalid, status);
1150
        return 1;
1151
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1152
        return 1;
1153
    } else {
1154
        return 0;
1155
    }
1156
}
1157

    
1158
/* NOTE: the comma operator will make "cond" to eval to false,
1159
 * but float*_is_unordered() is still called. */
1160
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0))
1161
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fp_status))
1162
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
1163
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_eq(FST0, FST1, &env->fp_status))
1164
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
1165
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_lt(FST0, FST1, &env->fp_status))
1166
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
1167
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status)  || float32_le(FST0, FST1, &env->fp_status))
1168
/* NOTE: the comma operator will make "cond" to eval to false,
1169
 * but float*_is_unordered() is still called. */
1170
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0))
1171
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status))
1172
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
1173
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_eq(FST0, FST1, &env->fp_status))
1174
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
1175
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_lt(FST0, FST1, &env->fp_status))
1176
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
1177
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status)  || float32_le(FST0, FST1, &env->fp_status))
1178

    
1179
#define FOP_COND_PS(op, condl, condh)          \
1180
void do_cmp_ps_ ## op (long cc)                \
1181
{                                              \
1182
    int cl = condl;                            \
1183
    int ch = condh;                            \
1184
    update_fcr31();                            \
1185
    if (cl)                                    \
1186
        SET_FP_COND(cc, env);                  \
1187
    else                                       \
1188
        CLEAR_FP_COND(cc, env);                \
1189
    if (ch)                                    \
1190
        SET_FP_COND(cc + 1, env);              \
1191
    else                                       \
1192
        CLEAR_FP_COND(cc + 1, env);            \
1193
}                                              \
1194
void do_cmpabs_ps_ ## op (long cc)             \
1195
{                                              \
1196
    int cl, ch;                                \
1197
    FST0 &= ~(1 << 31);                        \
1198
    FSTH0 &= ~(1 << 31);                       \
1199
    FST1 &= ~(1 << 31);                        \
1200
    FSTH1 &= ~(1 << 31);                       \
1201
    cl = condl;                                \
1202
    ch = condh;                                \
1203
    update_fcr31();                            \
1204
    if (cl)                                    \
1205
        SET_FP_COND(cc, env);                  \
1206
    else                                       \
1207
        CLEAR_FP_COND(cc, env);                \
1208
    if (ch)                                    \
1209
        SET_FP_COND(cc + 1, env);              \
1210
    else                                       \
1211
        CLEAR_FP_COND(cc + 1, env);            \
1212
}
1213

    
1214
/* NOTE: the comma operator will make "cond" to eval to false,
1215
 * but float*_is_unordered() is still called. */
1216
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0),
1217
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status), 0))
1218
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fp_status),
1219
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status))
1220
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_eq(FST0, FST1, &env->fp_status),
1221
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
1222
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_eq(FST0, FST1, &env->fp_status),
1223
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fp_status))
1224
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_lt(FST0, FST1, &env->fp_status),
1225
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
1226
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_lt(FST0, FST1, &env->fp_status),
1227
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fp_status))
1228
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status)   && float32_le(FST0, FST1, &env->fp_status),
1229
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
1230
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status)    || float32_le(FST0, FST1, &env->fp_status),
1231
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status)  || float32_le(FSTH0, FSTH1, &env->fp_status))
1232
/* NOTE: the comma operator will make "cond" to eval to false,
1233
 * but float*_is_unordered() is still called. */
1234
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0),
1235
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status), 0))
1236
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status),
1237
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status))
1238
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_eq(FST0, FST1, &env->fp_status),
1239
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
1240
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_eq(FST0, FST1, &env->fp_status),
1241
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fp_status))
1242
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_lt(FST0, FST1, &env->fp_status),
1243
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
1244
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_lt(FST0, FST1, &env->fp_status),
1245
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fp_status))
1246
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fp_status)   && float32_le(FST0, FST1, &env->fp_status),
1247
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
1248
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status)    || float32_le(FST0, FST1, &env->fp_status),
1249
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status)  || float32_le(FSTH0, FSTH1, &env->fp_status))