Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ bfed01fc

History | View | Annotate | Download (58.7 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 * 
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21

    
22
#include "op_helper.h"
23

    
24
#define MEMSUFFIX _raw
25
#include "op_helper.h"
26
#include "op_helper_mem.h"
27
#if !defined(CONFIG_USER_ONLY)
28
#define MEMSUFFIX _user
29
#include "op_helper.h"
30
#include "op_helper_mem.h"
31
#define MEMSUFFIX _kernel
32
#include "op_helper.h"
33
#include "op_helper_mem.h"
34
#endif
35

    
36
//#define DEBUG_OP
37
//#define DEBUG_EXCEPTIONS
38
//#define DEBUG_SOFTWARE_TLB
39
//#define FLUSH_ALL_TLBS
40

    
41
/*****************************************************************************/
42
/* Exceptions processing helpers */
43

    
44
void do_raise_exception_err (uint32_t exception, int error_code)
45
{
46
#if 0
47
    printf("Raise exception %3x code : %d\n", exception, error_code);
48
#endif
49
    switch (exception) {
50
    case EXCP_PROGRAM:
51
        if (error_code == EXCP_FP && msr_fe0 == 0 && msr_fe1 == 0)
52
            return;
53
        break;
54
    default:
55
        break;
56
    }
57
    env->exception_index = exception;
58
    env->error_code = error_code;
59
    cpu_loop_exit();
60
}
61

    
62
void do_raise_exception (uint32_t exception)
63
{
64
    do_raise_exception_err(exception, 0);
65
}
66

    
67
void cpu_dump_EA (target_ulong EA);
68
void do_print_mem_EA (target_ulong EA)
69
{
70
    cpu_dump_EA(EA);
71
}
72

    
73
/*****************************************************************************/
74
/* Registers load and stores */
75
void do_load_cr (void)
76
{
77
    T0 = (env->crf[0] << 28) |
78
        (env->crf[1] << 24) |
79
        (env->crf[2] << 20) |
80
        (env->crf[3] << 16) |
81
        (env->crf[4] << 12) |
82
        (env->crf[5] << 8) |
83
        (env->crf[6] << 4) |
84
        (env->crf[7] << 0);
85
}
86

    
87
void do_store_cr (uint32_t mask)
88
{
89
    int i, sh;
90

    
91
    for (i = 0, sh = 7; i < 8; i++, sh --) {
92
        if (mask & (1 << sh))
93
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
94
    }
95
}
96

    
97
void do_load_xer (void)
98
{
99
    T0 = (xer_so << XER_SO) |
100
        (xer_ov << XER_OV) |
101
        (xer_ca << XER_CA) |
102
        (xer_bc << XER_BC) |
103
        (xer_cmp << XER_CMP);
104
}
105

    
106
void do_store_xer (void)
107
{
108
    xer_so = (T0 >> XER_SO) & 0x01;
109
    xer_ov = (T0 >> XER_OV) & 0x01;
110
    xer_ca = (T0 >> XER_CA) & 0x01;
111
    xer_cmp = (T0 >> XER_CMP) & 0xFF;
112
    xer_bc = (T0 >> XER_BC) & 0x7F;
113
}
114

    
115
void do_load_fpscr (void)
116
{
117
    /* The 32 MSB of the target fpr are undefined.
118
     * They'll be zero...
119
     */
120
    union {
121
        float64 d;
122
        struct {
123
            uint32_t u[2];
124
        } s;
125
    } u;
126
    int i;
127

    
128
#if defined(WORDS_BIGENDIAN)
129
#define WORD0 0
130
#define WORD1 1
131
#else
132
#define WORD0 1
133
#define WORD1 0
134
#endif
135
    u.s.u[WORD0] = 0;
136
    u.s.u[WORD1] = 0;
137
    for (i = 0; i < 8; i++)
138
        u.s.u[WORD1] |= env->fpscr[i] << (4 * i);
139
    FT0 = u.d;
140
}
141

    
142
void do_store_fpscr (uint32_t mask)
143
{
144
    /*
145
     * We use only the 32 LSB of the incoming fpr
146
     */
147
    union {
148
        double d;
149
        struct {
150
            uint32_t u[2];
151
        } s;
152
    } u;
153
    int i, rnd_type;
154

    
155
    u.d = FT0;
156
    if (mask & 0x80)
157
        env->fpscr[0] = (env->fpscr[0] & 0x9) | ((u.s.u[WORD1] >> 28) & ~0x9);
158
    for (i = 1; i < 7; i++) {
159
        if (mask & (1 << (7 - i)))
160
            env->fpscr[i] = (u.s.u[WORD1] >> (4 * (7 - i))) & 0xF;
161
    }
162
    /* TODO: update FEX & VX */
163
    /* Set rounding mode */
164
    switch (env->fpscr[0] & 0x3) {
165
    case 0:
166
        /* Best approximation (round to nearest) */
167
        rnd_type = float_round_nearest_even;
168
        break;
169
    case 1:
170
        /* Smaller magnitude (round toward zero) */
171
        rnd_type = float_round_to_zero;
172
        break;
173
    case 2:
174
        /* Round toward +infinite */
175
        rnd_type = float_round_up;
176
        break;
177
    default:
178
    case 3:
179
        /* Round toward -infinite */
180
        rnd_type = float_round_down;
181
        break;
182
    }
183
    set_float_rounding_mode(rnd_type, &env->fp_status);
184
}
185

    
186
target_ulong ppc_load_dump_spr (int sprn)
187
{
188
    if (loglevel != 0) {
189
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
190
                sprn, sprn, env->spr[sprn]);
191
    }
192

    
193
    return env->spr[sprn];
194
}
195

    
196
void ppc_store_dump_spr (int sprn, target_ulong val)
197
{
198
    if (loglevel != 0) {
199
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
200
                sprn, sprn, env->spr[sprn], val);
201
    }
202
    env->spr[sprn] = val;
203
}
204

    
205
/*****************************************************************************/
206
/* Fixed point operations helpers */
207
#if defined(TARGET_PPC64)
208
static void add128 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
209
{
210
    *plow += a;
211
    /* carry test */
212
    if (*plow < a)
213
        (*phigh)++;
214
    *phigh += b;
215
}
216

    
217
static void neg128 (uint64_t *plow, uint64_t *phigh)
218
{
219
    *plow = ~ *plow;
220
    *phigh = ~ *phigh;
221
    add128(plow, phigh, 1, 0);
222
}
223

    
224
static void mul64 (uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
225
{
226
    uint32_t a0, a1, b0, b1;
227
    uint64_t v;
228

    
229
    a0 = a;
230
    a1 = a >> 32;
231

    
232
    b0 = b;
233
    b1 = b >> 32;
234
    
235
    v = (uint64_t)a0 * (uint64_t)b0;
236
    *plow = v;
237
    *phigh = 0;
238

    
239
    v = (uint64_t)a0 * (uint64_t)b1;
240
    add128(plow, phigh, v << 32, v >> 32);
241

    
242
    v = (uint64_t)a1 * (uint64_t)b0;
243
    add128(plow, phigh, v << 32, v >> 32);
244

    
245
    v = (uint64_t)a1 * (uint64_t)b1;
246
    *phigh += v;
247
#if defined(DEBUG_MULDIV)
248
    printf("mul: 0x%016llx * 0x%016llx = 0x%016llx%016llx\n",
249
           a, b, *phigh, *plow);
250
#endif
251
}
252

    
253
void do_mul64 (uint64_t *plow, uint64_t *phigh)
254
{
255
    mul64(plow, phigh, T0, T1);
256
}
257

    
258
static void imul64 (uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b)
259
{
260
    int sa, sb;
261
    sa = (a < 0);
262
    if (sa)
263
        a = -a;
264
    sb = (b < 0);
265
    if (sb)
266
        b = -b;
267
    mul64(plow, phigh, a, b);
268
    if (sa ^ sb) {
269
        neg128(plow, phigh);
270
    }
271
}
272

    
273
void do_imul64 (uint64_t *plow, uint64_t *phigh)
274
{
275
    imul64(plow, phigh, T0, T1);
276
}
277
#endif
278

    
279
void do_adde (void)
280
{
281
    T2 = T0;
282
    T0 += T1 + xer_ca;
283
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
284
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
285
        xer_ca = 0;
286
    } else {
287
        xer_ca = 1;
288
    }
289
}
290

    
291
#if defined(TARGET_PPC64)
292
void do_adde_64 (void)
293
{
294
    T2 = T0;
295
    T0 += T1 + xer_ca;
296
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
297
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
298
        xer_ca = 0;
299
    } else {
300
        xer_ca = 1;
301
    }
302
}
303
#endif
304

    
305
void do_addmeo (void)
306
{
307
    T1 = T0;
308
    T0 += xer_ca + (-1);
309
    if (likely(!((uint32_t)T1 &
310
                 ((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) {
311
        xer_ov = 0;
312
    } else {
313
        xer_so = 1;
314
        xer_ov = 1;
315
    }
316
    if (likely(T1 != 0))
317
        xer_ca = 1;
318
}
319

    
320
#if defined(TARGET_PPC64)
321
void do_addmeo_64 (void)
322
{
323
    T1 = T0;
324
    T0 += xer_ca + (-1);
325
    if (likely(!((uint64_t)T1 &
326
                 ((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) {
327
        xer_ov = 0;
328
    } else {
329
        xer_so = 1;
330
        xer_ov = 1;
331
    }
332
    if (likely(T1 != 0))
333
        xer_ca = 1;
334
}
335
#endif
336

    
337
void do_divwo (void)
338
{
339
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) ||
340
                 (int32_t)T1 == 0))) {
341
        xer_ov = 0;
342
        T0 = (int32_t)T0 / (int32_t)T1;
343
    } else {
344
        xer_so = 1;
345
        xer_ov = 1;
346
        T0 = (-1) * ((uint32_t)T0 >> 31);
347
    }
348
}
349

    
350
#if defined(TARGET_PPC64)
351
void do_divdo (void)
352
{
353
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) ||
354
                 (int64_t)T1 == 0))) {
355
        xer_ov = 0;
356
        T0 = (int64_t)T0 / (int64_t)T1;
357
    } else {
358
        xer_so = 1;
359
        xer_ov = 1;
360
        T0 = (-1ULL) * ((uint64_t)T0 >> 63);
361
    }
362
}
363
#endif
364

    
365
void do_divwuo (void)
366
{
367
    if (likely((uint32_t)T1 != 0)) {
368
        xer_ov = 0;
369
        T0 = (uint32_t)T0 / (uint32_t)T1;
370
    } else {
371
        xer_so = 1;
372
        xer_ov = 1;
373
        T0 = 0;
374
    }
375
}
376

    
377
#if defined(TARGET_PPC64)
378
void do_divduo (void)
379
{
380
    if (likely((uint64_t)T1 != 0)) {
381
        xer_ov = 0;
382
        T0 = (uint64_t)T0 / (uint64_t)T1;
383
    } else {
384
        xer_so = 1;
385
        xer_ov = 1;
386
        T0 = 0;
387
    }
388
}
389
#endif
390

    
391
void do_mullwo (void)
392
{
393
    int64_t res = (int64_t)T0 * (int64_t)T1;
394

    
395
    if (likely((int32_t)res == res)) {
396
        xer_ov = 0;
397
    } else {
398
        xer_ov = 1;
399
        xer_so = 1;
400
    }
401
    T0 = (int32_t)res;
402
}
403

    
404
#if defined(TARGET_PPC64)
405
void do_mulldo (void)
406
{
407
    int64_t th;
408
    uint64_t tl;
409

    
410
    do_imul64(&tl, &th);
411
    if (likely(th == 0)) {
412
        xer_ov = 0;
413
    } else {
414
        xer_ov = 1;
415
        xer_so = 1;
416
    }
417
    T0 = (int64_t)tl;
418
}
419
#endif
420

    
421
void do_nego (void)
422
{
423
    if (likely((int32_t)T0 != INT32_MIN)) {
424
        xer_ov = 0;
425
        T0 = -(int32_t)T0;
426
    } else {
427
        xer_ov = 1;
428
        xer_so = 1;
429
    }
430
}
431

    
432
#if defined(TARGET_PPC64)
433
void do_nego_64 (void)
434
{
435
    if (likely((int64_t)T0 != INT64_MIN)) {
436
        xer_ov = 0;
437
        T0 = -(int64_t)T0;
438
    } else {
439
        xer_ov = 1;
440
        xer_so = 1;
441
    }
442
}
443
#endif
444

    
445
void do_subfe (void)
446
{
447
    T0 = T1 + ~T0 + xer_ca;
448
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
449
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
450
        xer_ca = 0;
451
    } else {
452
        xer_ca = 1;
453
    }
454
}
455

    
456
#if defined(TARGET_PPC64)
457
void do_subfe_64 (void)
458
{
459
    T0 = T1 + ~T0 + xer_ca;
460
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
461
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
462
        xer_ca = 0;
463
    } else {
464
        xer_ca = 1;
465
    }
466
}
467
#endif
468

    
469
void do_subfmeo (void)
470
{
471
    T1 = T0;
472
    T0 = ~T0 + xer_ca - 1;
473
    if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
474
                 (1UL << 31)))) {
475
        xer_ov = 0;
476
    } else {
477
        xer_so = 1;
478
        xer_ov = 1;
479
    }
480
    if (likely((uint32_t)T1 != UINT32_MAX))
481
        xer_ca = 1;
482
}
483

    
484
#if defined(TARGET_PPC64)
485
void do_subfmeo_64 (void)
486
{
487
    T1 = T0;
488
    T0 = ~T0 + xer_ca - 1;
489
    if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
490
                 (1ULL << 63)))) {
491
        xer_ov = 0;
492
    } else {
493
        xer_so = 1;
494
        xer_ov = 1;
495
    }
496
    if (likely((uint64_t)T1 != UINT64_MAX))
497
        xer_ca = 1;
498
}
499
#endif
500

    
501
void do_subfzeo (void)
502
{
503
    T1 = T0;
504
    T0 = ~T0 + xer_ca;
505
    if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
506
                 ((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) {
507
        xer_ov = 0;
508
    } else {
509
        xer_ov = 1;
510
        xer_so = 1;
511
    }
512
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
513
        xer_ca = 0;
514
    } else {
515
        xer_ca = 1;
516
    }
517
}
518

    
519
#if defined(TARGET_PPC64)
520
void do_subfzeo_64 (void)
521
{
522
    T1 = T0;
523
    T0 = ~T0 + xer_ca;
524
    if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
525
                 ((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) {
526
        xer_ov = 0;
527
    } else {
528
        xer_ov = 1;
529
        xer_so = 1;
530
    }
531
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
532
        xer_ca = 0;
533
    } else {
534
        xer_ca = 1;
535
    }
536
}
537
#endif
538

    
539
/* shift right arithmetic helper */
540
void do_sraw (void)
541
{
542
    int32_t ret;
543

    
544
    if (likely(!(T1 & 0x20UL))) {
545
        if (likely((uint32_t)T1 != 0)) {
546
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
547
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
548
                xer_ca = 0;
549
            } else {
550
                xer_ca = 1;
551
            }
552
        } else {
553
            ret = T0;
554
            xer_ca = 0;
555
        }
556
    } else {
557
        ret = (-1) * ((uint32_t)T0 >> 31);
558
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
559
            xer_ca = 0;
560
        } else {
561
            xer_ca = 1;
562
        }
563
    }
564
    T0 = ret;
565
}
566

    
567
#if defined(TARGET_PPC64)
568
void do_srad (void)
569
{
570
    int64_t ret;
571

    
572
    if (likely(!(T1 & 0x40UL))) {
573
        if (likely((uint64_t)T1 != 0)) {
574
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
575
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
576
                xer_ca = 0;
577
            } else {
578
                xer_ca = 1;
579
            }
580
        } else {
581
            ret = T0;
582
            xer_ca = 0;
583
        }
584
    } else {
585
        ret = (-1) * ((uint64_t)T0 >> 63);
586
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
587
            xer_ca = 0;
588
        } else {
589
            xer_ca = 1;
590
        }
591
    }
592
    T0 = ret;
593
}
594
#endif
595

    
596
static inline int popcnt (uint32_t val)
597
{
598
    int i;
599

    
600
    for (i = 0; val != 0;)
601
        val = val ^ (val - 1);
602

    
603
    return i;
604
}
605

    
606
void do_popcntb (void)
607
{
608
    uint32_t ret;
609
    int i;
610

    
611
    ret = 0;
612
    for (i = 0; i < 32; i += 8)
613
        ret |= popcnt((T0 >> i) & 0xFF) << i;
614
    T0 = ret;
615
}
616

    
617
#if defined(TARGET_PPC64)
618
void do_popcntb_64 (void)
619
{
620
    uint64_t ret;
621
    int i;
622

    
623
    ret = 0;
624
    for (i = 0; i < 64; i += 8)
625
        ret |= popcnt((T0 >> i) & 0xFF) << i;
626
    T0 = ret;
627
}
628
#endif
629

    
630
/*****************************************************************************/
631
/* Floating point operations helpers */
632
void do_fctiw (void)
633
{
634
    union {
635
        double d;
636
        uint64_t i;
637
    } p;
638

    
639
    p.i = float64_to_int32(FT0, &env->fp_status);
640
#if USE_PRECISE_EMULATION
641
    /* XXX: higher bits are not supposed to be significant.
642
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
643
     */
644
    p.i |= 0xFFF80000ULL << 32;
645
#endif
646
    FT0 = p.d;
647
}
648

    
649
void do_fctiwz (void)
650
{
651
    union {
652
        double d;
653
        uint64_t i;
654
    } p;
655

    
656
    p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
657
#if USE_PRECISE_EMULATION
658
    /* XXX: higher bits are not supposed to be significant.
659
     *     to make tests easier, return the same as a real PowerPC 750 (aka G3)
660
     */
661
    p.i |= 0xFFF80000ULL << 32;
662
#endif
663
    FT0 = p.d;
664
}
665

    
666
#if defined(TARGET_PPC64)
667
void do_fcfid (void)
668
{
669
    union {
670
        double d;
671
        uint64_t i;
672
    } p;
673

    
674
    p.d = FT0;
675
    FT0 = int64_to_float64(p.i, &env->fp_status);
676
}
677

    
678
void do_fctid (void)
679
{
680
    union {
681
        double d;
682
        uint64_t i;
683
    } p;
684

    
685
    p.i = float64_to_int64(FT0, &env->fp_status);
686
    FT0 = p.d;
687
}
688

    
689
void do_fctidz (void)
690
{
691
    union {
692
        double d;
693
        uint64_t i;
694
    } p;
695

    
696
    p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
697
    FT0 = p.d;
698
}
699

    
700
#endif
701

    
702
#if USE_PRECISE_EMULATION
703
void do_fmadd (void)
704
{
705
#ifdef FLOAT128
706
    float128 ft0_128, ft1_128;
707

    
708
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
709
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
710
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
711
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
712
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
713
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
714
#else
715
    /* This is OK on x86 hosts */
716
    FT0 = (FT0 * FT1) + FT2;
717
#endif
718
}
719

    
720
void do_fmsub (void)
721
{
722
#ifdef FLOAT128
723
    float128 ft0_128, ft1_128;
724

    
725
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
726
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
727
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
728
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
729
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
730
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
731
#else
732
    /* This is OK on x86 hosts */
733
    FT0 = (FT0 * FT1) - FT2;
734
#endif
735
}
736
#endif /* USE_PRECISE_EMULATION */
737

    
738
void do_fnmadd (void)
739
{
740
#if USE_PRECISE_EMULATION
741
#ifdef FLOAT128
742
    float128 ft0_128, ft1_128;
743

    
744
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
745
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
746
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
747
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
748
    ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
749
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
750
#else
751
    /* This is OK on x86 hosts */
752
    FT0 = (FT0 * FT1) + FT2;
753
#endif
754
#else
755
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
756
    FT0 = float64_add(FT0, FT2, &env->fp_status);
757
#endif
758
    if (likely(!isnan(FT0)))
759
        FT0 = float64_chs(FT0);
760
}
761

    
762
void do_fnmsub (void)
763
{
764
#if USE_PRECISE_EMULATION
765
#ifdef FLOAT128
766
    float128 ft0_128, ft1_128;
767

    
768
    ft0_128 = float64_to_float128(FT0, &env->fp_status);
769
    ft1_128 = float64_to_float128(FT1, &env->fp_status);
770
    ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
771
    ft1_128 = float64_to_float128(FT2, &env->fp_status);
772
    ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
773
    FT0 = float128_to_float64(ft0_128, &env->fp_status);
774
#else
775
    /* This is OK on x86 hosts */
776
    FT0 = (FT0 * FT1) - FT2;
777
#endif
778
#else
779
    FT0 = float64_mul(FT0, FT1, &env->fp_status);
780
    FT0 = float64_sub(FT0, FT2, &env->fp_status);
781
#endif
782
    if (likely(!isnan(FT0)))
783
        FT0 = float64_chs(FT0);
784
}
785

    
786
void do_fsqrt (void)
787
{
788
    FT0 = float64_sqrt(FT0, &env->fp_status);
789
}
790

    
791
void do_fres (void)
792
{
793
    union {
794
        double d;
795
        uint64_t i;
796
    } p;
797

    
798
    if (likely(isnormal(FT0))) {
799
#if USE_PRECISE_EMULATION
800
        FT0 = float64_div(1.0, FT0, &env->fp_status);
801
        FT0 = float64_to_float32(FT0, &env->fp_status);
802
#else
803
        FT0 = float32_div(1.0, FT0, &env->fp_status);
804
#endif
805
    } else {
806
        p.d = FT0;
807
        if (p.i == 0x8000000000000000ULL) {
808
            p.i = 0xFFF0000000000000ULL;
809
        } else if (p.i == 0x0000000000000000ULL) {
810
            p.i = 0x7FF0000000000000ULL;
811
        } else if (isnan(FT0)) {
812
            p.i = 0x7FF8000000000000ULL;
813
        } else if (FT0 < 0.0) {
814
            p.i = 0x8000000000000000ULL;
815
        } else {
816
            p.i = 0x0000000000000000ULL;
817
        }
818
        FT0 = p.d;
819
    }
820
}
821

    
822
void do_frsqrte (void)
823
{
824
    union {
825
        double d;
826
        uint64_t i;
827
    } p;
828

    
829
    if (likely(isnormal(FT0) && FT0 > 0.0)) {
830
        FT0 = float64_sqrt(FT0, &env->fp_status);
831
        FT0 = float32_div(1.0, FT0, &env->fp_status);
832
    } else {
833
        p.d = FT0;
834
        if (p.i == 0x8000000000000000ULL) {
835
            p.i = 0xFFF0000000000000ULL;
836
        } else if (p.i == 0x0000000000000000ULL) {
837
            p.i = 0x7FF0000000000000ULL;
838
        } else if (isnan(FT0)) {
839
            if (!(p.i & 0x0008000000000000ULL))
840
                p.i |= 0x000FFFFFFFFFFFFFULL;
841
        } else if (FT0 < 0) {
842
            p.i = 0x7FF8000000000000ULL;
843
        } else {
844
            p.i = 0x0000000000000000ULL;
845
        }
846
        FT0 = p.d;
847
    }
848
}
849

    
850
void do_fsel (void)
851
{
852
    if (FT0 >= 0)
853
        FT0 = FT1;
854
    else
855
        FT0 = FT2;
856
}
857

    
858
void do_fcmpu (void)
859
{
860
    if (likely(!isnan(FT0) && !isnan(FT1))) {
861
        if (float64_lt(FT0, FT1, &env->fp_status)) {
862
            T0 = 0x08UL;
863
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
864
            T0 = 0x04UL;
865
        } else {
866
            T0 = 0x02UL;
867
        }
868
    } else {
869
        T0 = 0x01UL;
870
        env->fpscr[4] |= 0x1;
871
        env->fpscr[6] |= 0x1;
872
    }
873
    env->fpscr[3] = T0;
874
}
875

    
876
void do_fcmpo (void)
877
{
878
    env->fpscr[4] &= ~0x1;
879
    if (likely(!isnan(FT0) && !isnan(FT1))) {
880
        if (float64_lt(FT0, FT1, &env->fp_status)) {
881
            T0 = 0x08UL;
882
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
883
            T0 = 0x04UL;
884
        } else {
885
            T0 = 0x02UL;
886
        }
887
    } else {
888
        T0 = 0x01UL;
889
        env->fpscr[4] |= 0x1;
890
        if (!float64_is_signaling_nan(FT0) || !float64_is_signaling_nan(FT1)) {
891
            /* Quiet NaN case */
892
            env->fpscr[6] |= 0x1;
893
            if (!(env->fpscr[1] & 0x8))
894
                env->fpscr[4] |= 0x8;
895
        } else {
896
            env->fpscr[4] |= 0x8;
897
        }
898
    }
899
    env->fpscr[3] = T0;
900
}
901

    
902
#if !defined (CONFIG_USER_ONLY)
903
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
904
void do_rfi (void)
905
{
906
#if defined(TARGET_PPC64)
907
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
908
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
909
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
910
    } else {
911
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
912
        ppc_store_msr_32(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
913
    }
914
#else
915
    env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
916
    do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
917
#endif
918
#if defined (DEBUG_OP)
919
    cpu_dump_rfi(env->nip, do_load_msr(env));
920
#endif
921
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
922
}
923

    
924
#if defined(TARGET_PPC64)
925
void do_rfid (void)
926
{
927
    if (env->spr[SPR_SRR1] & (1ULL << MSR_SF)) {
928
        env->nip = (uint64_t)(env->spr[SPR_SRR0] & ~0x00000003);
929
        do_store_msr(env, (uint64_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
930
    } else {
931
        env->nip = (uint32_t)(env->spr[SPR_SRR0] & ~0x00000003);
932
        do_store_msr(env, (uint32_t)(env->spr[SPR_SRR1] & ~0xFFFF0000UL));
933
    }
934
#if defined (DEBUG_OP)
935
    cpu_dump_rfi(env->nip, do_load_msr(env));
936
#endif
937
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
938
}
939
#endif
940
#endif
941

    
942
void do_tw (int flags)
943
{
944
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
945
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
946
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
947
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
948
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
949
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
950
    }
951
}
952

    
953
#if defined(TARGET_PPC64)
954
void do_td (int flags)
955
{
956
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
957
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
958
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
959
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
960
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
961
        do_raise_exception_err(EXCP_PROGRAM, EXCP_TRAP);
962
}
963
#endif
964

    
965
/*****************************************************************************/
966
/* PowerPC 601 specific instructions (POWER bridge) */
967
void do_POWER_abso (void)
968
{
969
    if ((uint32_t)T0 == INT32_MIN) {
970
        T0 = INT32_MAX;
971
        xer_ov = 1;
972
        xer_so = 1;
973
    } else {
974
        T0 = -T0;
975
        xer_ov = 0;
976
    }
977
}
978

    
979
void do_POWER_clcs (void)
980
{
981
    switch (T0) {
982
    case 0x0CUL:
983
        /* Instruction cache line size */
984
        T0 = ICACHE_LINE_SIZE;
985
        break;
986
    case 0x0DUL:
987
        /* Data cache line size */
988
        T0 = DCACHE_LINE_SIZE;
989
        break;
990
    case 0x0EUL:
991
        /* Minimum cache line size */
992
        T0 = ICACHE_LINE_SIZE < DCACHE_LINE_SIZE ?
993
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
994
        break;
995
    case 0x0FUL:
996
        /* Maximum cache line size */
997
        T0 = ICACHE_LINE_SIZE > DCACHE_LINE_SIZE ?
998
            ICACHE_LINE_SIZE : DCACHE_LINE_SIZE;
999
        break;
1000
    default:
1001
        /* Undefined */
1002
        break;
1003
    }
1004
}
1005

    
1006
void do_POWER_div (void)
1007
{
1008
    uint64_t tmp;
1009

    
1010
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1011
        T0 = (long)((-1) * (T0 >> 31));
1012
        env->spr[SPR_MQ] = 0;
1013
    } else {
1014
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1015
        env->spr[SPR_MQ] = tmp % T1;
1016
        T0 = tmp / (int32_t)T1;
1017
    }
1018
}
1019

    
1020
void do_POWER_divo (void)
1021
{
1022
    int64_t tmp;
1023

    
1024
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1025
        T0 = (long)((-1) * (T0 >> 31));
1026
        env->spr[SPR_MQ] = 0;
1027
        xer_ov = 1;
1028
        xer_so = 1;
1029
    } else {
1030
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1031
        env->spr[SPR_MQ] = tmp % T1;
1032
        tmp /= (int32_t)T1;
1033
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1034
            xer_ov = 1;
1035
            xer_so = 1;
1036
        } else {
1037
            xer_ov = 0;
1038
        }
1039
        T0 = tmp;
1040
    }
1041
}
1042

    
1043
void do_POWER_divs (void)
1044
{
1045
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1046
        T0 = (long)((-1) * (T0 >> 31));
1047
        env->spr[SPR_MQ] = 0;
1048
    } else {
1049
        env->spr[SPR_MQ] = T0 % T1;
1050
        T0 = (int32_t)T0 / (int32_t)T1;
1051
    }
1052
}
1053

    
1054
void do_POWER_divso (void)
1055
{
1056
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) {
1057
        T0 = (long)((-1) * (T0 >> 31));
1058
        env->spr[SPR_MQ] = 0;
1059
        xer_ov = 1;
1060
        xer_so = 1;
1061
    } else {
1062
        T0 = (int32_t)T0 / (int32_t)T1;
1063
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1064
        xer_ov = 0;
1065
    }
1066
}
1067

    
1068
void do_POWER_dozo (void)
1069
{
1070
    if ((int32_t)T1 > (int32_t)T0) {
1071
        T2 = T0;
1072
        T0 = T1 - T0;
1073
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1074
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1075
            xer_so = 1;
1076
            xer_ov = 1;
1077
        } else {
1078
            xer_ov = 0;
1079
        }
1080
    } else {
1081
        T0 = 0;
1082
        xer_ov = 0;
1083
    }
1084
}
1085

    
1086
void do_POWER_maskg (void)
1087
{
1088
    uint32_t ret;
1089

    
1090
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1091
        ret = -1;
1092
    } else {
1093
        ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
1094
            (((uint32_t)(-1) >> ((uint32_t)T1)) >> 1);
1095
        if ((uint32_t)T0 > (uint32_t)T1)
1096
            ret = ~ret;
1097
    }
1098
    T0 = ret;
1099
}
1100

    
1101
void do_POWER_mulo (void)
1102
{
1103
    uint64_t tmp;
1104

    
1105
    tmp = (uint64_t)T0 * (uint64_t)T1;
1106
    env->spr[SPR_MQ] = tmp >> 32;
1107
    T0 = tmp;
1108
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1109
        xer_ov = 1;
1110
        xer_so = 1;
1111
    } else {
1112
        xer_ov = 0;
1113
    }
1114
}
1115

    
1116
#if !defined (CONFIG_USER_ONLY)
1117
void do_POWER_rac (void)
1118
{
1119
#if 0
1120
    mmu_ctx_t ctx;
1121

1122
    /* We don't have to generate many instances of this instruction,
1123
     * as rac is supervisor only.
1124
     */
1125
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
1126
        T0 = ctx.raddr;
1127
#endif
1128
}
1129

    
1130
void do_POWER_rfsvc (void)
1131
{
1132
    env->nip = env->lr & ~0x00000003UL;
1133
    T0 = env->ctr & 0x0000FFFFUL;
1134
    do_store_msr(env, T0);
1135
#if defined (DEBUG_OP)
1136
    cpu_dump_rfi(env->nip, do_load_msr(env));
1137
#endif
1138
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1139
}
1140

    
1141
/* PowerPC 601 BAT management helper */
1142
void do_store_601_batu (int nr)
1143
{
1144
    do_store_ibatu(env, nr, (uint32_t)T0);
1145
    env->DBAT[0][nr] = env->IBAT[0][nr];
1146
    env->DBAT[1][nr] = env->IBAT[1][nr];
1147
}
1148
#endif
1149

    
1150
/*****************************************************************************/
1151
/* 602 specific instructions */
1152
/* mfrom is the most crazy instruction ever seen, imho ! */
1153
/* Real implementation uses a ROM table. Do the same */
1154
#define USE_MFROM_ROM_TABLE
1155
void do_op_602_mfrom (void)
1156
{
1157
    if (likely(T0 < 602)) {
1158
#if defined(USE_MFROM_ROM_TABLE)
1159
#include "mfrom_table.c"
1160
        T0 = mfrom_ROM_table[T0];
1161
#else
1162
        double d;
1163
        /* Extremly decomposed:
1164
         *                    -T0 / 256
1165
         * T0 = 256 * log10(10          + 1.0) + 0.5
1166
         */
1167
        d = T0;
1168
        d = float64_div(d, 256, &env->fp_status);
1169
        d = float64_chs(d);
1170
        d = exp10(d); // XXX: use float emulation function
1171
        d = float64_add(d, 1.0, &env->fp_status);
1172
        d = log10(d); // XXX: use float emulation function
1173
        d = float64_mul(d, 256, &env->fp_status);
1174
        d = float64_add(d, 0.5, &env->fp_status);
1175
        T0 = float64_round_to_int(d, &env->fp_status);
1176
#endif
1177
    } else {
1178
        T0 = 0;
1179
    }
1180
}
1181

    
1182
/*****************************************************************************/
1183
/* Embedded PowerPC specific helpers */
1184
void do_405_check_ov (void)
1185
{
1186
    if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1187
               !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1188
        xer_ov = 0;
1189
    } else {
1190
        xer_ov = 1;
1191
        xer_so = 1;
1192
    }
1193
}
1194

    
1195
void do_405_check_sat (void)
1196
{
1197
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1198
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1199
        /* Saturate result */
1200
        if (T2 >> 31) {
1201
            T0 = INT32_MIN;
1202
        } else {
1203
            T0 = INT32_MAX;
1204
        }
1205
    }
1206
}
1207

    
1208
#if !defined(CONFIG_USER_ONLY)
1209
void do_40x_rfci (void)
1210
{
1211
    env->nip = env->spr[SPR_40x_SRR2];
1212
    do_store_msr(env, env->spr[SPR_40x_SRR3] & ~0xFFFF0000);
1213
#if defined (DEBUG_OP)
1214
    cpu_dump_rfi(env->nip, do_load_msr(env));
1215
#endif
1216
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1217
}
1218

    
1219
void do_rfci (void)
1220
{
1221
#if defined(TARGET_PPC64)
1222
    if (env->spr[SPR_BOOKE_CSRR1] & (1 << MSR_CM)) {
1223
        env->nip = (uint64_t)env->spr[SPR_BOOKE_CSRR0];
1224
    } else
1225
#endif
1226
    {
1227
        env->nip = (uint32_t)env->spr[SPR_BOOKE_CSRR0];
1228
    }
1229
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_CSRR1] & ~0x3FFF0000);
1230
#if defined (DEBUG_OP)
1231
    cpu_dump_rfi(env->nip, do_load_msr(env));
1232
#endif
1233
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1234
}
1235

    
1236
void do_rfdi (void)
1237
{
1238
#if defined(TARGET_PPC64)
1239
    if (env->spr[SPR_BOOKE_DSRR1] & (1 << MSR_CM)) {
1240
        env->nip = (uint64_t)env->spr[SPR_BOOKE_DSRR0];
1241
    } else
1242
#endif
1243
    {
1244
        env->nip = (uint32_t)env->spr[SPR_BOOKE_DSRR0];
1245
    }
1246
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_DSRR1] & ~0x3FFF0000);
1247
#if defined (DEBUG_OP)
1248
    cpu_dump_rfi(env->nip, do_load_msr(env));
1249
#endif
1250
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1251
}
1252

    
1253
void do_rfmci (void)
1254
{
1255
#if defined(TARGET_PPC64)
1256
    if (env->spr[SPR_BOOKE_MCSRR1] & (1 << MSR_CM)) {
1257
        env->nip = (uint64_t)env->spr[SPR_BOOKE_MCSRR0];
1258
    } else
1259
#endif
1260
    {
1261
        env->nip = (uint32_t)env->spr[SPR_BOOKE_MCSRR0];
1262
    }
1263
    do_store_msr(env, (uint32_t)env->spr[SPR_BOOKE_MCSRR1] & ~0x3FFF0000);
1264
#if defined (DEBUG_OP)
1265
    cpu_dump_rfi(env->nip, do_load_msr(env));
1266
#endif
1267
    env->interrupt_request = CPU_INTERRUPT_EXITTB;
1268
}
1269

    
1270
void do_load_dcr (void)
1271
{
1272
    target_ulong val;
1273
    
1274
    if (unlikely(env->dcr_env == NULL)) {
1275
        if (loglevel != 0) {
1276
            fprintf(logfile, "No DCR environment\n");
1277
        }
1278
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1279
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1280
        if (loglevel != 0) {
1281
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1282
        }
1283
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1284
    } else {
1285
        T0 = val;
1286
    }
1287
}
1288

    
1289
void do_store_dcr (void)
1290
{
1291
    if (unlikely(env->dcr_env == NULL)) {
1292
        if (loglevel != 0) {
1293
            fprintf(logfile, "No DCR environment\n");
1294
        }
1295
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_INVAL_INVAL);
1296
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1297
        if (loglevel != 0) {
1298
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1299
        }
1300
        do_raise_exception_err(EXCP_PROGRAM, EXCP_INVAL | EXCP_PRIV_REG);
1301
    }
1302
}
1303

    
1304
void do_load_403_pb (int num)
1305
{
1306
    T0 = env->pb[num];
1307
}
1308

    
1309
void do_store_403_pb (int num)
1310
{
1311
    if (likely(env->pb[num] != T0)) {
1312
        env->pb[num] = T0;
1313
        /* Should be optimized */
1314
        tlb_flush(env, 1);
1315
    }
1316
}
1317
#endif
1318

    
1319
/* 440 specific */
1320
void do_440_dlmzb (void)
1321
{
1322
    target_ulong mask;
1323
    int i;
1324

    
1325
    i = 1;
1326
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1327
        if ((T0 & mask) == 0)
1328
            goto done;
1329
        i++;
1330
    }
1331
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1332
        if ((T1 & mask) == 0)
1333
            break;
1334
        i++;
1335
    }
1336
 done:
1337
    T0 = i;
1338
}
1339

    
1340
#if defined(TARGET_PPCEMB)
1341
/* SPE extension helpers */
1342
/* Use a table to make this quicker */
1343
static uint8_t hbrev[16] = {
1344
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1345
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1346
};
1347

    
1348
static inline uint8_t byte_reverse (uint8_t val)
1349
{
1350
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1351
}
1352

    
1353
static inline uint32_t word_reverse (uint32_t val)
1354
{
1355
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1356
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1357
}
1358

    
1359
#define MASKBITS 16 // Random value - to be fixed
1360
void do_brinc (void)
1361
{
1362
    uint32_t a, b, d, mask;
1363

    
1364
    mask = (uint32_t)(-1UL) >> MASKBITS;
1365
    b = T1_64 & mask;
1366
    a = T0_64 & mask;
1367
    d = word_reverse(1 + word_reverse(a | ~mask));
1368
    T0_64 = (T0_64 & ~mask) | (d & mask);
1369
}
1370

    
1371
#define DO_SPE_OP2(name)                                                      \
1372
void do_ev##name (void)                                                       \
1373
{                                                                             \
1374
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1375
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1376
}
1377

    
1378
#define DO_SPE_OP1(name)                                                      \
1379
void do_ev##name (void)                                                       \
1380
{                                                                             \
1381
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1382
        (uint64_t)_do_e##name(T0_64);                                         \
1383
}
1384

    
1385
/* Fixed-point vector arithmetic */
1386
static inline uint32_t _do_eabs (uint32_t val)
1387
{
1388
    if (val != 0x80000000)
1389
        val &= ~0x80000000;
1390

    
1391
    return val;
1392
}
1393

    
1394
static inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1395
{
1396
    return op1 + op2;
1397
}
1398

    
1399
static inline int _do_ecntlsw (uint32_t val)
1400
{
1401
    if (val & 0x80000000)
1402
        return _do_cntlzw(~val);
1403
    else
1404
        return _do_cntlzw(val);
1405
}
1406

    
1407
static inline int _do_ecntlzw (uint32_t val)
1408
{
1409
    return _do_cntlzw(val);
1410
}
1411

    
1412
static inline uint32_t _do_eneg (uint32_t val)
1413
{
1414
    if (val != 0x80000000)
1415
        val ^= 0x80000000;
1416

    
1417
    return val;
1418
}
1419

    
1420
static inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1421
{
1422
    return rotl32(op1, op2);
1423
}
1424

    
1425
static inline uint32_t _do_erndw (uint32_t val)
1426
{
1427
    return (val + 0x000080000000) & 0xFFFF0000;
1428
}
1429

    
1430
static inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1431
{
1432
    /* No error here: 6 bits are used */
1433
    return op1 << (op2 & 0x3F);
1434
}
1435

    
1436
static inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1437
{
1438
    /* No error here: 6 bits are used */
1439
    return op1 >> (op2 & 0x3F);
1440
}
1441

    
1442
static inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1443
{
1444
    /* No error here: 6 bits are used */
1445
    return op1 >> (op2 & 0x3F);
1446
}
1447

    
1448
static inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1449
{
1450
    return op2 - op1;
1451
}
1452

    
1453
/* evabs */
1454
DO_SPE_OP1(abs);
1455
/* evaddw */
1456
DO_SPE_OP2(addw);
1457
/* evcntlsw */
1458
DO_SPE_OP1(cntlsw);
1459
/* evcntlzw */
1460
DO_SPE_OP1(cntlzw);
1461
/* evneg */
1462
DO_SPE_OP1(neg);
1463
/* evrlw */
1464
DO_SPE_OP2(rlw);
1465
/* evrnd */
1466
DO_SPE_OP1(rndw);
1467
/* evslw */
1468
DO_SPE_OP2(slw);
1469
/* evsrws */
1470
DO_SPE_OP2(srws);
1471
/* evsrwu */
1472
DO_SPE_OP2(srwu);
1473
/* evsubfw */
1474
DO_SPE_OP2(subfw);
1475

    
1476
/* evsel is a little bit more complicated... */
1477
static inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1478
{
1479
    if (n)
1480
        return op1;
1481
    else
1482
        return op2;
1483
}
1484

    
1485
void do_evsel (void)
1486
{
1487
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
1488
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
1489
}
1490

    
1491
/* Fixed-point vector comparisons */
1492
#define DO_SPE_CMP(name)                                                      \
1493
void do_ev##name (void)                                                       \
1494
{                                                                             \
1495
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
1496
                                               T1_64 >> 32) << 32,            \
1497
                         _do_e##name(T0_64, T1_64));                          \
1498
}
1499

    
1500
static inline uint32_t _do_evcmp_merge (int t0, int t1)
1501
{
1502
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1503
}
1504
static inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
1505
{
1506
    return op1 == op2 ? 1 : 0;
1507
}
1508

    
1509
static inline int _do_ecmpgts (int32_t op1, int32_t op2)
1510
{
1511
    return op1 > op2 ? 1 : 0;
1512
}
1513

    
1514
static inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
1515
{
1516
    return op1 > op2 ? 1 : 0;
1517
}
1518

    
1519
static inline int _do_ecmplts (int32_t op1, int32_t op2)
1520
{
1521
    return op1 < op2 ? 1 : 0;
1522
}
1523

    
1524
static inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
1525
{
1526
    return op1 < op2 ? 1 : 0;
1527
}
1528

    
1529
/* evcmpeq */
1530
DO_SPE_CMP(cmpeq);
1531
/* evcmpgts */
1532
DO_SPE_CMP(cmpgts);
1533
/* evcmpgtu */
1534
DO_SPE_CMP(cmpgtu);
1535
/* evcmplts */
1536
DO_SPE_CMP(cmplts);
1537
/* evcmpltu */
1538
DO_SPE_CMP(cmpltu);
1539

    
1540
/* Single precision floating-point conversions from/to integer */
1541
static inline uint32_t _do_efscfsi (int32_t val)
1542
{
1543
    union {
1544
        uint32_t u;
1545
        float32 f;
1546
    } u;
1547

    
1548
    u.f = int32_to_float32(val, &env->spe_status);
1549

    
1550
    return u.u;
1551
}
1552

    
1553
static inline uint32_t _do_efscfui (uint32_t val)
1554
{
1555
    union {
1556
        uint32_t u;
1557
        float32 f;
1558
    } u;
1559

    
1560
    u.f = uint32_to_float32(val, &env->spe_status);
1561

    
1562
    return u.u;
1563
}
1564

    
1565
static inline int32_t _do_efsctsi (uint32_t val)
1566
{
1567
    union {
1568
        int32_t u;
1569
        float32 f;
1570
    } u;
1571

    
1572
    u.u = val;
1573
    /* NaN are not treated the same way IEEE 754 does */
1574
    if (unlikely(isnan(u.f)))
1575
        return 0;
1576

    
1577
    return float32_to_int32(u.f, &env->spe_status);
1578
}
1579

    
1580
static inline uint32_t _do_efsctui (uint32_t val)
1581
{
1582
    union {
1583
        int32_t u;
1584
        float32 f;
1585
    } u;
1586

    
1587
    u.u = val;
1588
    /* NaN are not treated the same way IEEE 754 does */
1589
    if (unlikely(isnan(u.f)))
1590
        return 0;
1591

    
1592
    return float32_to_uint32(u.f, &env->spe_status);
1593
}
1594

    
1595
static inline int32_t _do_efsctsiz (uint32_t val)
1596
{
1597
    union {
1598
        int32_t u;
1599
        float32 f;
1600
    } u;
1601

    
1602
    u.u = val;
1603
    /* NaN are not treated the same way IEEE 754 does */
1604
    if (unlikely(isnan(u.f)))
1605
        return 0;
1606

    
1607
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1608
}
1609

    
1610
static inline uint32_t _do_efsctuiz (uint32_t val)
1611
{
1612
    union {
1613
        int32_t u;
1614
        float32 f;
1615
    } u;
1616

    
1617
    u.u = val;
1618
    /* NaN are not treated the same way IEEE 754 does */
1619
    if (unlikely(isnan(u.f)))
1620
        return 0;
1621

    
1622
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1623
}
1624

    
1625
void do_efscfsi (void)
1626
{
1627
    T0_64 = _do_efscfsi(T0_64);
1628
}
1629

    
1630
void do_efscfui (void)
1631
{
1632
    T0_64 = _do_efscfui(T0_64);
1633
}
1634

    
1635
void do_efsctsi (void)
1636
{
1637
    T0_64 = _do_efsctsi(T0_64);
1638
}
1639

    
1640
void do_efsctui (void)
1641
{
1642
    T0_64 = _do_efsctui(T0_64);
1643
}
1644

    
1645
void do_efsctsiz (void)
1646
{
1647
    T0_64 = _do_efsctsiz(T0_64);
1648
}
1649

    
1650
void do_efsctuiz (void)
1651
{
1652
    T0_64 = _do_efsctuiz(T0_64);
1653
}
1654

    
1655
/* Single precision floating-point conversion to/from fractional */
1656
static inline uint32_t _do_efscfsf (uint32_t val)
1657
{
1658
    union {
1659
        uint32_t u;
1660
        float32 f;
1661
    } u;
1662
    float32 tmp;
1663

    
1664
    u.f = int32_to_float32(val, &env->spe_status);
1665
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
1666
    u.f = float32_div(u.f, tmp, &env->spe_status);
1667

    
1668
    return u.u;
1669
}
1670

    
1671
static inline uint32_t _do_efscfuf (uint32_t val)
1672
{
1673
    union {
1674
        uint32_t u;
1675
        float32 f;
1676
    } u;
1677
    float32 tmp;
1678

    
1679
    u.f = uint32_to_float32(val, &env->spe_status);
1680
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1681
    u.f = float32_div(u.f, tmp, &env->spe_status);
1682

    
1683
    return u.u;
1684
}
1685

    
1686
static inline int32_t _do_efsctsf (uint32_t val)
1687
{
1688
    union {
1689
        int32_t u;
1690
        float32 f;
1691
    } u;
1692
    float32 tmp;
1693

    
1694
    u.u = val;
1695
    /* NaN are not treated the same way IEEE 754 does */
1696
    if (unlikely(isnan(u.f)))
1697
        return 0;
1698
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1699
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1700

    
1701
    return float32_to_int32(u.f, &env->spe_status);
1702
}
1703

    
1704
static inline uint32_t _do_efsctuf (uint32_t val)
1705
{
1706
    union {
1707
        int32_t u;
1708
        float32 f;
1709
    } u;
1710
    float32 tmp;
1711

    
1712
    u.u = val;
1713
    /* NaN are not treated the same way IEEE 754 does */
1714
    if (unlikely(isnan(u.f)))
1715
        return 0;
1716
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1717
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1718

    
1719
    return float32_to_uint32(u.f, &env->spe_status);
1720
}
1721

    
1722
static inline int32_t _do_efsctsfz (uint32_t val)
1723
{
1724
    union {
1725
        int32_t u;
1726
        float32 f;
1727
    } u;
1728
    float32 tmp;
1729

    
1730
    u.u = val;
1731
    /* NaN are not treated the same way IEEE 754 does */
1732
    if (unlikely(isnan(u.f)))
1733
        return 0;
1734
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1735
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1736

    
1737
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
1738
}
1739

    
1740
static inline uint32_t _do_efsctufz (uint32_t val)
1741
{
1742
    union {
1743
        int32_t u;
1744
        float32 f;
1745
    } u;
1746
    float32 tmp;
1747

    
1748
    u.u = val;
1749
    /* NaN are not treated the same way IEEE 754 does */
1750
    if (unlikely(isnan(u.f)))
1751
        return 0;
1752
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
1753
    u.f = float32_mul(u.f, tmp, &env->spe_status);
1754

    
1755
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
1756
}
1757

    
1758
void do_efscfsf (void)
1759
{
1760
    T0_64 = _do_efscfsf(T0_64);
1761
}
1762

    
1763
void do_efscfuf (void)
1764
{
1765
    T0_64 = _do_efscfuf(T0_64);
1766
}
1767

    
1768
void do_efsctsf (void)
1769
{
1770
    T0_64 = _do_efsctsf(T0_64);
1771
}
1772

    
1773
void do_efsctuf (void)
1774
{
1775
    T0_64 = _do_efsctuf(T0_64);
1776
}
1777

    
1778
void do_efsctsfz (void)
1779
{
1780
    T0_64 = _do_efsctsfz(T0_64);
1781
}
1782

    
1783
void do_efsctufz (void)
1784
{
1785
    T0_64 = _do_efsctufz(T0_64);
1786
}
1787

    
1788
/* Double precision floating point helpers */
1789
static inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
1790
{
1791
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1792
    return _do_efdtstlt(op1, op2);
1793
}
1794

    
1795
static inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
1796
{
1797
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1798
    return _do_efdtstgt(op1, op2);
1799
}
1800

    
1801
static inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
1802
{
1803
    /* XXX: TODO: test special values (NaN, infinites, ...) */
1804
    return _do_efdtsteq(op1, op2);
1805
}
1806

    
1807
void do_efdcmplt (void)
1808
{
1809
    T0 = _do_efdcmplt(T0_64, T1_64);
1810
}
1811

    
1812
void do_efdcmpgt (void)
1813
{
1814
    T0 = _do_efdcmpgt(T0_64, T1_64);
1815
}
1816

    
1817
void do_efdcmpeq (void)
1818
{
1819
    T0 = _do_efdcmpeq(T0_64, T1_64);
1820
}
1821

    
1822
/* Double precision floating-point conversion to/from integer */
1823
static inline uint64_t _do_efdcfsi (int64_t val)
1824
{
1825
    union {
1826
        uint64_t u;
1827
        float64 f;
1828
    } u;
1829

    
1830
    u.f = int64_to_float64(val, &env->spe_status);
1831

    
1832
    return u.u;
1833
}
1834

    
1835
static inline uint64_t _do_efdcfui (uint64_t val)
1836
{
1837
    union {
1838
        uint64_t u;
1839
        float64 f;
1840
    } u;
1841

    
1842
    u.f = uint64_to_float64(val, &env->spe_status);
1843

    
1844
    return u.u;
1845
}
1846

    
1847
static inline int64_t _do_efdctsi (uint64_t val)
1848
{
1849
    union {
1850
        int64_t u;
1851
        float64 f;
1852
    } u;
1853

    
1854
    u.u = val;
1855
    /* NaN are not treated the same way IEEE 754 does */
1856
    if (unlikely(isnan(u.f)))
1857
        return 0;
1858

    
1859
    return float64_to_int64(u.f, &env->spe_status);
1860
}
1861

    
1862
static inline uint64_t _do_efdctui (uint64_t val)
1863
{
1864
    union {
1865
        int64_t u;
1866
        float64 f;
1867
    } u;
1868

    
1869
    u.u = val;
1870
    /* NaN are not treated the same way IEEE 754 does */
1871
    if (unlikely(isnan(u.f)))
1872
        return 0;
1873

    
1874
    return float64_to_uint64(u.f, &env->spe_status);
1875
}
1876

    
1877
static inline int64_t _do_efdctsiz (uint64_t val)
1878
{
1879
    union {
1880
        int64_t u;
1881
        float64 f;
1882
    } u;
1883

    
1884
    u.u = val;
1885
    /* NaN are not treated the same way IEEE 754 does */
1886
    if (unlikely(isnan(u.f)))
1887
        return 0;
1888

    
1889
    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
1890
}
1891

    
1892
static inline uint64_t _do_efdctuiz (uint64_t val)
1893
{
1894
    union {
1895
        int64_t u;
1896
        float64 f;
1897
    } u;
1898

    
1899
    u.u = val;
1900
    /* NaN are not treated the same way IEEE 754 does */
1901
    if (unlikely(isnan(u.f)))
1902
        return 0;
1903

    
1904
    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
1905
}
1906

    
1907
void do_efdcfsi (void)
1908
{
1909
    T0_64 = _do_efdcfsi(T0_64);
1910
}
1911

    
1912
void do_efdcfui (void)
1913
{
1914
    T0_64 = _do_efdcfui(T0_64);
1915
}
1916

    
1917
void do_efdctsi (void)
1918
{
1919
    T0_64 = _do_efdctsi(T0_64);
1920
}
1921

    
1922
void do_efdctui (void)
1923
{
1924
    T0_64 = _do_efdctui(T0_64);
1925
}
1926

    
1927
void do_efdctsiz (void)
1928
{
1929
    T0_64 = _do_efdctsiz(T0_64);
1930
}
1931

    
1932
void do_efdctuiz (void)
1933
{
1934
    T0_64 = _do_efdctuiz(T0_64);
1935
}
1936

    
1937
/* Double precision floating-point conversion to/from fractional */
1938
static inline uint64_t _do_efdcfsf (int64_t val)
1939
{
1940
    union {
1941
        uint64_t u;
1942
        float64 f;
1943
    } u;
1944
    float64 tmp;
1945

    
1946
    u.f = int32_to_float64(val, &env->spe_status);
1947
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1948
    u.f = float64_div(u.f, tmp, &env->spe_status);
1949

    
1950
    return u.u;
1951
}
1952

    
1953
static inline uint64_t _do_efdcfuf (uint64_t val)
1954
{
1955
    union {
1956
        uint64_t u;
1957
        float64 f;
1958
    } u;
1959
    float64 tmp;
1960

    
1961
    u.f = uint32_to_float64(val, &env->spe_status);
1962
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
1963
    u.f = float64_div(u.f, tmp, &env->spe_status);
1964

    
1965
    return u.u;
1966
}
1967

    
1968
static inline int64_t _do_efdctsf (uint64_t val)
1969
{
1970
    union {
1971
        int64_t u;
1972
        float64 f;
1973
    } u;
1974
    float64 tmp;
1975

    
1976
    u.u = val;
1977
    /* NaN are not treated the same way IEEE 754 does */
1978
    if (unlikely(isnan(u.f)))
1979
        return 0;
1980
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1981
    u.f = float64_mul(u.f, tmp, &env->spe_status);
1982

    
1983
    return float64_to_int32(u.f, &env->spe_status);
1984
}
1985

    
1986
static inline uint64_t _do_efdctuf (uint64_t val)
1987
{
1988
    union {
1989
        int64_t u;
1990
        float64 f;
1991
    } u;
1992
    float64 tmp;
1993

    
1994
    u.u = val;
1995
    /* NaN are not treated the same way IEEE 754 does */
1996
    if (unlikely(isnan(u.f)))
1997
        return 0;
1998
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
1999
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2000

    
2001
    return float64_to_uint32(u.f, &env->spe_status);
2002
}
2003

    
2004
static inline int64_t _do_efdctsfz (uint64_t val)
2005
{
2006
    union {
2007
        int64_t u;
2008
        float64 f;
2009
    } u;
2010
    float64 tmp;
2011

    
2012
    u.u = val;
2013
    /* NaN are not treated the same way IEEE 754 does */
2014
    if (unlikely(isnan(u.f)))
2015
        return 0;
2016
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2017
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2018

    
2019
    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2020
}
2021

    
2022
static inline uint64_t _do_efdctufz (uint64_t val)
2023
{
2024
    union {
2025
        int64_t u;
2026
        float64 f;
2027
    } u;
2028
    float64 tmp;
2029

    
2030
    u.u = val;
2031
    /* NaN are not treated the same way IEEE 754 does */
2032
    if (unlikely(isnan(u.f)))
2033
        return 0;
2034
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2035
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2036

    
2037
    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2038
}
2039

    
2040
void do_efdcfsf (void)
2041
{
2042
    T0_64 = _do_efdcfsf(T0_64);
2043
}
2044

    
2045
void do_efdcfuf (void)
2046
{
2047
    T0_64 = _do_efdcfuf(T0_64);
2048
}
2049

    
2050
void do_efdctsf (void)
2051
{
2052
    T0_64 = _do_efdctsf(T0_64);
2053
}
2054

    
2055
void do_efdctuf (void)
2056
{
2057
    T0_64 = _do_efdctuf(T0_64);
2058
}
2059

    
2060
void do_efdctsfz (void)
2061
{
2062
    T0_64 = _do_efdctsfz(T0_64);
2063
}
2064

    
2065
void do_efdctufz (void)
2066
{
2067
    T0_64 = _do_efdctufz(T0_64);
2068
}
2069

    
2070
/* Floating point conversion between single and double precision */
2071
static inline uint32_t _do_efscfd (uint64_t val)
2072
{
2073
    union {
2074
        uint64_t u;
2075
        float64 f;
2076
    } u1;
2077
    union {
2078
        uint32_t u;
2079
        float32 f;
2080
    } u2;
2081

    
2082
    u1.u = val;
2083
    u2.f = float64_to_float32(u1.f, &env->spe_status);
2084

    
2085
    return u2.u;
2086
}
2087

    
2088
static inline uint64_t _do_efdcfs (uint32_t val)
2089
{
2090
    union {
2091
        uint64_t u;
2092
        float64 f;
2093
    } u2;
2094
    union {
2095
        uint32_t u;
2096
        float32 f;
2097
    } u1;
2098

    
2099
    u1.u = val;
2100
    u2.f = float32_to_float64(u1.f, &env->spe_status);
2101

    
2102
    return u2.u;
2103
}
2104

    
2105
void do_efscfd (void)
2106
{
2107
    T0_64 = _do_efscfd(T0_64);
2108
}
2109

    
2110
void do_efdcfs (void)
2111
{
2112
    T0_64 = _do_efdcfs(T0_64);
2113
}
2114

    
2115
/* Single precision fixed-point vector arithmetic */
2116
/* evfsabs */
2117
DO_SPE_OP1(fsabs);
2118
/* evfsnabs */
2119
DO_SPE_OP1(fsnabs);
2120
/* evfsneg */
2121
DO_SPE_OP1(fsneg);
2122
/* evfsadd */
2123
DO_SPE_OP2(fsadd);
2124
/* evfssub */
2125
DO_SPE_OP2(fssub);
2126
/* evfsmul */
2127
DO_SPE_OP2(fsmul);
2128
/* evfsdiv */
2129
DO_SPE_OP2(fsdiv);
2130

    
2131
/* Single-precision floating-point comparisons */
2132
static inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2133
{
2134
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2135
    return _do_efststlt(op1, op2);
2136
}
2137

    
2138
static inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2139
{
2140
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2141
    return _do_efststgt(op1, op2);
2142
}
2143

    
2144
static inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2145
{
2146
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2147
    return _do_efststeq(op1, op2);
2148
}
2149

    
2150
void do_efscmplt (void)
2151
{
2152
    T0 = _do_efscmplt(T0_64, T1_64);
2153
}
2154

    
2155
void do_efscmpgt (void)
2156
{
2157
    T0 = _do_efscmpgt(T0_64, T1_64);
2158
}
2159

    
2160
void do_efscmpeq (void)
2161
{
2162
    T0 = _do_efscmpeq(T0_64, T1_64);
2163
}
2164

    
2165
/* Single-precision floating-point vector comparisons */
2166
/* evfscmplt */
2167
DO_SPE_CMP(fscmplt);
2168
/* evfscmpgt */
2169
DO_SPE_CMP(fscmpgt);
2170
/* evfscmpeq */
2171
DO_SPE_CMP(fscmpeq);
2172
/* evfststlt */
2173
DO_SPE_CMP(fststlt);
2174
/* evfststgt */
2175
DO_SPE_CMP(fststgt);
2176
/* evfststeq */
2177
DO_SPE_CMP(fststeq);
2178

    
2179
/* Single-precision floating-point vector conversions */
2180
/* evfscfsi */
2181
DO_SPE_OP1(fscfsi);
2182
/* evfscfui */
2183
DO_SPE_OP1(fscfui);
2184
/* evfscfuf */
2185
DO_SPE_OP1(fscfuf);
2186
/* evfscfsf */
2187
DO_SPE_OP1(fscfsf);
2188
/* evfsctsi */
2189
DO_SPE_OP1(fsctsi);
2190
/* evfsctui */
2191
DO_SPE_OP1(fsctui);
2192
/* evfsctsiz */
2193
DO_SPE_OP1(fsctsiz);
2194
/* evfsctuiz */
2195
DO_SPE_OP1(fsctuiz);
2196
/* evfsctsf */
2197
DO_SPE_OP1(fsctsf);
2198
/* evfsctuf */
2199
DO_SPE_OP1(fsctuf);
2200
#endif /* defined(TARGET_PPCEMB) */
2201

    
2202
/*****************************************************************************/
2203
/* Softmmu support */
2204
#if !defined (CONFIG_USER_ONLY)
2205

    
2206
#define MMUSUFFIX _mmu
2207
#define GETPC() (__builtin_return_address(0))
2208

    
2209
#define SHIFT 0
2210
#include "softmmu_template.h"
2211

    
2212
#define SHIFT 1
2213
#include "softmmu_template.h"
2214

    
2215
#define SHIFT 2
2216
#include "softmmu_template.h"
2217

    
2218
#define SHIFT 3
2219
#include "softmmu_template.h"
2220

    
2221
/* try to fill the TLB and return an exception if error. If retaddr is
2222
   NULL, it means that the function was called in C code (i.e. not
2223
   from generated code or from helper.c) */
2224
/* XXX: fix it to restore all registers */
2225
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr)
2226
{
2227
    TranslationBlock *tb;
2228
    CPUState *saved_env;
2229
    target_phys_addr_t pc;
2230
    int ret;
2231

    
2232
    /* XXX: hack to restore env in all cases, even if not called from
2233
       generated code */
2234
    saved_env = env;
2235
    env = cpu_single_env;
2236
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, is_user, 1);
2237
    if (unlikely(ret != 0)) {
2238
        if (likely(retaddr)) {
2239
            /* now we have a real cpu fault */
2240
            pc = (target_phys_addr_t)retaddr;
2241
            tb = tb_find_pc(pc);
2242
            if (likely(tb)) {
2243
                /* the PC is inside the translated code. It means that we have
2244
                   a virtual CPU fault */
2245
                cpu_restore_state(tb, env, pc, NULL);
2246
            }
2247
        }
2248
        do_raise_exception_err(env->exception_index, env->error_code);
2249
    }
2250
    env = saved_env;
2251
}
2252

    
2253
/* TLB invalidation helpers */
2254
void do_tlbia (void)
2255
{
2256
    ppc_tlb_invalidate_all(env);
2257
}
2258

    
2259
void do_tlbie (void)
2260
{
2261
    T0 = (uint32_t)T0;
2262
#if !defined(FLUSH_ALL_TLBS)
2263
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2264
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2265
        if (env->id_tlbs == 1)
2266
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2267
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2268
        /* XXX: TODO */
2269
#if 0
2270
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2271
                                     env->spr[SPR_BOOKE_PID]);
2272
#endif
2273
    } else {
2274
        /* tlbie invalidate TLBs for all segments */
2275
        T0 &= TARGET_PAGE_MASK;
2276
        T0 &= ~((target_ulong)-1 << 28);
2277
        /* XXX: this case should be optimized,
2278
         * giving a mask to tlb_flush_page
2279
         */
2280
        tlb_flush_page(env, T0 | (0x0 << 28));
2281
        tlb_flush_page(env, T0 | (0x1 << 28));
2282
        tlb_flush_page(env, T0 | (0x2 << 28));
2283
        tlb_flush_page(env, T0 | (0x3 << 28));
2284
        tlb_flush_page(env, T0 | (0x4 << 28));
2285
        tlb_flush_page(env, T0 | (0x5 << 28));
2286
        tlb_flush_page(env, T0 | (0x6 << 28));
2287
        tlb_flush_page(env, T0 | (0x7 << 28));
2288
        tlb_flush_page(env, T0 | (0x8 << 28));
2289
        tlb_flush_page(env, T0 | (0x9 << 28));
2290
        tlb_flush_page(env, T0 | (0xA << 28));
2291
        tlb_flush_page(env, T0 | (0xB << 28));
2292
        tlb_flush_page(env, T0 | (0xC << 28));
2293
        tlb_flush_page(env, T0 | (0xD << 28));
2294
        tlb_flush_page(env, T0 | (0xE << 28));
2295
        tlb_flush_page(env, T0 | (0xF << 28));
2296
    }
2297
#else
2298
    do_tlbia();
2299
#endif
2300
}
2301

    
2302
#if defined(TARGET_PPC64)
2303
void do_tlbie_64 (void)
2304
{
2305
    T0 = (uint64_t)T0;
2306
#if !defined(FLUSH_ALL_TLBS)
2307
    if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_6xx)) {
2308
        ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 0);
2309
        if (env->id_tlbs == 1)
2310
            ppc6xx_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK, 1);
2311
    } else if (unlikely(PPC_MMU(env) == PPC_FLAGS_MMU_SOFT_4xx)) {
2312
        /* XXX: TODO */
2313
#if 0
2314
        ppcbooke_tlb_invalidate_virt(env, T0 & TARGET_PAGE_MASK,
2315
                                     env->spr[SPR_BOOKE_PID]);
2316
#endif
2317
    } else {
2318
        /* tlbie invalidate TLBs for all segments
2319
         * As we have 2^36 segments, invalidate all qemu TLBs
2320
         */
2321
#if 0
2322
        T0 &= TARGET_PAGE_MASK;
2323
        T0 &= ~((target_ulong)-1 << 28);
2324
        /* XXX: this case should be optimized,
2325
         * giving a mask to tlb_flush_page
2326
         */
2327
        tlb_flush_page(env, T0 | (0x0 << 28));
2328
        tlb_flush_page(env, T0 | (0x1 << 28));
2329
        tlb_flush_page(env, T0 | (0x2 << 28));
2330
        tlb_flush_page(env, T0 | (0x3 << 28));
2331
        tlb_flush_page(env, T0 | (0x4 << 28));
2332
        tlb_flush_page(env, T0 | (0x5 << 28));
2333
        tlb_flush_page(env, T0 | (0x6 << 28));
2334
        tlb_flush_page(env, T0 | (0x7 << 28));
2335
        tlb_flush_page(env, T0 | (0x8 << 28));
2336
        tlb_flush_page(env, T0 | (0x9 << 28));
2337
        tlb_flush_page(env, T0 | (0xA << 28));
2338
        tlb_flush_page(env, T0 | (0xB << 28));
2339
        tlb_flush_page(env, T0 | (0xC << 28));
2340
        tlb_flush_page(env, T0 | (0xD << 28));
2341
        tlb_flush_page(env, T0 | (0xE << 28));
2342
        tlb_flush_page(env, T0 | (0xF << 28));
2343
#else
2344
        tlb_flush(env, 1);
2345
#endif
2346
    }
2347
#else
2348
    do_tlbia();
2349
#endif
2350
}
2351
#endif
2352

    
2353
#if defined(TARGET_PPC64)
2354
void do_slbia (void)
2355
{
2356
    /* XXX: TODO */
2357
    tlb_flush(env, 1);
2358
}
2359

    
2360
void do_slbie (void)
2361
{
2362
    /* XXX: TODO */
2363
    tlb_flush(env, 1);
2364
}
2365
#endif
2366

    
2367
/* Software driven TLBs management */
2368
/* PowerPC 602/603 software TLB load instructions helpers */
2369
void do_load_6xx_tlb (int is_code)
2370
{
2371
    target_ulong RPN, CMP, EPN;
2372
    int way;
2373

    
2374
    RPN = env->spr[SPR_RPA];
2375
    if (is_code) {
2376
        CMP = env->spr[SPR_ICMP];
2377
        EPN = env->spr[SPR_IMISS];
2378
    } else {
2379
        CMP = env->spr[SPR_DCMP];
2380
        EPN = env->spr[SPR_DMISS];
2381
    }
2382
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2383
#if defined (DEBUG_SOFTWARE_TLB)
2384
    if (loglevel != 0) {
2385
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2386
                __func__, (unsigned long)T0, (unsigned long)EPN,
2387
                (unsigned long)CMP, (unsigned long)RPN, way);
2388
    }
2389
#endif
2390
    /* Store this TLB */
2391
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2392
                     way, is_code, CMP, RPN);
2393
}
2394

    
2395
static target_ulong booke_tlb_to_page_size (int size)
2396
{
2397
    return 1024 << (2 * size);
2398
}
2399

    
2400
static int booke_page_size_to_tlb (target_ulong page_size)
2401
{
2402
    int size;
2403

    
2404
    switch (page_size) {
2405
    case 0x00000400UL:
2406
        size = 0x0;
2407
        break;
2408
    case 0x00001000UL:
2409
        size = 0x1;
2410
        break;
2411
    case 0x00004000UL:
2412
        size = 0x2;
2413
        break;
2414
    case 0x00010000UL:
2415
        size = 0x3;
2416
        break;
2417
    case 0x00040000UL:
2418
        size = 0x4;
2419
        break;
2420
    case 0x00100000UL:
2421
        size = 0x5;
2422
        break;
2423
    case 0x00400000UL:
2424
        size = 0x6;
2425
        break;
2426
    case 0x01000000UL:
2427
        size = 0x7;
2428
        break;
2429
    case 0x04000000UL:
2430
        size = 0x8;
2431
        break;
2432
    case 0x10000000UL:
2433
        size = 0x9;
2434
        break;
2435
    case 0x40000000UL:
2436
        size = 0xA;
2437
        break;
2438
#if defined (TARGET_PPC64)
2439
    case 0x000100000000ULL:
2440
        size = 0xB;
2441
        break;
2442
    case 0x000400000000ULL:
2443
        size = 0xC;
2444
        break;
2445
    case 0x001000000000ULL:
2446
        size = 0xD;
2447
        break;
2448
    case 0x004000000000ULL:
2449
        size = 0xE;
2450
        break;
2451
    case 0x010000000000ULL:
2452
        size = 0xF;
2453
        break;
2454
#endif
2455
    default:
2456
        size = -1;
2457
        break;
2458
    }
2459

    
2460
    return size;
2461
}
2462

    
2463
/* Helpers for 4xx TLB management */
2464
void do_4xx_tlbre_lo (void)
2465
{
2466
    ppcemb_tlb_t *tlb;
2467
    int size;
2468

    
2469
    T0 &= 0x3F;
2470
    tlb = &env->tlb[T0].tlbe;
2471
    T0 = tlb->EPN;
2472
    if (tlb->prot & PAGE_VALID)
2473
        T0 |= 0x400;
2474
    size = booke_page_size_to_tlb(tlb->size);
2475
    if (size < 0 || size > 0x7)
2476
        size = 1;
2477
    T0 |= size << 7;
2478
    env->spr[SPR_40x_PID] = tlb->PID;
2479
}
2480

    
2481
void do_4xx_tlbre_hi (void)
2482
{
2483
    ppcemb_tlb_t *tlb;
2484

    
2485
    T0 &= 0x3F;
2486
    tlb = &env->tlb[T0].tlbe;
2487
    T0 = tlb->RPN;
2488
    if (tlb->prot & PAGE_EXEC)
2489
        T0 |= 0x200;
2490
    if (tlb->prot & PAGE_WRITE)
2491
        T0 |= 0x100;
2492
}
2493

    
2494
void do_4xx_tlbsx (void)
2495
{
2496
    T0 = ppcemb_tlb_search(env, T0);
2497
}
2498

    
2499
void do_4xx_tlbsx_ (void)
2500
{
2501
    int tmp = xer_ov;
2502

    
2503
    T0 = ppcemb_tlb_search(env, T0);
2504
    if (T0 != -1)
2505
        tmp |= 0x02;
2506
    env->crf[0] = tmp;
2507
}
2508

    
2509
void do_4xx_tlbwe_hi (void)
2510
{
2511
    ppcemb_tlb_t *tlb;
2512
    target_ulong page, end;
2513

    
2514
#if defined (DEBUG_SOFTWARE_TLB)
2515
    if (loglevel != 0) {
2516
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2517
    }
2518
#endif
2519
    T0 &= 0x3F;
2520
    tlb = &env->tlb[T0].tlbe;
2521
    /* Invalidate previous TLB (if it's valid) */
2522
    if (tlb->prot & PAGE_VALID) {
2523
        end = tlb->EPN + tlb->size;
2524
#if defined (DEBUG_SOFTWARE_TLB)
2525
        if (loglevel != 0) {
2526
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2527
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2528
        }
2529
#endif
2530
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2531
            tlb_flush_page(env, page);
2532
    }
2533
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2534
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2535
     * If this ever occurs, one should use the ppcemb target instead
2536
     * of the ppc or ppc64 one
2537
     */
2538
    if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2539
        cpu_abort(env, "TLB size %u < %u are not supported (%d)\n",
2540
                  tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2541
    }
2542
    tlb->EPN = (T1 & 0xFFFFFC00) & ~(tlb->size - 1);
2543
    if (T1 & 0x40)
2544
        tlb->prot |= PAGE_VALID;
2545
    else
2546
        tlb->prot &= ~PAGE_VALID;
2547
    if (T1 & 0x20) {
2548
        /* XXX: TO BE FIXED */
2549
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2550
    }
2551
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2552
    tlb->attr = T1 & 0xFF;
2553
#if defined (DEBUG_SOFTWARE_TLB)
2554
    if (loglevel != 0) {
2555
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2556
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2557
                (int)T0, tlb->RPN, tlb->EPN, tlb->size, 
2558
                tlb->prot & PAGE_READ ? 'r' : '-',
2559
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2560
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2561
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2562
    }
2563
#endif
2564
    /* Invalidate new TLB (if valid) */
2565
    if (tlb->prot & PAGE_VALID) {
2566
        end = tlb->EPN + tlb->size;
2567
#if defined (DEBUG_SOFTWARE_TLB)
2568
        if (loglevel != 0) {
2569
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2570
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2571
        }
2572
#endif
2573
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2574
            tlb_flush_page(env, page);
2575
    }
2576
}
2577

    
2578
void do_4xx_tlbwe_lo (void)
2579
{
2580
    ppcemb_tlb_t *tlb;
2581

    
2582
#if defined (DEBUG_SOFTWARE_TLB)
2583
    if (loglevel != 0) {
2584
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2585
    }
2586
#endif
2587
    T0 &= 0x3F;
2588
    tlb = &env->tlb[T0].tlbe;
2589
    tlb->RPN = T1 & 0xFFFFFC00;
2590
    tlb->prot = PAGE_READ;
2591
    if (T1 & 0x200)
2592
        tlb->prot |= PAGE_EXEC;
2593
    if (T1 & 0x100)
2594
        tlb->prot |= PAGE_WRITE;
2595
#if defined (DEBUG_SOFTWARE_TLB)
2596
    if (loglevel != 0) {
2597
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2598
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2599
                (int)T0, tlb->RPN, tlb->EPN, tlb->size, 
2600
                tlb->prot & PAGE_READ ? 'r' : '-',
2601
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2602
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2603
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2604
    }
2605
#endif
2606
}
2607
#endif /* !CONFIG_USER_ONLY */