Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ c026766b

History | View | Annotate | Download (112 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19
 */
20
#include <string.h>
21
#include "exec.h"
22
#include "host-utils.h"
23
#include "helper.h"
24

    
25
#include "helper_regs.h"
26

    
27
//#define DEBUG_OP
28
//#define DEBUG_EXCEPTIONS
29
//#define DEBUG_SOFTWARE_TLB
30

    
31
/*****************************************************************************/
32
/* Exceptions processing helpers */
33

    
34
void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
35
{
36
#if 0
37
    printf("Raise exception %3x code : %d\n", exception, error_code);
38
#endif
39
    env->exception_index = exception;
40
    env->error_code = error_code;
41
    cpu_loop_exit();
42
}
43

    
44
void helper_raise_exception (uint32_t exception)
45
{
46
    helper_raise_exception_err(exception, 0);
47
}
48

    
49
/*****************************************************************************/
50
/* Registers load and stores */
51
target_ulong helper_load_cr (void)
52
{
53
    return (env->crf[0] << 28) |
54
           (env->crf[1] << 24) |
55
           (env->crf[2] << 20) |
56
           (env->crf[3] << 16) |
57
           (env->crf[4] << 12) |
58
           (env->crf[5] << 8) |
59
           (env->crf[6] << 4) |
60
           (env->crf[7] << 0);
61
}
62

    
63
void helper_store_cr (target_ulong val, uint32_t mask)
64
{
65
    int i, sh;
66

    
67
    for (i = 0, sh = 7; i < 8; i++, sh--) {
68
        if (mask & (1 << sh))
69
            env->crf[i] = (val >> (sh * 4)) & 0xFUL;
70
    }
71
}
72

    
73
/*****************************************************************************/
74
/* SPR accesses */
75
void helper_load_dump_spr (uint32_t sprn)
76
{
77
    if (loglevel != 0) {
78
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
79
                sprn, sprn, env->spr[sprn]);
80
    }
81
}
82

    
83
void helper_store_dump_spr (uint32_t sprn)
84
{
85
    if (loglevel != 0) {
86
        fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
87
                sprn, sprn, env->spr[sprn]);
88
    }
89
}
90

    
91
target_ulong helper_load_tbl (void)
92
{
93
    return cpu_ppc_load_tbl(env);
94
}
95

    
96
target_ulong helper_load_tbu (void)
97
{
98
    return cpu_ppc_load_tbu(env);
99
}
100

    
101
target_ulong helper_load_atbl (void)
102
{
103
    return cpu_ppc_load_atbl(env);
104
}
105

    
106
target_ulong helper_load_atbu (void)
107
{
108
    return cpu_ppc_load_atbu(env);
109
}
110

    
111
target_ulong helper_load_601_rtcl (void)
112
{
113
    return cpu_ppc601_load_rtcl(env);
114
}
115

    
116
target_ulong helper_load_601_rtcu (void)
117
{
118
    return cpu_ppc601_load_rtcu(env);
119
}
120

    
121
#if !defined(CONFIG_USER_ONLY)
122
#if defined (TARGET_PPC64)
123
void helper_store_asr (target_ulong val)
124
{
125
    ppc_store_asr(env, val);
126
}
127
#endif
128

    
129
void helper_store_sdr1 (target_ulong val)
130
{
131
    ppc_store_sdr1(env, val);
132
}
133

    
134
void helper_store_tbl (target_ulong val)
135
{
136
    cpu_ppc_store_tbl(env, val);
137
}
138

    
139
void helper_store_tbu (target_ulong val)
140
{
141
    cpu_ppc_store_tbu(env, val);
142
}
143

    
144
void helper_store_atbl (target_ulong val)
145
{
146
    cpu_ppc_store_atbl(env, val);
147
}
148

    
149
void helper_store_atbu (target_ulong val)
150
{
151
    cpu_ppc_store_atbu(env, val);
152
}
153

    
154
void helper_store_601_rtcl (target_ulong val)
155
{
156
    cpu_ppc601_store_rtcl(env, val);
157
}
158

    
159
void helper_store_601_rtcu (target_ulong val)
160
{
161
    cpu_ppc601_store_rtcu(env, val);
162
}
163

    
164
target_ulong helper_load_decr (void)
165
{
166
    return cpu_ppc_load_decr(env);
167
}
168

    
169
void helper_store_decr (target_ulong val)
170
{
171
    cpu_ppc_store_decr(env, val);
172
}
173

    
174
void helper_store_hid0_601 (target_ulong val)
175
{
176
    target_ulong hid0;
177

    
178
    hid0 = env->spr[SPR_HID0];
179
    if ((val ^ hid0) & 0x00000008) {
180
        /* Change current endianness */
181
        env->hflags &= ~(1 << MSR_LE);
182
        env->hflags_nmsr &= ~(1 << MSR_LE);
183
        env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
184
        env->hflags |= env->hflags_nmsr;
185
        if (loglevel != 0) {
186
            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
187
                    __func__, val & 0x8 ? 'l' : 'b', env->hflags);
188
        }
189
    }
190
    env->spr[SPR_HID0] = (uint32_t)val;
191
}
192

    
193
void helper_store_403_pbr (uint32_t num, target_ulong value)
194
{
195
    if (likely(env->pb[num] != value)) {
196
        env->pb[num] = value;
197
        /* Should be optimized */
198
        tlb_flush(env, 1);
199
    }
200
}
201

    
202
target_ulong helper_load_40x_pit (void)
203
{
204
    return load_40x_pit(env);
205
}
206

    
207
void helper_store_40x_pit (target_ulong val)
208
{
209
    store_40x_pit(env, val);
210
}
211

    
212
void helper_store_40x_dbcr0 (target_ulong val)
213
{
214
    store_40x_dbcr0(env, val);
215
}
216

    
217
void helper_store_40x_sler (target_ulong val)
218
{
219
    store_40x_sler(env, val);
220
}
221

    
222
void helper_store_booke_tcr (target_ulong val)
223
{
224
    store_booke_tcr(env, val);
225
}
226

    
227
void helper_store_booke_tsr (target_ulong val)
228
{
229
    store_booke_tsr(env, val);
230
}
231

    
232
void helper_store_ibatu (uint32_t nr, target_ulong val)
233
{
234
    ppc_store_ibatu(env, nr, val);
235
}
236

    
237
void helper_store_ibatl (uint32_t nr, target_ulong val)
238
{
239
    ppc_store_ibatl(env, nr, val);
240
}
241

    
242
void helper_store_dbatu (uint32_t nr, target_ulong val)
243
{
244
    ppc_store_dbatu(env, nr, val);
245
}
246

    
247
void helper_store_dbatl (uint32_t nr, target_ulong val)
248
{
249
    ppc_store_dbatl(env, nr, val);
250
}
251

    
252
void helper_store_601_batl (uint32_t nr, target_ulong val)
253
{
254
    ppc_store_ibatl_601(env, nr, val);
255
}
256

    
257
void helper_store_601_batu (uint32_t nr, target_ulong val)
258
{
259
    ppc_store_ibatu_601(env, nr, val);
260
}
261
#endif
262

    
263
/*****************************************************************************/
264
/* Memory load and stores */
265

    
266
static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
267
{
268
#if defined(TARGET_PPC64)
269
        if (!msr_sf)
270
            return (uint32_t)(addr + arg);
271
        else
272
#endif
273
            return addr + arg;
274
}
275

    
276
void helper_lmw (target_ulong addr, uint32_t reg)
277
{
278
    for (; reg < 32; reg++) {
279
        if (msr_le)
280
            env->gpr[reg] = bswap32(ldl(addr));
281
        else
282
            env->gpr[reg] = ldl(addr);
283
        addr = addr_add(addr, 4);
284
    }
285
}
286

    
287
void helper_stmw (target_ulong addr, uint32_t reg)
288
{
289
    for (; reg < 32; reg++) {
290
        if (msr_le)
291
            stl(addr, bswap32((uint32_t)env->gpr[reg]));
292
        else
293
            stl(addr, (uint32_t)env->gpr[reg]);
294
        addr = addr_add(addr, 4);
295
    }
296
}
297

    
298
void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
299
{
300
    int sh;
301
    for (; nb > 3; nb -= 4) {
302
        env->gpr[reg] = ldl(addr);
303
        reg = (reg + 1) % 32;
304
        addr = addr_add(addr, 4);
305
    }
306
    if (unlikely(nb > 0)) {
307
        env->gpr[reg] = 0;
308
        for (sh = 24; nb > 0; nb--, sh -= 8) {
309
            env->gpr[reg] |= ldub(addr) << sh;
310
            addr = addr_add(addr, 1);
311
        }
312
    }
313
}
314
/* PPC32 specification says we must generate an exception if
315
 * rA is in the range of registers to be loaded.
316
 * In an other hand, IBM says this is valid, but rA won't be loaded.
317
 * For now, I'll follow the spec...
318
 */
319
void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
320
{
321
    if (likely(xer_bc != 0)) {
322
        if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
323
                     (reg < rb && (reg + xer_bc) > rb))) {
324
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
325
                                       POWERPC_EXCP_INVAL |
326
                                       POWERPC_EXCP_INVAL_LSWX);
327
        } else {
328
            helper_lsw(addr, xer_bc, reg);
329
        }
330
    }
331
}
332

    
333
void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
334
{
335
    int sh;
336
    for (; nb > 3; nb -= 4) {
337
        stl(addr, env->gpr[reg]);
338
        reg = (reg + 1) % 32;
339
        addr = addr_add(addr, 4);
340
    }
341
    if (unlikely(nb > 0)) {
342
        for (sh = 24; nb > 0; nb--, sh -= 8) {
343
            stb(addr, (env->gpr[reg] >> sh) & 0xFF);
344
            addr = addr_add(addr, 1);
345
        }
346
    }
347
}
348

    
349
static void do_dcbz(target_ulong addr, int dcache_line_size)
350
{
351
    addr &= ~(dcache_line_size - 1);
352
    int i;
353
    for (i = 0 ; i < dcache_line_size ; i += 4) {
354
        stl(addr + i , 0);
355
    }
356
    if (env->reserve == addr)
357
        env->reserve = (target_ulong)-1ULL;
358
}
359

    
360
void helper_dcbz(target_ulong addr)
361
{
362
    do_dcbz(addr, env->dcache_line_size);
363
}
364

    
365
void helper_dcbz_970(target_ulong addr)
366
{
367
    if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
368
        do_dcbz(addr, 32);
369
    else
370
        do_dcbz(addr, env->dcache_line_size);
371
}
372

    
373
void helper_icbi(target_ulong addr)
374
{
375
    uint32_t tmp;
376

    
377
    addr &= ~(env->dcache_line_size - 1);
378
    /* Invalidate one cache line :
379
     * PowerPC specification says this is to be treated like a load
380
     * (not a fetch) by the MMU. To be sure it will be so,
381
     * do the load "by hand".
382
     */
383
    tmp = ldl(addr);
384
    tb_invalidate_page_range(addr, addr + env->icache_line_size);
385
}
386

    
387
// XXX: to be tested
388
target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
389
{
390
    int i, c, d;
391
    d = 24;
392
    for (i = 0; i < xer_bc; i++) {
393
        c = ldub(addr);
394
        addr = addr_add(addr, 1);
395
        /* ra (if not 0) and rb are never modified */
396
        if (likely(reg != rb && (ra == 0 || reg != ra))) {
397
            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
398
        }
399
        if (unlikely(c == xer_cmp))
400
            break;
401
        if (likely(d != 0)) {
402
            d -= 8;
403
        } else {
404
            d = 24;
405
            reg++;
406
            reg = reg & 0x1F;
407
        }
408
    }
409
    return i;
410
}
411

    
412
/*****************************************************************************/
413
/* Fixed point operations helpers */
414
#if defined(TARGET_PPC64)
415

    
416
/* multiply high word */
417
uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
418
{
419
    uint64_t tl, th;
420

    
421
    muls64(&tl, &th, arg1, arg2);
422
    return th;
423
}
424

    
425
/* multiply high word unsigned */
426
uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
427
{
428
    uint64_t tl, th;
429

    
430
    mulu64(&tl, &th, arg1, arg2);
431
    return th;
432
}
433

    
434
uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
435
{
436
    int64_t th;
437
    uint64_t tl;
438

    
439
    muls64(&tl, (uint64_t *)&th, arg1, arg2);
440
    /* If th != 0 && th != -1, then we had an overflow */
441
    if (likely((uint64_t)(th + 1) <= 1)) {
442
        env->xer &= ~(1 << XER_OV);
443
    } else {
444
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
445
    }
446
    return (int64_t)tl;
447
}
448
#endif
449

    
450
target_ulong helper_cntlzw (target_ulong t)
451
{
452
    return clz32(t);
453
}
454

    
455
#if defined(TARGET_PPC64)
456
target_ulong helper_cntlzd (target_ulong t)
457
{
458
    return clz64(t);
459
}
460
#endif
461

    
462
/* shift right arithmetic helper */
463
target_ulong helper_sraw (target_ulong value, target_ulong shift)
464
{
465
    int32_t ret;
466

    
467
    if (likely(!(shift & 0x20))) {
468
        if (likely((uint32_t)shift != 0)) {
469
            shift &= 0x1f;
470
            ret = (int32_t)value >> shift;
471
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
472
                env->xer &= ~(1 << XER_CA);
473
            } else {
474
                env->xer |= (1 << XER_CA);
475
            }
476
        } else {
477
            ret = (int32_t)value;
478
            env->xer &= ~(1 << XER_CA);
479
        }
480
    } else {
481
        ret = (int32_t)value >> 31;
482
        if (ret) {
483
            env->xer |= (1 << XER_CA);
484
        } else {
485
            env->xer &= ~(1 << XER_CA);
486
        }
487
    }
488
    return (target_long)ret;
489
}
490

    
491
#if defined(TARGET_PPC64)
492
target_ulong helper_srad (target_ulong value, target_ulong shift)
493
{
494
    int64_t ret;
495

    
496
    if (likely(!(shift & 0x40))) {
497
        if (likely((uint64_t)shift != 0)) {
498
            shift &= 0x3f;
499
            ret = (int64_t)value >> shift;
500
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
501
                env->xer &= ~(1 << XER_CA);
502
            } else {
503
                env->xer |= (1 << XER_CA);
504
            }
505
        } else {
506
            ret = (int64_t)value;
507
            env->xer &= ~(1 << XER_CA);
508
        }
509
    } else {
510
        ret = (int64_t)value >> 63;
511
        if (ret) {
512
            env->xer |= (1 << XER_CA);
513
        } else {
514
            env->xer &= ~(1 << XER_CA);
515
        }
516
    }
517
    return ret;
518
}
519
#endif
520

    
521
target_ulong helper_popcntb (target_ulong val)
522
{
523
    val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
524
    val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
525
    val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
526
    return val;
527
}
528

    
529
#if defined(TARGET_PPC64)
530
target_ulong helper_popcntb_64 (target_ulong val)
531
{
532
    val = (val & 0x5555555555555555ULL) + ((val >>  1) & 0x5555555555555555ULL);
533
    val = (val & 0x3333333333333333ULL) + ((val >>  2) & 0x3333333333333333ULL);
534
    val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & 0x0f0f0f0f0f0f0f0fULL);
535
    return val;
536
}
537
#endif
538

    
539
/*****************************************************************************/
540
/* Floating point operations helpers */
541
uint64_t helper_float32_to_float64(uint32_t arg)
542
{
543
    CPU_FloatU f;
544
    CPU_DoubleU d;
545
    f.l = arg;
546
    d.d = float32_to_float64(f.f, &env->fp_status);
547
    return d.ll;
548
}
549

    
550
uint32_t helper_float64_to_float32(uint64_t arg)
551
{
552
    CPU_FloatU f;
553
    CPU_DoubleU d;
554
    d.ll = arg;
555
    f.f = float64_to_float32(d.d, &env->fp_status);
556
    return f.l;
557
}
558

    
559
static always_inline int isden (float64 d)
560
{
561
    CPU_DoubleU u;
562

    
563
    u.d = d;
564

    
565
    return ((u.ll >> 52) & 0x7FF) == 0;
566
}
567

    
568
uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
569
{
570
    CPU_DoubleU farg;
571
    int isneg;
572
    int ret;
573
    farg.ll = arg;
574
    isneg = float64_is_neg(farg.d);
575
    if (unlikely(float64_is_nan(farg.d))) {
576
        if (float64_is_signaling_nan(farg.d)) {
577
            /* Signaling NaN: flags are undefined */
578
            ret = 0x00;
579
        } else {
580
            /* Quiet NaN */
581
            ret = 0x11;
582
        }
583
    } else if (unlikely(float64_is_infinity(farg.d))) {
584
        /* +/- infinity */
585
        if (isneg)
586
            ret = 0x09;
587
        else
588
            ret = 0x05;
589
    } else {
590
        if (float64_is_zero(farg.d)) {
591
            /* +/- zero */
592
            if (isneg)
593
                ret = 0x12;
594
            else
595
                ret = 0x02;
596
        } else {
597
            if (isden(farg.d)) {
598
                /* Denormalized numbers */
599
                ret = 0x10;
600
            } else {
601
                /* Normalized numbers */
602
                ret = 0x00;
603
            }
604
            if (isneg) {
605
                ret |= 0x08;
606
            } else {
607
                ret |= 0x04;
608
            }
609
        }
610
    }
611
    if (set_fprf) {
612
        /* We update FPSCR_FPRF */
613
        env->fpscr &= ~(0x1F << FPSCR_FPRF);
614
        env->fpscr |= ret << FPSCR_FPRF;
615
    }
616
    /* We just need fpcc to update Rc1 */
617
    return ret & 0xF;
618
}
619

    
620
/* Floating-point invalid operations exception */
621
static always_inline uint64_t fload_invalid_op_excp (int op)
622
{
623
    uint64_t ret = 0;
624
    int ve;
625

    
626
    ve = fpscr_ve;
627
    switch (op) {
628
    case POWERPC_EXCP_FP_VXSNAN:
629
        env->fpscr |= 1 << FPSCR_VXSNAN;
630
        break;
631
    case POWERPC_EXCP_FP_VXSOFT:
632
        env->fpscr |= 1 << FPSCR_VXSOFT;
633
        break;
634
    case POWERPC_EXCP_FP_VXISI:
635
        /* Magnitude subtraction of infinities */
636
        env->fpscr |= 1 << FPSCR_VXISI;
637
        goto update_arith;
638
    case POWERPC_EXCP_FP_VXIDI:
639
        /* Division of infinity by infinity */
640
        env->fpscr |= 1 << FPSCR_VXIDI;
641
        goto update_arith;
642
    case POWERPC_EXCP_FP_VXZDZ:
643
        /* Division of zero by zero */
644
        env->fpscr |= 1 << FPSCR_VXZDZ;
645
        goto update_arith;
646
    case POWERPC_EXCP_FP_VXIMZ:
647
        /* Multiplication of zero by infinity */
648
        env->fpscr |= 1 << FPSCR_VXIMZ;
649
        goto update_arith;
650
    case POWERPC_EXCP_FP_VXVC:
651
        /* Ordered comparison of NaN */
652
        env->fpscr |= 1 << FPSCR_VXVC;
653
        env->fpscr &= ~(0xF << FPSCR_FPCC);
654
        env->fpscr |= 0x11 << FPSCR_FPCC;
655
        /* We must update the target FPR before raising the exception */
656
        if (ve != 0) {
657
            env->exception_index = POWERPC_EXCP_PROGRAM;
658
            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
659
            /* Update the floating-point enabled exception summary */
660
            env->fpscr |= 1 << FPSCR_FEX;
661
            /* Exception is differed */
662
            ve = 0;
663
        }
664
        break;
665
    case POWERPC_EXCP_FP_VXSQRT:
666
        /* Square root of a negative number */
667
        env->fpscr |= 1 << FPSCR_VXSQRT;
668
    update_arith:
669
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
670
        if (ve == 0) {
671
            /* Set the result to quiet NaN */
672
            ret = 0xFFF8000000000000ULL;
673
            env->fpscr &= ~(0xF << FPSCR_FPCC);
674
            env->fpscr |= 0x11 << FPSCR_FPCC;
675
        }
676
        break;
677
    case POWERPC_EXCP_FP_VXCVI:
678
        /* Invalid conversion */
679
        env->fpscr |= 1 << FPSCR_VXCVI;
680
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
681
        if (ve == 0) {
682
            /* Set the result to quiet NaN */
683
            ret = 0xFFF8000000000000ULL;
684
            env->fpscr &= ~(0xF << FPSCR_FPCC);
685
            env->fpscr |= 0x11 << FPSCR_FPCC;
686
        }
687
        break;
688
    }
689
    /* Update the floating-point invalid operation summary */
690
    env->fpscr |= 1 << FPSCR_VX;
691
    /* Update the floating-point exception summary */
692
    env->fpscr |= 1 << FPSCR_FX;
693
    if (ve != 0) {
694
        /* Update the floating-point enabled exception summary */
695
        env->fpscr |= 1 << FPSCR_FEX;
696
        if (msr_fe0 != 0 || msr_fe1 != 0)
697
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
698
    }
699
    return ret;
700
}
701

    
702
static always_inline void float_zero_divide_excp (void)
703
{
704
    env->fpscr |= 1 << FPSCR_ZX;
705
    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
706
    /* Update the floating-point exception summary */
707
    env->fpscr |= 1 << FPSCR_FX;
708
    if (fpscr_ze != 0) {
709
        /* Update the floating-point enabled exception summary */
710
        env->fpscr |= 1 << FPSCR_FEX;
711
        if (msr_fe0 != 0 || msr_fe1 != 0) {
712
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
713
                                       POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
714
        }
715
    }
716
}
717

    
718
static always_inline void float_overflow_excp (void)
719
{
720
    env->fpscr |= 1 << FPSCR_OX;
721
    /* Update the floating-point exception summary */
722
    env->fpscr |= 1 << FPSCR_FX;
723
    if (fpscr_oe != 0) {
724
        /* XXX: should adjust the result */
725
        /* Update the floating-point enabled exception summary */
726
        env->fpscr |= 1 << FPSCR_FEX;
727
        /* We must update the target FPR before raising the exception */
728
        env->exception_index = POWERPC_EXCP_PROGRAM;
729
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
730
    } else {
731
        env->fpscr |= 1 << FPSCR_XX;
732
        env->fpscr |= 1 << FPSCR_FI;
733
    }
734
}
735

    
736
static always_inline void float_underflow_excp (void)
737
{
738
    env->fpscr |= 1 << FPSCR_UX;
739
    /* Update the floating-point exception summary */
740
    env->fpscr |= 1 << FPSCR_FX;
741
    if (fpscr_ue != 0) {
742
        /* XXX: should adjust the result */
743
        /* Update the floating-point enabled exception summary */
744
        env->fpscr |= 1 << FPSCR_FEX;
745
        /* We must update the target FPR before raising the exception */
746
        env->exception_index = POWERPC_EXCP_PROGRAM;
747
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
748
    }
749
}
750

    
751
static always_inline void float_inexact_excp (void)
752
{
753
    env->fpscr |= 1 << FPSCR_XX;
754
    /* Update the floating-point exception summary */
755
    env->fpscr |= 1 << FPSCR_FX;
756
    if (fpscr_xe != 0) {
757
        /* Update the floating-point enabled exception summary */
758
        env->fpscr |= 1 << FPSCR_FEX;
759
        /* We must update the target FPR before raising the exception */
760
        env->exception_index = POWERPC_EXCP_PROGRAM;
761
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
762
    }
763
}
764

    
765
static always_inline void fpscr_set_rounding_mode (void)
766
{
767
    int rnd_type;
768

    
769
    /* Set rounding mode */
770
    switch (fpscr_rn) {
771
    case 0:
772
        /* Best approximation (round to nearest) */
773
        rnd_type = float_round_nearest_even;
774
        break;
775
    case 1:
776
        /* Smaller magnitude (round toward zero) */
777
        rnd_type = float_round_to_zero;
778
        break;
779
    case 2:
780
        /* Round toward +infinite */
781
        rnd_type = float_round_up;
782
        break;
783
    default:
784
    case 3:
785
        /* Round toward -infinite */
786
        rnd_type = float_round_down;
787
        break;
788
    }
789
    set_float_rounding_mode(rnd_type, &env->fp_status);
790
}
791

    
792
void helper_fpscr_clrbit (uint32_t bit)
793
{
794
    int prev;
795

    
796
    prev = (env->fpscr >> bit) & 1;
797
    env->fpscr &= ~(1 << bit);
798
    if (prev == 1) {
799
        switch (bit) {
800
        case FPSCR_RN1:
801
        case FPSCR_RN:
802
            fpscr_set_rounding_mode();
803
            break;
804
        default:
805
            break;
806
        }
807
    }
808
}
809

    
810
void helper_fpscr_setbit (uint32_t bit)
811
{
812
    int prev;
813

    
814
    prev = (env->fpscr >> bit) & 1;
815
    env->fpscr |= 1 << bit;
816
    if (prev == 0) {
817
        switch (bit) {
818
        case FPSCR_VX:
819
            env->fpscr |= 1 << FPSCR_FX;
820
            if (fpscr_ve)
821
                goto raise_ve;
822
        case FPSCR_OX:
823
            env->fpscr |= 1 << FPSCR_FX;
824
            if (fpscr_oe)
825
                goto raise_oe;
826
            break;
827
        case FPSCR_UX:
828
            env->fpscr |= 1 << FPSCR_FX;
829
            if (fpscr_ue)
830
                goto raise_ue;
831
            break;
832
        case FPSCR_ZX:
833
            env->fpscr |= 1 << FPSCR_FX;
834
            if (fpscr_ze)
835
                goto raise_ze;
836
            break;
837
        case FPSCR_XX:
838
            env->fpscr |= 1 << FPSCR_FX;
839
            if (fpscr_xe)
840
                goto raise_xe;
841
            break;
842
        case FPSCR_VXSNAN:
843
        case FPSCR_VXISI:
844
        case FPSCR_VXIDI:
845
        case FPSCR_VXZDZ:
846
        case FPSCR_VXIMZ:
847
        case FPSCR_VXVC:
848
        case FPSCR_VXSOFT:
849
        case FPSCR_VXSQRT:
850
        case FPSCR_VXCVI:
851
            env->fpscr |= 1 << FPSCR_VX;
852
            env->fpscr |= 1 << FPSCR_FX;
853
            if (fpscr_ve != 0)
854
                goto raise_ve;
855
            break;
856
        case FPSCR_VE:
857
            if (fpscr_vx != 0) {
858
            raise_ve:
859
                env->error_code = POWERPC_EXCP_FP;
860
                if (fpscr_vxsnan)
861
                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
862
                if (fpscr_vxisi)
863
                    env->error_code |= POWERPC_EXCP_FP_VXISI;
864
                if (fpscr_vxidi)
865
                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
866
                if (fpscr_vxzdz)
867
                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
868
                if (fpscr_vximz)
869
                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
870
                if (fpscr_vxvc)
871
                    env->error_code |= POWERPC_EXCP_FP_VXVC;
872
                if (fpscr_vxsoft)
873
                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
874
                if (fpscr_vxsqrt)
875
                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
876
                if (fpscr_vxcvi)
877
                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
878
                goto raise_excp;
879
            }
880
            break;
881
        case FPSCR_OE:
882
            if (fpscr_ox != 0) {
883
            raise_oe:
884
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
885
                goto raise_excp;
886
            }
887
            break;
888
        case FPSCR_UE:
889
            if (fpscr_ux != 0) {
890
            raise_ue:
891
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
892
                goto raise_excp;
893
            }
894
            break;
895
        case FPSCR_ZE:
896
            if (fpscr_zx != 0) {
897
            raise_ze:
898
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
899
                goto raise_excp;
900
            }
901
            break;
902
        case FPSCR_XE:
903
            if (fpscr_xx != 0) {
904
            raise_xe:
905
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
906
                goto raise_excp;
907
            }
908
            break;
909
        case FPSCR_RN1:
910
        case FPSCR_RN:
911
            fpscr_set_rounding_mode();
912
            break;
913
        default:
914
            break;
915
        raise_excp:
916
            /* Update the floating-point enabled exception summary */
917
            env->fpscr |= 1 << FPSCR_FEX;
918
                /* We have to update Rc1 before raising the exception */
919
            env->exception_index = POWERPC_EXCP_PROGRAM;
920
            break;
921
        }
922
    }
923
}
924

    
925
void helper_store_fpscr (uint64_t arg, uint32_t mask)
926
{
927
    /*
928
     * We use only the 32 LSB of the incoming fpr
929
     */
930
    uint32_t prev, new;
931
    int i;
932

    
933
    prev = env->fpscr;
934
    new = (uint32_t)arg;
935
    new &= ~0x60000000;
936
    new |= prev & 0x60000000;
937
    for (i = 0; i < 8; i++) {
938
        if (mask & (1 << i)) {
939
            env->fpscr &= ~(0xF << (4 * i));
940
            env->fpscr |= new & (0xF << (4 * i));
941
        }
942
    }
943
    /* Update VX and FEX */
944
    if (fpscr_ix != 0)
945
        env->fpscr |= 1 << FPSCR_VX;
946
    else
947
        env->fpscr &= ~(1 << FPSCR_VX);
948
    if ((fpscr_ex & fpscr_eex) != 0) {
949
        env->fpscr |= 1 << FPSCR_FEX;
950
        env->exception_index = POWERPC_EXCP_PROGRAM;
951
        /* XXX: we should compute it properly */
952
        env->error_code = POWERPC_EXCP_FP;
953
    }
954
    else
955
        env->fpscr &= ~(1 << FPSCR_FEX);
956
    fpscr_set_rounding_mode();
957
}
958

    
959
void helper_float_check_status (void)
960
{
961
#ifdef CONFIG_SOFTFLOAT
962
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
963
        (env->error_code & POWERPC_EXCP_FP)) {
964
        /* Differred floating-point exception after target FPR update */
965
        if (msr_fe0 != 0 || msr_fe1 != 0)
966
            helper_raise_exception_err(env->exception_index, env->error_code);
967
    } else {
968
        int status = get_float_exception_flags(&env->fp_status);
969
        if (status & float_flag_divbyzero) {
970
            float_zero_divide_excp();
971
        } else if (status & float_flag_overflow) {
972
            float_overflow_excp();
973
        } else if (status & float_flag_underflow) {
974
            float_underflow_excp();
975
        } else if (status & float_flag_inexact) {
976
            float_inexact_excp();
977
        }
978
    }
979
#else
980
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
981
        (env->error_code & POWERPC_EXCP_FP)) {
982
        /* Differred floating-point exception after target FPR update */
983
        if (msr_fe0 != 0 || msr_fe1 != 0)
984
            helper_raise_exception_err(env->exception_index, env->error_code);
985
    }
986
#endif
987
}
988

    
989
#ifdef CONFIG_SOFTFLOAT
990
void helper_reset_fpstatus (void)
991
{
992
    set_float_exception_flags(0, &env->fp_status);
993
}
994
#endif
995

    
996
/* fadd - fadd. */
997
uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
998
{
999
    CPU_DoubleU farg1, farg2;
1000

    
1001
    farg1.ll = arg1;
1002
    farg2.ll = arg2;
1003
#if USE_PRECISE_EMULATION
1004
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1005
                 float64_is_signaling_nan(farg2.d))) {
1006
        /* sNaN addition */
1007
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1008
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1009
                      float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1010
        /* Magnitude subtraction of infinities */
1011
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1012
    } else {
1013
        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1014
    }
1015
#else
1016
    farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1017
#endif
1018
    return farg1.ll;
1019
}
1020

    
1021
/* fsub - fsub. */
1022
uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1023
{
1024
    CPU_DoubleU farg1, farg2;
1025

    
1026
    farg1.ll = arg1;
1027
    farg2.ll = arg2;
1028
#if USE_PRECISE_EMULATION
1029
{
1030
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1031
                 float64_is_signaling_nan(farg2.d))) {
1032
        /* sNaN subtraction */
1033
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1034
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1035
                      float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1036
        /* Magnitude subtraction of infinities */
1037
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1038
    } else {
1039
        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1040
    }
1041
}
1042
#else
1043
    farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1044
#endif
1045
    return farg1.ll;
1046
}
1047

    
1048
/* fmul - fmul. */
1049
uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1050
{
1051
    CPU_DoubleU farg1, farg2;
1052

    
1053
    farg1.ll = arg1;
1054
    farg2.ll = arg2;
1055
#if USE_PRECISE_EMULATION
1056
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1057
                 float64_is_signaling_nan(farg2.d))) {
1058
        /* sNaN multiplication */
1059
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1060
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1061
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1062
        /* Multiplication of zero by infinity */
1063
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1064
    } else {
1065
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1066
    }
1067
#else
1068
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1069
#endif
1070
    return farg1.ll;
1071
}
1072

    
1073
/* fdiv - fdiv. */
1074
uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1075
{
1076
    CPU_DoubleU farg1, farg2;
1077

    
1078
    farg1.ll = arg1;
1079
    farg2.ll = arg2;
1080
#if USE_PRECISE_EMULATION
1081
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1082
                 float64_is_signaling_nan(farg2.d))) {
1083
        /* sNaN division */
1084
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1085
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1086
        /* Division of infinity by infinity */
1087
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1088
    } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1089
        /* Division of zero by zero */
1090
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1091
    } else {
1092
        farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1093
    }
1094
#else
1095
    farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1096
#endif
1097
    return farg1.ll;
1098
}
1099

    
1100
/* fabs */
1101
uint64_t helper_fabs (uint64_t arg)
1102
{
1103
    CPU_DoubleU farg;
1104

    
1105
    farg.ll = arg;
1106
    farg.d = float64_abs(farg.d);
1107
    return farg.ll;
1108
}
1109

    
1110
/* fnabs */
1111
uint64_t helper_fnabs (uint64_t arg)
1112
{
1113
    CPU_DoubleU farg;
1114

    
1115
    farg.ll = arg;
1116
    farg.d = float64_abs(farg.d);
1117
    farg.d = float64_chs(farg.d);
1118
    return farg.ll;
1119
}
1120

    
1121
/* fneg */
1122
uint64_t helper_fneg (uint64_t arg)
1123
{
1124
    CPU_DoubleU farg;
1125

    
1126
    farg.ll = arg;
1127
    farg.d = float64_chs(farg.d);
1128
    return farg.ll;
1129
}
1130

    
1131
/* fctiw - fctiw. */
1132
uint64_t helper_fctiw (uint64_t arg)
1133
{
1134
    CPU_DoubleU farg;
1135
    farg.ll = arg;
1136

    
1137
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1138
        /* sNaN conversion */
1139
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1140
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1141
        /* qNan / infinity conversion */
1142
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1143
    } else {
1144
        farg.ll = float64_to_int32(farg.d, &env->fp_status);
1145
#if USE_PRECISE_EMULATION
1146
        /* XXX: higher bits are not supposed to be significant.
1147
         *     to make tests easier, return the same as a real PowerPC 750
1148
         */
1149
        farg.ll |= 0xFFF80000ULL << 32;
1150
#endif
1151
    }
1152
    return farg.ll;
1153
}
1154

    
1155
/* fctiwz - fctiwz. */
1156
uint64_t helper_fctiwz (uint64_t arg)
1157
{
1158
    CPU_DoubleU farg;
1159
    farg.ll = arg;
1160

    
1161
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1162
        /* sNaN conversion */
1163
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1164
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1165
        /* qNan / infinity conversion */
1166
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1167
    } else {
1168
        farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1169
#if USE_PRECISE_EMULATION
1170
        /* XXX: higher bits are not supposed to be significant.
1171
         *     to make tests easier, return the same as a real PowerPC 750
1172
         */
1173
        farg.ll |= 0xFFF80000ULL << 32;
1174
#endif
1175
    }
1176
    return farg.ll;
1177
}
1178

    
1179
#if defined(TARGET_PPC64)
1180
/* fcfid - fcfid. */
1181
uint64_t helper_fcfid (uint64_t arg)
1182
{
1183
    CPU_DoubleU farg;
1184
    farg.d = int64_to_float64(arg, &env->fp_status);
1185
    return farg.ll;
1186
}
1187

    
1188
/* fctid - fctid. */
1189
uint64_t helper_fctid (uint64_t arg)
1190
{
1191
    CPU_DoubleU farg;
1192
    farg.ll = arg;
1193

    
1194
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1195
        /* sNaN conversion */
1196
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1197
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1198
        /* qNan / infinity conversion */
1199
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1200
    } else {
1201
        farg.ll = float64_to_int64(farg.d, &env->fp_status);
1202
    }
1203
    return farg.ll;
1204
}
1205

    
1206
/* fctidz - fctidz. */
1207
uint64_t helper_fctidz (uint64_t arg)
1208
{
1209
    CPU_DoubleU farg;
1210
    farg.ll = arg;
1211

    
1212
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1213
        /* sNaN conversion */
1214
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1215
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1216
        /* qNan / infinity conversion */
1217
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1218
    } else {
1219
        farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1220
    }
1221
    return farg.ll;
1222
}
1223

    
1224
#endif
1225

    
1226
static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1227
{
1228
    CPU_DoubleU farg;
1229
    farg.ll = arg;
1230

    
1231
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1232
        /* sNaN round */
1233
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1234
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1235
        /* qNan / infinity round */
1236
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1237
    } else {
1238
        set_float_rounding_mode(rounding_mode, &env->fp_status);
1239
        farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1240
        /* Restore rounding mode from FPSCR */
1241
        fpscr_set_rounding_mode();
1242
    }
1243
    return farg.ll;
1244
}
1245

    
1246
uint64_t helper_frin (uint64_t arg)
1247
{
1248
    return do_fri(arg, float_round_nearest_even);
1249
}
1250

    
1251
uint64_t helper_friz (uint64_t arg)
1252
{
1253
    return do_fri(arg, float_round_to_zero);
1254
}
1255

    
1256
uint64_t helper_frip (uint64_t arg)
1257
{
1258
    return do_fri(arg, float_round_up);
1259
}
1260

    
1261
uint64_t helper_frim (uint64_t arg)
1262
{
1263
    return do_fri(arg, float_round_down);
1264
}
1265

    
1266
/* fmadd - fmadd. */
1267
uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1268
{
1269
    CPU_DoubleU farg1, farg2, farg3;
1270

    
1271
    farg1.ll = arg1;
1272
    farg2.ll = arg2;
1273
    farg3.ll = arg3;
1274
#if USE_PRECISE_EMULATION
1275
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1276
                 float64_is_signaling_nan(farg2.d) ||
1277
                 float64_is_signaling_nan(farg3.d))) {
1278
        /* sNaN operation */
1279
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1281
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1282
        /* Multiplication of zero by infinity */
1283
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1284
    } else {
1285
#ifdef FLOAT128
1286
        /* This is the way the PowerPC specification defines it */
1287
        float128 ft0_128, ft1_128;
1288

    
1289
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1290
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1291
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1292
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1293
                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1294
            /* Magnitude subtraction of infinities */
1295
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1296
        } else {
1297
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1298
            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1299
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1300
        }
1301
#else
1302
        /* This is OK on x86 hosts */
1303
        farg1.d = (farg1.d * farg2.d) + farg3.d;
1304
#endif
1305
    }
1306
#else
1307
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1308
    farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1309
#endif
1310
    return farg1.ll;
1311
}
1312

    
1313
/* fmsub - fmsub. */
1314
uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1315
{
1316
    CPU_DoubleU farg1, farg2, farg3;
1317

    
1318
    farg1.ll = arg1;
1319
    farg2.ll = arg2;
1320
    farg3.ll = arg3;
1321
#if USE_PRECISE_EMULATION
1322
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1323
                 float64_is_signaling_nan(farg2.d) ||
1324
                 float64_is_signaling_nan(farg3.d))) {
1325
        /* sNaN operation */
1326
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1327
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1328
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1329
        /* Multiplication of zero by infinity */
1330
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1331
    } else {
1332
#ifdef FLOAT128
1333
        /* This is the way the PowerPC specification defines it */
1334
        float128 ft0_128, ft1_128;
1335

    
1336
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1337
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1338
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1339
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1340
                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1341
            /* Magnitude subtraction of infinities */
1342
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1343
        } else {
1344
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1345
            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1346
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1347
        }
1348
#else
1349
        /* This is OK on x86 hosts */
1350
        farg1.d = (farg1.d * farg2.d) - farg3.d;
1351
#endif
1352
    }
1353
#else
1354
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1355
    farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1356
#endif
1357
    return farg1.ll;
1358
}
1359

    
1360
/* fnmadd - fnmadd. */
1361
uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1362
{
1363
    CPU_DoubleU farg1, farg2, farg3;
1364

    
1365
    farg1.ll = arg1;
1366
    farg2.ll = arg2;
1367
    farg3.ll = arg3;
1368

    
1369
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1370
                 float64_is_signaling_nan(farg2.d) ||
1371
                 float64_is_signaling_nan(farg3.d))) {
1372
        /* sNaN operation */
1373
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1374
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1375
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1376
        /* Multiplication of zero by infinity */
1377
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1378
    } else {
1379
#if USE_PRECISE_EMULATION
1380
#ifdef FLOAT128
1381
        /* This is the way the PowerPC specification defines it */
1382
        float128 ft0_128, ft1_128;
1383

    
1384
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1385
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1386
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1387
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1388
                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1389
            /* Magnitude subtraction of infinities */
1390
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1391
        } else {
1392
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1393
            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1394
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1395
        }
1396
#else
1397
        /* This is OK on x86 hosts */
1398
        farg1.d = (farg1.d * farg2.d) + farg3.d;
1399
#endif
1400
#else
1401
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1402
        farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1403
#endif
1404
        if (likely(!float64_is_nan(farg1.d)))
1405
            farg1.d = float64_chs(farg1.d);
1406
    }
1407
    return farg1.ll;
1408
}
1409

    
1410
/* fnmsub - fnmsub. */
1411
uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1412
{
1413
    CPU_DoubleU farg1, farg2, farg3;
1414

    
1415
    farg1.ll = arg1;
1416
    farg2.ll = arg2;
1417
    farg3.ll = arg3;
1418

    
1419
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1420
                 float64_is_signaling_nan(farg2.d) ||
1421
                 float64_is_signaling_nan(farg3.d))) {
1422
        /* sNaN operation */
1423
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1424
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1425
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1426
        /* Multiplication of zero by infinity */
1427
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1428
    } else {
1429
#if USE_PRECISE_EMULATION
1430
#ifdef FLOAT128
1431
        /* This is the way the PowerPC specification defines it */
1432
        float128 ft0_128, ft1_128;
1433

    
1434
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1435
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1436
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1437
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1438
                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1439
            /* Magnitude subtraction of infinities */
1440
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1441
        } else {
1442
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1443
            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1444
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1445
        }
1446
#else
1447
        /* This is OK on x86 hosts */
1448
        farg1.d = (farg1.d * farg2.d) - farg3.d;
1449
#endif
1450
#else
1451
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1452
        farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1453
#endif
1454
        if (likely(!float64_is_nan(farg1.d)))
1455
            farg1.d = float64_chs(farg1.d);
1456
    }
1457
    return farg1.ll;
1458
}
1459

    
1460
/* frsp - frsp. */
1461
uint64_t helper_frsp (uint64_t arg)
1462
{
1463
    CPU_DoubleU farg;
1464
    float32 f32;
1465
    farg.ll = arg;
1466

    
1467
#if USE_PRECISE_EMULATION
1468
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1469
        /* sNaN square root */
1470
       farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1471
    } else {
1472
       f32 = float64_to_float32(farg.d, &env->fp_status);
1473
       farg.d = float32_to_float64(f32, &env->fp_status);
1474
    }
1475
#else
1476
    f32 = float64_to_float32(farg.d, &env->fp_status);
1477
    farg.d = float32_to_float64(f32, &env->fp_status);
1478
#endif
1479
    return farg.ll;
1480
}
1481

    
1482
/* fsqrt - fsqrt. */
1483
uint64_t helper_fsqrt (uint64_t arg)
1484
{
1485
    CPU_DoubleU farg;
1486
    farg.ll = arg;
1487

    
1488
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1489
        /* sNaN square root */
1490
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1491
    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1492
        /* Square root of a negative nonzero number */
1493
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1494
    } else {
1495
        farg.d = float64_sqrt(farg.d, &env->fp_status);
1496
    }
1497
    return farg.ll;
1498
}
1499

    
1500
/* fre - fre. */
1501
uint64_t helper_fre (uint64_t arg)
1502
{
1503
    CPU_DoubleU fone, farg;
1504
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1505
    farg.ll = arg;
1506

    
1507
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1508
        /* sNaN reciprocal */
1509
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1510
    } else {
1511
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1512
    }
1513
    return farg.d;
1514
}
1515

    
1516
/* fres - fres. */
1517
uint64_t helper_fres (uint64_t arg)
1518
{
1519
    CPU_DoubleU fone, farg;
1520
    float32 f32;
1521
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1522
    farg.ll = arg;
1523

    
1524
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1525
        /* sNaN reciprocal */
1526
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1527
    } else {
1528
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1529
        f32 = float64_to_float32(farg.d, &env->fp_status);
1530
        farg.d = float32_to_float64(f32, &env->fp_status);
1531
    }
1532
    return farg.ll;
1533
}
1534

    
1535
/* frsqrte  - frsqrte. */
1536
uint64_t helper_frsqrte (uint64_t arg)
1537
{
1538
    CPU_DoubleU fone, farg;
1539
    float32 f32;
1540
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1541
    farg.ll = arg;
1542

    
1543
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1544
        /* sNaN reciprocal square root */
1545
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1546
    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1547
        /* Reciprocal square root of a negative nonzero number */
1548
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1549
    } else {
1550
        farg.d = float64_sqrt(farg.d, &env->fp_status);
1551
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1552
        f32 = float64_to_float32(farg.d, &env->fp_status);
1553
        farg.d = float32_to_float64(f32, &env->fp_status);
1554
    }
1555
    return farg.ll;
1556
}
1557

    
1558
/* fsel - fsel. */
1559
uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1560
{
1561
    CPU_DoubleU farg1;
1562

    
1563
    farg1.ll = arg1;
1564

    
1565
    if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1566
        return arg2;
1567
    else
1568
        return arg3;
1569
}
1570

    
1571
void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1572
{
1573
    CPU_DoubleU farg1, farg2;
1574
    uint32_t ret = 0;
1575
    farg1.ll = arg1;
1576
    farg2.ll = arg2;
1577

    
1578
    if (unlikely(float64_is_nan(farg1.d) ||
1579
                 float64_is_nan(farg2.d))) {
1580
        ret = 0x01UL;
1581
    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1582
        ret = 0x08UL;
1583
    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1584
        ret = 0x04UL;
1585
    } else {
1586
        ret = 0x02UL;
1587
    }
1588

    
1589
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1590
    env->fpscr |= ret << FPSCR_FPRF;
1591
    env->crf[crfD] = ret;
1592
    if (unlikely(ret == 0x01UL
1593
                 && (float64_is_signaling_nan(farg1.d) ||
1594
                     float64_is_signaling_nan(farg2.d)))) {
1595
        /* sNaN comparison */
1596
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1597
    }
1598
}
1599

    
1600
void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1601
{
1602
    CPU_DoubleU farg1, farg2;
1603
    uint32_t ret = 0;
1604
    farg1.ll = arg1;
1605
    farg2.ll = arg2;
1606

    
1607
    if (unlikely(float64_is_nan(farg1.d) ||
1608
                 float64_is_nan(farg2.d))) {
1609
        ret = 0x01UL;
1610
    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1611
        ret = 0x08UL;
1612
    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1613
        ret = 0x04UL;
1614
    } else {
1615
        ret = 0x02UL;
1616
    }
1617

    
1618
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1619
    env->fpscr |= ret << FPSCR_FPRF;
1620
    env->crf[crfD] = ret;
1621
    if (unlikely (ret == 0x01UL)) {
1622
        if (float64_is_signaling_nan(farg1.d) ||
1623
            float64_is_signaling_nan(farg2.d)) {
1624
            /* sNaN comparison */
1625
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1626
                                  POWERPC_EXCP_FP_VXVC);
1627
        } else {
1628
            /* qNaN comparison */
1629
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1630
        }
1631
    }
1632
}
1633

    
1634
#if !defined (CONFIG_USER_ONLY)
1635
void helper_store_msr (target_ulong val)
1636
{
1637
    val = hreg_store_msr(env, val, 0);
1638
    if (val != 0) {
1639
        env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1640
        helper_raise_exception(val);
1641
    }
1642
}
1643

    
1644
static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1645
                                    target_ulong msrm, int keep_msrh)
1646
{
1647
#if defined(TARGET_PPC64)
1648
    if (msr & (1ULL << MSR_SF)) {
1649
        nip = (uint64_t)nip;
1650
        msr &= (uint64_t)msrm;
1651
    } else {
1652
        nip = (uint32_t)nip;
1653
        msr = (uint32_t)(msr & msrm);
1654
        if (keep_msrh)
1655
            msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1656
    }
1657
#else
1658
    nip = (uint32_t)nip;
1659
    msr &= (uint32_t)msrm;
1660
#endif
1661
    /* XXX: beware: this is false if VLE is supported */
1662
    env->nip = nip & ~((target_ulong)0x00000003);
1663
    hreg_store_msr(env, msr, 1);
1664
#if defined (DEBUG_OP)
1665
    cpu_dump_rfi(env->nip, env->msr);
1666
#endif
1667
    /* No need to raise an exception here,
1668
     * as rfi is always the last insn of a TB
1669
     */
1670
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1671
}
1672

    
1673
void helper_rfi (void)
1674
{
1675
    do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1676
           ~((target_ulong)0xFFFF0000), 1);
1677
}
1678

    
1679
#if defined(TARGET_PPC64)
1680
void helper_rfid (void)
1681
{
1682
    do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1683
           ~((target_ulong)0xFFFF0000), 0);
1684
}
1685

    
1686
void helper_hrfid (void)
1687
{
1688
    do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1689
           ~((target_ulong)0xFFFF0000), 0);
1690
}
1691
#endif
1692
#endif
1693

    
1694
void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1695
{
1696
    if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1697
                  ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1698
                  ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1699
                  ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1700
                  ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1701
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1702
    }
1703
}
1704

    
1705
#if defined(TARGET_PPC64)
1706
void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1707
{
1708
    if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1709
                  ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1710
                  ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1711
                  ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1712
                  ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1713
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1714
}
1715
#endif
1716

    
1717
/*****************************************************************************/
1718
/* PowerPC 601 specific instructions (POWER bridge) */
1719

    
1720
target_ulong helper_clcs (uint32_t arg)
1721
{
1722
    switch (arg) {
1723
    case 0x0CUL:
1724
        /* Instruction cache line size */
1725
        return env->icache_line_size;
1726
        break;
1727
    case 0x0DUL:
1728
        /* Data cache line size */
1729
        return env->dcache_line_size;
1730
        break;
1731
    case 0x0EUL:
1732
        /* Minimum cache line size */
1733
        return (env->icache_line_size < env->dcache_line_size) ?
1734
                env->icache_line_size : env->dcache_line_size;
1735
        break;
1736
    case 0x0FUL:
1737
        /* Maximum cache line size */
1738
        return (env->icache_line_size > env->dcache_line_size) ?
1739
                env->icache_line_size : env->dcache_line_size;
1740
        break;
1741
    default:
1742
        /* Undefined */
1743
        return 0;
1744
        break;
1745
    }
1746
}
1747

    
1748
target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1749
{
1750
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1751

    
1752
    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1753
        (int32_t)arg2 == 0) {
1754
        env->spr[SPR_MQ] = 0;
1755
        return INT32_MIN;
1756
    } else {
1757
        env->spr[SPR_MQ] = tmp % arg2;
1758
        return  tmp / (int32_t)arg2;
1759
    }
1760
}
1761

    
1762
target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1763
{
1764
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1765

    
1766
    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1767
        (int32_t)arg2 == 0) {
1768
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1769
        env->spr[SPR_MQ] = 0;
1770
        return INT32_MIN;
1771
    } else {
1772
        env->spr[SPR_MQ] = tmp % arg2;
1773
        tmp /= (int32_t)arg2;
1774
        if ((int32_t)tmp != tmp) {
1775
            env->xer |= (1 << XER_OV) | (1 << XER_SO);
1776
        } else {
1777
            env->xer &= ~(1 << XER_OV);
1778
        }
1779
        return tmp;
1780
    }
1781
}
1782

    
1783
target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1784
{
1785
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1786
        (int32_t)arg2 == 0) {
1787
        env->spr[SPR_MQ] = 0;
1788
        return INT32_MIN;
1789
    } else {
1790
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1791
        return (int32_t)arg1 / (int32_t)arg2;
1792
    }
1793
}
1794

    
1795
target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1796
{
1797
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1798
        (int32_t)arg2 == 0) {
1799
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1800
        env->spr[SPR_MQ] = 0;
1801
        return INT32_MIN;
1802
    } else {
1803
        env->xer &= ~(1 << XER_OV);
1804
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1805
        return (int32_t)arg1 / (int32_t)arg2;
1806
    }
1807
}
1808

    
1809
#if !defined (CONFIG_USER_ONLY)
1810
target_ulong helper_rac (target_ulong addr)
1811
{
1812
    mmu_ctx_t ctx;
1813
    int nb_BATs;
1814
    target_ulong ret = 0;
1815

    
1816
    /* We don't have to generate many instances of this instruction,
1817
     * as rac is supervisor only.
1818
     */
1819
    /* XXX: FIX THIS: Pretend we have no BAT */
1820
    nb_BATs = env->nb_BATs;
1821
    env->nb_BATs = 0;
1822
    if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1823
        ret = ctx.raddr;
1824
    env->nb_BATs = nb_BATs;
1825
    return ret;
1826
}
1827

    
1828
void helper_rfsvc (void)
1829
{
1830
    do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1831
}
1832
#endif
1833

    
1834
/*****************************************************************************/
1835
/* 602 specific instructions */
1836
/* mfrom is the most crazy instruction ever seen, imho ! */
1837
/* Real implementation uses a ROM table. Do the same */
1838
/* Extremly decomposed:
1839
 *                      -arg / 256
1840
 * return 256 * log10(10           + 1.0) + 0.5
1841
 */
1842
#if !defined (CONFIG_USER_ONLY)
1843
target_ulong helper_602_mfrom (target_ulong arg)
1844
{
1845
    if (likely(arg < 602)) {
1846
#include "mfrom_table.c"
1847
        return mfrom_ROM_table[arg];
1848
    } else {
1849
        return 0;
1850
    }
1851
}
1852
#endif
1853

    
1854
/*****************************************************************************/
1855
/* Embedded PowerPC specific helpers */
1856

    
1857
/* XXX: to be improved to check access rights when in user-mode */
1858
target_ulong helper_load_dcr (target_ulong dcrn)
1859
{
1860
    target_ulong val = 0;
1861

    
1862
    if (unlikely(env->dcr_env == NULL)) {
1863
        if (loglevel != 0) {
1864
            fprintf(logfile, "No DCR environment\n");
1865
        }
1866
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1867
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1868
    } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1869
        if (loglevel != 0) {
1870
            fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1871
        }
1872
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1873
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1874
    }
1875
    return val;
1876
}
1877

    
1878
void helper_store_dcr (target_ulong dcrn, target_ulong val)
1879
{
1880
    if (unlikely(env->dcr_env == NULL)) {
1881
        if (loglevel != 0) {
1882
            fprintf(logfile, "No DCR environment\n");
1883
        }
1884
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1885
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1886
    } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1887
        if (loglevel != 0) {
1888
            fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1889
        }
1890
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1891
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1892
    }
1893
}
1894

    
1895
#if !defined(CONFIG_USER_ONLY)
1896
void helper_40x_rfci (void)
1897
{
1898
    do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1899
           ~((target_ulong)0xFFFF0000), 0);
1900
}
1901

    
1902
void helper_rfci (void)
1903
{
1904
    do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1905
           ~((target_ulong)0x3FFF0000), 0);
1906
}
1907

    
1908
void helper_rfdi (void)
1909
{
1910
    do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1911
           ~((target_ulong)0x3FFF0000), 0);
1912
}
1913

    
1914
void helper_rfmci (void)
1915
{
1916
    do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1917
           ~((target_ulong)0x3FFF0000), 0);
1918
}
1919
#endif
1920

    
1921
/* 440 specific */
1922
target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1923
{
1924
    target_ulong mask;
1925
    int i;
1926

    
1927
    i = 1;
1928
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1929
        if ((high & mask) == 0) {
1930
            if (update_Rc) {
1931
                env->crf[0] = 0x4;
1932
            }
1933
            goto done;
1934
        }
1935
        i++;
1936
    }
1937
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1938
        if ((low & mask) == 0) {
1939
            if (update_Rc) {
1940
                env->crf[0] = 0x8;
1941
            }
1942
            goto done;
1943
        }
1944
        i++;
1945
    }
1946
    if (update_Rc) {
1947
        env->crf[0] = 0x2;
1948
    }
1949
 done:
1950
    env->xer = (env->xer & ~0x7F) | i;
1951
    if (update_Rc) {
1952
        env->crf[0] |= xer_so;
1953
    }
1954
    return i;
1955
}
1956

    
1957
/*****************************************************************************/
1958
/* Altivec extension helpers */
1959
#if defined(WORDS_BIGENDIAN)
1960
#define HI_IDX 0
1961
#define LO_IDX 1
1962
#else
1963
#define HI_IDX 1
1964
#define LO_IDX 0
1965
#endif
1966

    
1967
#if defined(WORDS_BIGENDIAN)
1968
#define VECTOR_FOR_INORDER_I(index, element)            \
1969
    for (index = 0; index < ARRAY_SIZE(r->element); index++)
1970
#else
1971
#define VECTOR_FOR_INORDER_I(index, element)            \
1972
  for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1973
#endif
1974

    
1975
/* Saturating arithmetic helpers.  */
1976
#define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1977
    static always_inline to_type cvt##from##to (from_type x, int *sat)  \
1978
    {                                                                   \
1979
        to_type r;                                                      \
1980
        if (use_min && x < min) {                                       \
1981
            r = min;                                                    \
1982
            *sat = 1;                                                   \
1983
        } else if (use_max && x > max) {                                \
1984
            r = max;                                                    \
1985
            *sat = 1;                                                   \
1986
        } else {                                                        \
1987
            r = x;                                                      \
1988
        }                                                               \
1989
        return r;                                                       \
1990
    }
1991
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
1992
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
1993
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
1994
SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
1995
SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
1996
SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
1997
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
1998
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
1999
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
2000
#undef SATCVT
2001

    
2002
#define LVE(name, access, swap, element)                        \
2003
    void helper_##name (ppc_avr_t *r, target_ulong addr)        \
2004
    {                                                           \
2005
        size_t n_elems = ARRAY_SIZE(r->element);                \
2006
        int adjust = HI_IDX*(n_elems-1);                        \
2007
        int sh = sizeof(r->element[0]) >> 1;                    \
2008
        int index = (addr & 0xf) >> sh;                         \
2009
        if(msr_le) {                                            \
2010
            r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2011
        } else {                                                        \
2012
            r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2013
        }                                                               \
2014
    }
2015
#define I(x) (x)
2016
LVE(lvebx, ldub, I, u8)
2017
LVE(lvehx, lduw, bswap16, u16)
2018
LVE(lvewx, ldl, bswap32, u32)
2019
#undef I
2020
#undef LVE
2021

    
2022
void helper_lvsl (ppc_avr_t *r, target_ulong sh)
2023
{
2024
    int i, j = (sh & 0xf);
2025

    
2026
    VECTOR_FOR_INORDER_I (i, u8) {
2027
        r->u8[i] = j++;
2028
    }
2029
}
2030

    
2031
void helper_lvsr (ppc_avr_t *r, target_ulong sh)
2032
{
2033
    int i, j = 0x10 - (sh & 0xf);
2034

    
2035
    VECTOR_FOR_INORDER_I (i, u8) {
2036
        r->u8[i] = j++;
2037
    }
2038
}
2039

    
2040
#define STVE(name, access, swap, element)                       \
2041
    void helper_##name (ppc_avr_t *r, target_ulong addr)        \
2042
    {                                                           \
2043
        size_t n_elems = ARRAY_SIZE(r->element);                \
2044
        int adjust = HI_IDX*(n_elems-1);                        \
2045
        int sh = sizeof(r->element[0]) >> 1;                    \
2046
        int index = (addr & 0xf) >> sh;                         \
2047
        if(msr_le) {                                            \
2048
            access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2049
        } else {                                                        \
2050
            access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2051
        }                                                               \
2052
    }
2053
#define I(x) (x)
2054
STVE(stvebx, stb, I, u8)
2055
STVE(stvehx, stw, bswap16, u16)
2056
STVE(stvewx, stl, bswap32, u32)
2057
#undef I
2058
#undef LVE
2059

    
2060
void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2061
{
2062
    int i;
2063
    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2064
        r->u32[i] = ~a->u32[i] < b->u32[i];
2065
    }
2066
}
2067

    
2068
#define VARITH_DO(name, op, element)        \
2069
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)          \
2070
{                                                                       \
2071
    int i;                                                              \
2072
    for (i = 0; i < ARRAY_SIZE(r->element); i++) {                      \
2073
        r->element[i] = a->element[i] op b->element[i];                 \
2074
    }                                                                   \
2075
}
2076
#define VARITH(suffix, element)                  \
2077
  VARITH_DO(add##suffix, +, element)             \
2078
  VARITH_DO(sub##suffix, -, element)
2079
VARITH(ubm, u8)
2080
VARITH(uhm, u16)
2081
VARITH(uwm, u32)
2082
#undef VARITH_DO
2083
#undef VARITH
2084

    
2085
#define VAVG_DO(name, element, etype)                                   \
2086
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2087
    {                                                                   \
2088
        int i;                                                          \
2089
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2090
            etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \
2091
            r->element[i] = x >> 1;                                     \
2092
        }                                                               \
2093
    }
2094

    
2095
#define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2096
    VAVG_DO(avgs##type, signed_element, signed_type)                    \
2097
    VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2098
VAVG(b, s8, int16_t, u8, uint16_t)
2099
VAVG(h, s16, int32_t, u16, uint32_t)
2100
VAVG(w, s32, int64_t, u32, uint64_t)
2101
#undef VAVG_DO
2102
#undef VAVG
2103

    
2104
#define VCMP_DO(suffix, compare, element, record)                       \
2105
    void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2106
    {                                                                   \
2107
        uint32_t ones = (uint32_t)-1;                                   \
2108
        uint32_t all = ones;                                            \
2109
        uint32_t none = 0;                                              \
2110
        int i;                                                          \
2111
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2112
            uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2113
            switch (sizeof (a->element[0])) {                           \
2114
            case 4: r->u32[i] = result; break;                          \
2115
            case 2: r->u16[i] = result; break;                          \
2116
            case 1: r->u8[i] = result; break;                           \
2117
            }                                                           \
2118
            all &= result;                                              \
2119
            none |= result;                                             \
2120
        }                                                               \
2121
        if (record) {                                                   \
2122
            env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
2123
        }                                                               \
2124
    }
2125
#define VCMP(suffix, compare, element)          \
2126
    VCMP_DO(suffix, compare, element, 0)        \
2127
    VCMP_DO(suffix##_dot, compare, element, 1)
2128
VCMP(equb, ==, u8)
2129
VCMP(equh, ==, u16)
2130
VCMP(equw, ==, u32)
2131
VCMP(gtub, >, u8)
2132
VCMP(gtuh, >, u16)
2133
VCMP(gtuw, >, u32)
2134
VCMP(gtsb, >, s8)
2135
VCMP(gtsh, >, s16)
2136
VCMP(gtsw, >, s32)
2137
#undef VCMP_DO
2138
#undef VCMP
2139

    
2140
void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2141
{
2142
    int sat = 0;
2143
    int i;
2144

    
2145
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2146
        int32_t prod = a->s16[i] * b->s16[i];
2147
        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2148
        r->s16[i] = cvtswsh (t, &sat);
2149
    }
2150

    
2151
    if (sat) {
2152
        env->vscr |= (1 << VSCR_SAT);
2153
    }
2154
}
2155

    
2156
void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2157
{
2158
    int sat = 0;
2159
    int i;
2160

    
2161
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2162
        int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
2163
        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2164
        r->s16[i] = cvtswsh (t, &sat);
2165
    }
2166

    
2167
    if (sat) {
2168
        env->vscr |= (1 << VSCR_SAT);
2169
    }
2170
}
2171

    
2172
#define VMINMAX_DO(name, compare, element)                              \
2173
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2174
    {                                                                   \
2175
        int i;                                                          \
2176
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2177
            if (a->element[i] compare b->element[i]) {                  \
2178
                r->element[i] = b->element[i];                          \
2179
            } else {                                                    \
2180
                r->element[i] = a->element[i];                          \
2181
            }                                                           \
2182
        }                                                               \
2183
    }
2184
#define VMINMAX(suffix, element)                \
2185
  VMINMAX_DO(min##suffix, >, element)           \
2186
  VMINMAX_DO(max##suffix, <, element)
2187
VMINMAX(sb, s8)
2188
VMINMAX(sh, s16)
2189
VMINMAX(sw, s32)
2190
VMINMAX(ub, u8)
2191
VMINMAX(uh, u16)
2192
VMINMAX(uw, u32)
2193
#undef VMINMAX_DO
2194
#undef VMINMAX
2195

    
2196
void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2197
{
2198
    int i;
2199
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2200
        int32_t prod = a->s16[i] * b->s16[i];
2201
        r->s16[i] = (int16_t) (prod + c->s16[i]);
2202
    }
2203
}
2204

    
2205
#define VMRG_DO(name, element, highp)                                   \
2206
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2207
    {                                                                   \
2208
        ppc_avr_t result;                                               \
2209
        int i;                                                          \
2210
        size_t n_elems = ARRAY_SIZE(r->element);                        \
2211
        for (i = 0; i < n_elems/2; i++) {                               \
2212
            if (highp) {                                                \
2213
                result.element[i*2+HI_IDX] = a->element[i];             \
2214
                result.element[i*2+LO_IDX] = b->element[i];             \
2215
            } else {                                                    \
2216
                result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2217
                result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2218
            }                                                           \
2219
        }                                                               \
2220
        *r = result;                                                    \
2221
    }
2222
#if defined(WORDS_BIGENDIAN)
2223
#define MRGHI 0
2224
#define MRGLO 1
2225
#else
2226
#define MRGHI 1
2227
#define MRGLO 0
2228
#endif
2229
#define VMRG(suffix, element)                   \
2230
  VMRG_DO(mrgl##suffix, element, MRGHI)         \
2231
  VMRG_DO(mrgh##suffix, element, MRGLO)
2232
VMRG(b, u8)
2233
VMRG(h, u16)
2234
VMRG(w, u32)
2235
#undef VMRG_DO
2236
#undef VMRG
2237
#undef MRGHI
2238
#undef MRGLO
2239

    
2240
void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2241
{
2242
    int32_t prod[16];
2243
    int i;
2244

    
2245
    for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
2246
        prod[i] = (int32_t)a->s8[i] * b->u8[i];
2247
    }
2248

    
2249
    VECTOR_FOR_INORDER_I(i, s32) {
2250
        r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2251
    }
2252
}
2253

    
2254
void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2255
{
2256
    int32_t prod[8];
2257
    int i;
2258

    
2259
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2260
        prod[i] = a->s16[i] * b->s16[i];
2261
    }
2262

    
2263
    VECTOR_FOR_INORDER_I(i, s32) {
2264
        r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
2265
    }
2266
}
2267

    
2268
void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2269
{
2270
    int32_t prod[8];
2271
    int i;
2272
    int sat = 0;
2273

    
2274
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2275
        prod[i] = (int32_t)a->s16[i] * b->s16[i];
2276
    }
2277

    
2278
    VECTOR_FOR_INORDER_I (i, s32) {
2279
        int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
2280
        r->u32[i] = cvtsdsw(t, &sat);
2281
    }
2282

    
2283
    if (sat) {
2284
        env->vscr |= (1 << VSCR_SAT);
2285
    }
2286
}
2287

    
2288
void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2289
{
2290
    uint16_t prod[16];
2291
    int i;
2292

    
2293
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2294
        prod[i] = a->u8[i] * b->u8[i];
2295
    }
2296

    
2297
    VECTOR_FOR_INORDER_I(i, u32) {
2298
        r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2299
    }
2300
}
2301

    
2302
void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2303
{
2304
    uint32_t prod[8];
2305
    int i;
2306

    
2307
    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2308
        prod[i] = a->u16[i] * b->u16[i];
2309
    }
2310

    
2311
    VECTOR_FOR_INORDER_I(i, u32) {
2312
        r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
2313
    }
2314
}
2315

    
2316
void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2317
{
2318
    uint32_t prod[8];
2319
    int i;
2320
    int sat = 0;
2321

    
2322
    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2323
        prod[i] = a->u16[i] * b->u16[i];
2324
    }
2325

    
2326
    VECTOR_FOR_INORDER_I (i, s32) {
2327
        uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
2328
        r->u32[i] = cvtuduw(t, &sat);
2329
    }
2330

    
2331
    if (sat) {
2332
        env->vscr |= (1 << VSCR_SAT);
2333
    }
2334
}
2335

    
2336
#define VMUL_DO(name, mul_element, prod_element, evenp)                 \
2337
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2338
    {                                                                   \
2339
        int i;                                                          \
2340
        VECTOR_FOR_INORDER_I(i, prod_element) {                         \
2341
            if (evenp) {                                                \
2342
                r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2343
            } else {                                                    \
2344
                r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2345
            }                                                           \
2346
        }                                                               \
2347
    }
2348
#define VMUL(suffix, mul_element, prod_element) \
2349
  VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2350
  VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2351
VMUL(sb, s8, s16)
2352
VMUL(sh, s16, s32)
2353
VMUL(ub, u8, u16)
2354
VMUL(uh, u16, u32)
2355
#undef VMUL_DO
2356
#undef VMUL
2357

    
2358
void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2359
{
2360
    ppc_avr_t result;
2361
    int i;
2362
    VECTOR_FOR_INORDER_I (i, u8) {
2363
        int s = c->u8[i] & 0x1f;
2364
#if defined(WORDS_BIGENDIAN)
2365
        int index = s & 0xf;
2366
#else
2367
        int index = 15 - (s & 0xf);
2368
#endif
2369
        if (s & 0x10) {
2370
            result.u8[i] = b->u8[index];
2371
        } else {
2372
            result.u8[i] = a->u8[index];
2373
        }
2374
    }
2375
    *r = result;
2376
}
2377

    
2378
#if defined(WORDS_BIGENDIAN)
2379
#define PKBIG 1
2380
#else
2381
#define PKBIG 0
2382
#endif
2383
void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2384
{
2385
    int i, j;
2386
    ppc_avr_t result;
2387
#if defined(WORDS_BIGENDIAN)
2388
    const ppc_avr_t *x[2] = { a, b };
2389
#else
2390
    const ppc_avr_t *x[2] = { b, a };
2391
#endif
2392

    
2393
    VECTOR_FOR_INORDER_I (i, u64) {
2394
        VECTOR_FOR_INORDER_I (j, u32){
2395
            uint32_t e = x[i]->u32[j];
2396
            result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
2397
                                 ((e >> 6) & 0x3e0) |
2398
                                 ((e >> 3) & 0x1f));
2399
        }
2400
    }
2401
    *r = result;
2402
}
2403

    
2404
#define VPK(suffix, from, to, cvt, dosat)       \
2405
    void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2406
    {                                                                   \
2407
        int i;                                                          \
2408
        int sat = 0;                                                    \
2409
        ppc_avr_t result;                                               \
2410
        ppc_avr_t *a0 = PKBIG ? a : b;                                  \
2411
        ppc_avr_t *a1 = PKBIG ? b : a;                                  \
2412
        VECTOR_FOR_INORDER_I (i, from) {                                \
2413
            result.to[i] = cvt(a0->from[i], &sat);                      \
2414
            result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);  \
2415
        }                                                               \
2416
        *r = result;                                                    \
2417
        if (dosat && sat) {                                             \
2418
            env->vscr |= (1 << VSCR_SAT);                               \
2419
        }                                                               \
2420
    }
2421
#define I(x, y) (x)
2422
VPK(shss, s16, s8, cvtshsb, 1)
2423
VPK(shus, s16, u8, cvtshub, 1)
2424
VPK(swss, s32, s16, cvtswsh, 1)
2425
VPK(swus, s32, u16, cvtswuh, 1)
2426
VPK(uhus, u16, u8, cvtuhub, 1)
2427
VPK(uwus, u32, u16, cvtuwuh, 1)
2428
VPK(uhum, u16, u8, I, 0)
2429
VPK(uwum, u32, u16, I, 0)
2430
#undef I
2431
#undef VPK
2432
#undef PKBIG
2433

    
2434
#define VROTATE(suffix, element)                                        \
2435
    void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2436
    {                                                                   \
2437
        int i;                                                          \
2438
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2439
            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2440
            unsigned int shift = b->element[i] & mask;                  \
2441
            r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2442
        }                                                               \
2443
    }
2444
VROTATE(b, u8)
2445
VROTATE(h, u16)
2446
VROTATE(w, u32)
2447
#undef VROTATE
2448

    
2449
void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2450
{
2451
    r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
2452
    r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
2453
}
2454

    
2455
#if defined(WORDS_BIGENDIAN)
2456
#define LEFT 0
2457
#define RIGHT 1
2458
#else
2459
#define LEFT 1
2460
#define RIGHT 0
2461
#endif
2462
/* The specification says that the results are undefined if all of the
2463
 * shift counts are not identical.  We check to make sure that they are
2464
 * to conform to what real hardware appears to do.  */
2465
#define VSHIFT(suffix, leftp)                                           \
2466
    void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
2467
    {                                                                   \
2468
        int shift = b->u8[LO_IDX*0x15] & 0x7;                           \
2469
        int doit = 1;                                                   \
2470
        int i;                                                          \
2471
        for (i = 0; i < ARRAY_SIZE(r->u8); i++) {                       \
2472
            doit = doit && ((b->u8[i] & 0x7) == shift);                 \
2473
        }                                                               \
2474
        if (doit) {                                                     \
2475
            if (shift == 0) {                                           \
2476
                *r = *a;                                                \
2477
            } else if (leftp) {                                         \
2478
                uint64_t carry = a->u64[LO_IDX] >> (64 - shift);        \
2479
                r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry;     \
2480
                r->u64[LO_IDX] = a->u64[LO_IDX] << shift;               \
2481
            } else {                                                    \
2482
                uint64_t carry = a->u64[HI_IDX] << (64 - shift);        \
2483
                r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry;     \
2484
                r->u64[HI_IDX] = a->u64[HI_IDX] >> shift;               \
2485
            }                                                           \
2486
        }                                                               \
2487
    }
2488
VSHIFT(l, LEFT)
2489
VSHIFT(r, RIGHT)
2490
#undef VSHIFT
2491
#undef LEFT
2492
#undef RIGHT
2493

    
2494
#define VSL(suffix, element)                                            \
2495
    void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2496
    {                                                                   \
2497
        int i;                                                          \
2498
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2499
            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2500
            unsigned int shift = b->element[i] & mask;                  \
2501
            r->element[i] = a->element[i] << shift;                     \
2502
        }                                                               \
2503
    }
2504
VSL(b, u8)
2505
VSL(h, u16)
2506
VSL(w, u32)
2507
#undef VSL
2508

    
2509
void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
2510
{
2511
    int sh = shift & 0xf;
2512
    int i;
2513
    ppc_avr_t result;
2514

    
2515
#if defined(WORDS_BIGENDIAN)
2516
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2517
        int index = sh + i;
2518
        if (index > 0xf) {
2519
            result.u8[i] = b->u8[index-0x10];
2520
        } else {
2521
            result.u8[i] = a->u8[index];
2522
        }
2523
    }
2524
#else
2525
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2526
        int index = (16 - sh) + i;
2527
        if (index > 0xf) {
2528
            result.u8[i] = a->u8[index-0x10];
2529
        } else {
2530
            result.u8[i] = b->u8[index];
2531
        }
2532
    }
2533
#endif
2534
    *r = result;
2535
}
2536

    
2537
void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2538
{
2539
  int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2540

    
2541
#if defined (WORDS_BIGENDIAN)
2542
  memmove (&r->u8[0], &a->u8[sh], 16-sh);
2543
  memset (&r->u8[16-sh], 0, sh);
2544
#else
2545
  memmove (&r->u8[sh], &a->u8[0], 16-sh);
2546
  memset (&r->u8[0], 0, sh);
2547
#endif
2548
}
2549

    
2550
/* Experimental testing shows that hardware masks the immediate.  */
2551
#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2552
#if defined(WORDS_BIGENDIAN)
2553
#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2554
#else
2555
#define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2556
#endif
2557
#define VSPLT(suffix, element)                                          \
2558
    void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2559
    {                                                                   \
2560
        uint32_t s = b->element[SPLAT_ELEMENT(element)];                \
2561
        int i;                                                          \
2562
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2563
            r->element[i] = s;                                          \
2564
        }                                                               \
2565
    }
2566
VSPLT(b, u8)
2567
VSPLT(h, u16)
2568
VSPLT(w, u32)
2569
#undef VSPLT
2570
#undef SPLAT_ELEMENT
2571
#undef _SPLAT_MASKED
2572

    
2573
#define VSPLTI(suffix, element, splat_type)                     \
2574
    void helper_vspltis##suffix (ppc_avr_t *r, uint32_t splat)  \
2575
    {                                                           \
2576
        splat_type x = (int8_t)(splat << 3) >> 3;               \
2577
        int i;                                                  \
2578
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {          \
2579
            r->element[i] = x;                                  \
2580
        }                                                       \
2581
    }
2582
VSPLTI(b, s8, int8_t)
2583
VSPLTI(h, s16, int16_t)
2584
VSPLTI(w, s32, int32_t)
2585
#undef VSPLTI
2586

    
2587
#define VSR(suffix, element)                                            \
2588
    void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2589
    {                                                                   \
2590
        int i;                                                          \
2591
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2592
            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2593
            unsigned int shift = b->element[i] & mask;                  \
2594
            r->element[i] = a->element[i] >> shift;                     \
2595
        }                                                               \
2596
    }
2597
VSR(ab, s8)
2598
VSR(ah, s16)
2599
VSR(aw, s32)
2600
VSR(b, u8)
2601
VSR(h, u16)
2602
VSR(w, u32)
2603
#undef VSR
2604

    
2605
void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2606
{
2607
  int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2608

    
2609
#if defined (WORDS_BIGENDIAN)
2610
  memmove (&r->u8[sh], &a->u8[0], 16-sh);
2611
  memset (&r->u8[0], 0, sh);
2612
#else
2613
  memmove (&r->u8[0], &a->u8[sh], 16-sh);
2614
  memset (&r->u8[16-sh], 0, sh);
2615
#endif
2616
}
2617

    
2618
void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2619
{
2620
    int i;
2621
    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2622
        r->u32[i] = a->u32[i] >= b->u32[i];
2623
    }
2624
}
2625

    
2626
void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2627
{
2628
    int64_t t;
2629
    int i, upper;
2630
    ppc_avr_t result;
2631
    int sat = 0;
2632

    
2633
#if defined(WORDS_BIGENDIAN)
2634
    upper = ARRAY_SIZE(r->s32)-1;
2635
#else
2636
    upper = 0;
2637
#endif
2638
    t = (int64_t)b->s32[upper];
2639
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2640
        t += a->s32[i];
2641
        result.s32[i] = 0;
2642
    }
2643
    result.s32[upper] = cvtsdsw(t, &sat);
2644
    *r = result;
2645

    
2646
    if (sat) {
2647
        env->vscr |= (1 << VSCR_SAT);
2648
    }
2649
}
2650

    
2651
void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2652
{
2653
    int i, j, upper;
2654
    ppc_avr_t result;
2655
    int sat = 0;
2656

    
2657
#if defined(WORDS_BIGENDIAN)
2658
    upper = 1;
2659
#else
2660
    upper = 0;
2661
#endif
2662
    for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2663
        int64_t t = (int64_t)b->s32[upper+i*2];
2664
        result.u64[i] = 0;
2665
        for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2666
            t += a->s32[2*i+j];
2667
        }
2668
        result.s32[upper+i*2] = cvtsdsw(t, &sat);
2669
    }
2670

    
2671
    *r = result;
2672
    if (sat) {
2673
        env->vscr |= (1 << VSCR_SAT);
2674
    }
2675
}
2676

    
2677
void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2678
{
2679
    int i, j;
2680
    int sat = 0;
2681

    
2682
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2683
        int64_t t = (int64_t)b->s32[i];
2684
        for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2685
            t += a->s8[4*i+j];
2686
        }
2687
        r->s32[i] = cvtsdsw(t, &sat);
2688
    }
2689

    
2690
    if (sat) {
2691
        env->vscr |= (1 << VSCR_SAT);
2692
    }
2693
}
2694

    
2695
void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2696
{
2697
    int sat = 0;
2698
    int i;
2699

    
2700
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2701
        int64_t t = (int64_t)b->s32[i];
2702
        t += a->s16[2*i] + a->s16[2*i+1];
2703
        r->s32[i] = cvtsdsw(t, &sat);
2704
    }
2705

    
2706
    if (sat) {
2707
        env->vscr |= (1 << VSCR_SAT);
2708
    }
2709
}
2710

    
2711
void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2712
{
2713
    int i, j;
2714
    int sat = 0;
2715

    
2716
    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2717
        uint64_t t = (uint64_t)b->u32[i];
2718
        for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2719
            t += a->u8[4*i+j];
2720
        }
2721
        r->u32[i] = cvtuduw(t, &sat);
2722
    }
2723

    
2724
    if (sat) {
2725
        env->vscr |= (1 << VSCR_SAT);
2726
    }
2727
}
2728

    
2729
#if defined(WORDS_BIGENDIAN)
2730
#define UPKHI 1
2731
#define UPKLO 0
2732
#else
2733
#define UPKHI 0
2734
#define UPKLO 1
2735
#endif
2736
#define VUPKPX(suffix, hi)                                      \
2737
    void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)       \
2738
    {                                                           \
2739
        int i;                                                  \
2740
        ppc_avr_t result;                                       \
2741
        for (i = 0; i < ARRAY_SIZE(r->u32); i++) {              \
2742
            uint16_t e = b->u16[hi ? i : i+4];                  \
2743
            uint8_t a = (e >> 15) ? 0xff : 0;                   \
2744
            uint8_t r = (e >> 10) & 0x1f;                       \
2745
            uint8_t g = (e >> 5) & 0x1f;                        \
2746
            uint8_t b = e & 0x1f;                               \
2747
            result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \
2748
        }                                                               \
2749
        *r = result;                                                    \
2750
    }
2751
VUPKPX(lpx, UPKLO)
2752
VUPKPX(hpx, UPKHI)
2753
#undef VUPKPX
2754

    
2755
#define VUPK(suffix, unpacked, packee, hi)                              \
2756
    void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)               \
2757
    {                                                                   \
2758
        int i;                                                          \
2759
        ppc_avr_t result;                                               \
2760
        if (hi) {                                                       \
2761
            for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \
2762
                result.unpacked[i] = b->packee[i];                      \
2763
            }                                                           \
2764
        } else {                                                        \
2765
            for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
2766
                result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2767
            }                                                           \
2768
        }                                                               \
2769
        *r = result;                                                    \
2770
    }
2771
VUPK(hsb, s16, s8, UPKHI)
2772
VUPK(hsh, s32, s16, UPKHI)
2773
VUPK(lsb, s16, s8, UPKLO)
2774
VUPK(lsh, s32, s16, UPKLO)
2775
#undef VUPK
2776
#undef UPKHI
2777
#undef UPKLO
2778

    
2779
#undef VECTOR_FOR_INORDER_I
2780
#undef HI_IDX
2781
#undef LO_IDX
2782

    
2783
/*****************************************************************************/
2784
/* SPE extension helpers */
2785
/* Use a table to make this quicker */
2786
static uint8_t hbrev[16] = {
2787
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2788
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2789
};
2790

    
2791
static always_inline uint8_t byte_reverse (uint8_t val)
2792
{
2793
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2794
}
2795

    
2796
static always_inline uint32_t word_reverse (uint32_t val)
2797
{
2798
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2799
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2800
}
2801

    
2802
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2803
target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2804
{
2805
    uint32_t a, b, d, mask;
2806

    
2807
    mask = UINT32_MAX >> (32 - MASKBITS);
2808
    a = arg1 & mask;
2809
    b = arg2 & mask;
2810
    d = word_reverse(1 + word_reverse(a | ~b));
2811
    return (arg1 & ~mask) | (d & b);
2812
}
2813

    
2814
uint32_t helper_cntlsw32 (uint32_t val)
2815
{
2816
    if (val & 0x80000000)
2817
        return clz32(~val);
2818
    else
2819
        return clz32(val);
2820
}
2821

    
2822
uint32_t helper_cntlzw32 (uint32_t val)
2823
{
2824
    return clz32(val);
2825
}
2826

    
2827
/* Single-precision floating-point conversions */
2828
static always_inline uint32_t efscfsi (uint32_t val)
2829
{
2830
    CPU_FloatU u;
2831

    
2832
    u.f = int32_to_float32(val, &env->spe_status);
2833

    
2834
    return u.l;
2835
}
2836

    
2837
static always_inline uint32_t efscfui (uint32_t val)
2838
{
2839
    CPU_FloatU u;
2840

    
2841
    u.f = uint32_to_float32(val, &env->spe_status);
2842

    
2843
    return u.l;
2844
}
2845

    
2846
static always_inline int32_t efsctsi (uint32_t val)
2847
{
2848
    CPU_FloatU u;
2849

    
2850
    u.l = val;
2851
    /* NaN are not treated the same way IEEE 754 does */
2852
    if (unlikely(float32_is_nan(u.f)))
2853
        return 0;
2854

    
2855
    return float32_to_int32(u.f, &env->spe_status);
2856
}
2857

    
2858
static always_inline uint32_t efsctui (uint32_t val)
2859
{
2860
    CPU_FloatU u;
2861

    
2862
    u.l = val;
2863
    /* NaN are not treated the same way IEEE 754 does */
2864
    if (unlikely(float32_is_nan(u.f)))
2865
        return 0;
2866

    
2867
    return float32_to_uint32(u.f, &env->spe_status);
2868
}
2869

    
2870
static always_inline uint32_t efsctsiz (uint32_t val)
2871
{
2872
    CPU_FloatU u;
2873

    
2874
    u.l = val;
2875
    /* NaN are not treated the same way IEEE 754 does */
2876
    if (unlikely(float32_is_nan(u.f)))
2877
        return 0;
2878

    
2879
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2880
}
2881

    
2882
static always_inline uint32_t efsctuiz (uint32_t val)
2883
{
2884
    CPU_FloatU u;
2885

    
2886
    u.l = val;
2887
    /* NaN are not treated the same way IEEE 754 does */
2888
    if (unlikely(float32_is_nan(u.f)))
2889
        return 0;
2890

    
2891
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2892
}
2893

    
2894
static always_inline uint32_t efscfsf (uint32_t val)
2895
{
2896
    CPU_FloatU u;
2897
    float32 tmp;
2898

    
2899
    u.f = int32_to_float32(val, &env->spe_status);
2900
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2901
    u.f = float32_div(u.f, tmp, &env->spe_status);
2902

    
2903
    return u.l;
2904
}
2905

    
2906
static always_inline uint32_t efscfuf (uint32_t val)
2907
{
2908
    CPU_FloatU u;
2909
    float32 tmp;
2910

    
2911
    u.f = uint32_to_float32(val, &env->spe_status);
2912
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2913
    u.f = float32_div(u.f, tmp, &env->spe_status);
2914

    
2915
    return u.l;
2916
}
2917

    
2918
static always_inline uint32_t efsctsf (uint32_t val)
2919
{
2920
    CPU_FloatU u;
2921
    float32 tmp;
2922

    
2923
    u.l = val;
2924
    /* NaN are not treated the same way IEEE 754 does */
2925
    if (unlikely(float32_is_nan(u.f)))
2926
        return 0;
2927
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2928
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2929

    
2930
    return float32_to_int32(u.f, &env->spe_status);
2931
}
2932

    
2933
static always_inline uint32_t efsctuf (uint32_t val)
2934
{
2935
    CPU_FloatU u;
2936
    float32 tmp;
2937

    
2938
    u.l = val;
2939
    /* NaN are not treated the same way IEEE 754 does */
2940
    if (unlikely(float32_is_nan(u.f)))
2941
        return 0;
2942
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2943
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2944

    
2945
    return float32_to_uint32(u.f, &env->spe_status);
2946
}
2947

    
2948
#define HELPER_SPE_SINGLE_CONV(name)                                          \
2949
uint32_t helper_e##name (uint32_t val)                                        \
2950
{                                                                             \
2951
    return e##name(val);                                                      \
2952
}
2953
/* efscfsi */
2954
HELPER_SPE_SINGLE_CONV(fscfsi);
2955
/* efscfui */
2956
HELPER_SPE_SINGLE_CONV(fscfui);
2957
/* efscfuf */
2958
HELPER_SPE_SINGLE_CONV(fscfuf);
2959
/* efscfsf */
2960
HELPER_SPE_SINGLE_CONV(fscfsf);
2961
/* efsctsi */
2962
HELPER_SPE_SINGLE_CONV(fsctsi);
2963
/* efsctui */
2964
HELPER_SPE_SINGLE_CONV(fsctui);
2965
/* efsctsiz */
2966
HELPER_SPE_SINGLE_CONV(fsctsiz);
2967
/* efsctuiz */
2968
HELPER_SPE_SINGLE_CONV(fsctuiz);
2969
/* efsctsf */
2970
HELPER_SPE_SINGLE_CONV(fsctsf);
2971
/* efsctuf */
2972
HELPER_SPE_SINGLE_CONV(fsctuf);
2973

    
2974
#define HELPER_SPE_VECTOR_CONV(name)                                          \
2975
uint64_t helper_ev##name (uint64_t val)                                       \
2976
{                                                                             \
2977
    return ((uint64_t)e##name(val >> 32) << 32) |                             \
2978
            (uint64_t)e##name(val);                                           \
2979
}
2980
/* evfscfsi */
2981
HELPER_SPE_VECTOR_CONV(fscfsi);
2982
/* evfscfui */
2983
HELPER_SPE_VECTOR_CONV(fscfui);
2984
/* evfscfuf */
2985
HELPER_SPE_VECTOR_CONV(fscfuf);
2986
/* evfscfsf */
2987
HELPER_SPE_VECTOR_CONV(fscfsf);
2988
/* evfsctsi */
2989
HELPER_SPE_VECTOR_CONV(fsctsi);
2990
/* evfsctui */
2991
HELPER_SPE_VECTOR_CONV(fsctui);
2992
/* evfsctsiz */
2993
HELPER_SPE_VECTOR_CONV(fsctsiz);
2994
/* evfsctuiz */
2995
HELPER_SPE_VECTOR_CONV(fsctuiz);
2996
/* evfsctsf */
2997
HELPER_SPE_VECTOR_CONV(fsctsf);
2998
/* evfsctuf */
2999
HELPER_SPE_VECTOR_CONV(fsctuf);
3000

    
3001
/* Single-precision floating-point arithmetic */
3002
static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
3003
{
3004
    CPU_FloatU u1, u2;
3005
    u1.l = op1;
3006
    u2.l = op2;
3007
    u1.f = float32_add(u1.f, u2.f, &env->spe_status);
3008
    return u1.l;
3009
}
3010

    
3011
static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
3012
{
3013
    CPU_FloatU u1, u2;
3014
    u1.l = op1;
3015
    u2.l = op2;
3016
    u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
3017
    return u1.l;
3018
}
3019

    
3020
static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
3021
{
3022
    CPU_FloatU u1, u2;
3023
    u1.l = op1;
3024
    u2.l = op2;
3025
    u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
3026
    return u1.l;
3027
}
3028

    
3029
static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
3030
{
3031
    CPU_FloatU u1, u2;
3032
    u1.l = op1;
3033
    u2.l = op2;
3034
    u1.f = float32_div(u1.f, u2.f, &env->spe_status);
3035
    return u1.l;
3036
}
3037

    
3038
#define HELPER_SPE_SINGLE_ARITH(name)                                         \
3039
uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
3040
{                                                                             \
3041
    return e##name(op1, op2);                                                 \
3042
}
3043
/* efsadd */
3044
HELPER_SPE_SINGLE_ARITH(fsadd);
3045
/* efssub */
3046
HELPER_SPE_SINGLE_ARITH(fssub);
3047
/* efsmul */
3048
HELPER_SPE_SINGLE_ARITH(fsmul);
3049
/* efsdiv */
3050
HELPER_SPE_SINGLE_ARITH(fsdiv);
3051

    
3052
#define HELPER_SPE_VECTOR_ARITH(name)                                         \
3053
uint64_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
3054
{                                                                             \
3055
    return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) |                  \
3056
            (uint64_t)e##name(op1, op2);                                      \
3057
}
3058
/* evfsadd */
3059
HELPER_SPE_VECTOR_ARITH(fsadd);
3060
/* evfssub */
3061
HELPER_SPE_VECTOR_ARITH(fssub);
3062
/* evfsmul */
3063
HELPER_SPE_VECTOR_ARITH(fsmul);
3064
/* evfsdiv */
3065
HELPER_SPE_VECTOR_ARITH(fsdiv);
3066

    
3067
/* Single-precision floating-point comparisons */
3068
static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
3069
{
3070
    CPU_FloatU u1, u2;
3071
    u1.l = op1;
3072
    u2.l = op2;
3073
    return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
3074
}
3075

    
3076
static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
3077
{
3078
    CPU_FloatU u1, u2;
3079
    u1.l = op1;
3080
    u2.l = op2;
3081
    return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
3082
}
3083

    
3084
static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
3085
{
3086
    CPU_FloatU u1, u2;
3087
    u1.l = op1;
3088
    u2.l = op2;
3089
    return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
3090
}
3091

    
3092
static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
3093
{
3094
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3095
    return efststlt(op1, op2);
3096
}
3097

    
3098
static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
3099
{
3100
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3101
    return efststgt(op1, op2);
3102
}
3103

    
3104
static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
3105
{
3106
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3107
    return efststeq(op1, op2);
3108
}
3109

    
3110
#define HELPER_SINGLE_SPE_CMP(name)                                           \
3111
uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
3112
{                                                                             \
3113
    return e##name(op1, op2) << 2;                                            \
3114
}
3115
/* efststlt */
3116
HELPER_SINGLE_SPE_CMP(fststlt);
3117
/* efststgt */
3118
HELPER_SINGLE_SPE_CMP(fststgt);
3119
/* efststeq */
3120
HELPER_SINGLE_SPE_CMP(fststeq);
3121
/* efscmplt */
3122
HELPER_SINGLE_SPE_CMP(fscmplt);
3123
/* efscmpgt */
3124
HELPER_SINGLE_SPE_CMP(fscmpgt);
3125
/* efscmpeq */
3126
HELPER_SINGLE_SPE_CMP(fscmpeq);
3127

    
3128
static always_inline uint32_t evcmp_merge (int t0, int t1)
3129
{
3130
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
3131
}
3132

    
3133
#define HELPER_VECTOR_SPE_CMP(name)                                           \
3134
uint32_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
3135
{                                                                             \
3136
    return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2));     \
3137
}
3138
/* evfststlt */
3139
HELPER_VECTOR_SPE_CMP(fststlt);
3140
/* evfststgt */
3141
HELPER_VECTOR_SPE_CMP(fststgt);
3142
/* evfststeq */
3143
HELPER_VECTOR_SPE_CMP(fststeq);
3144
/* evfscmplt */
3145
HELPER_VECTOR_SPE_CMP(fscmplt);
3146
/* evfscmpgt */
3147
HELPER_VECTOR_SPE_CMP(fscmpgt);
3148
/* evfscmpeq */
3149
HELPER_VECTOR_SPE_CMP(fscmpeq);
3150

    
3151
/* Double-precision floating-point conversion */
3152
uint64_t helper_efdcfsi (uint32_t val)
3153
{
3154
    CPU_DoubleU u;
3155

    
3156
    u.d = int32_to_float64(val, &env->spe_status);
3157

    
3158
    return u.ll;
3159
}
3160

    
3161
uint64_t helper_efdcfsid (uint64_t val)
3162
{
3163
    CPU_DoubleU u;
3164

    
3165
    u.d = int64_to_float64(val, &env->spe_status);
3166

    
3167
    return u.ll;
3168
}
3169

    
3170
uint64_t helper_efdcfui (uint32_t val)
3171
{
3172
    CPU_DoubleU u;
3173

    
3174
    u.d = uint32_to_float64(val, &env->spe_status);
3175

    
3176
    return u.ll;
3177
}
3178

    
3179
uint64_t helper_efdcfuid (uint64_t val)
3180
{
3181
    CPU_DoubleU u;
3182

    
3183
    u.d = uint64_to_float64(val, &env->spe_status);
3184

    
3185
    return u.ll;
3186
}
3187

    
3188
uint32_t helper_efdctsi (uint64_t val)
3189
{
3190
    CPU_DoubleU u;
3191

    
3192
    u.ll = val;
3193
    /* NaN are not treated the same way IEEE 754 does */
3194
    if (unlikely(float64_is_nan(u.d)))
3195
        return 0;
3196

    
3197
    return float64_to_int32(u.d, &env->spe_status);
3198
}
3199

    
3200
uint32_t helper_efdctui (uint64_t val)
3201
{
3202
    CPU_DoubleU u;
3203

    
3204
    u.ll = val;
3205
    /* NaN are not treated the same way IEEE 754 does */
3206
    if (unlikely(float64_is_nan(u.d)))
3207
        return 0;
3208

    
3209
    return float64_to_uint32(u.d, &env->spe_status);
3210
}
3211

    
3212
uint32_t helper_efdctsiz (uint64_t val)
3213
{
3214
    CPU_DoubleU u;
3215

    
3216
    u.ll = val;
3217
    /* NaN are not treated the same way IEEE 754 does */
3218
    if (unlikely(float64_is_nan(u.d)))
3219
        return 0;
3220

    
3221
    return float64_to_int32_round_to_zero(u.d, &env->spe_status);
3222
}
3223

    
3224
uint64_t helper_efdctsidz (uint64_t val)
3225
{
3226
    CPU_DoubleU u;
3227

    
3228
    u.ll = val;
3229
    /* NaN are not treated the same way IEEE 754 does */
3230
    if (unlikely(float64_is_nan(u.d)))
3231
        return 0;
3232

    
3233
    return float64_to_int64_round_to_zero(u.d, &env->spe_status);
3234
}
3235

    
3236
uint32_t helper_efdctuiz (uint64_t val)
3237
{
3238
    CPU_DoubleU u;
3239

    
3240
    u.ll = val;
3241
    /* NaN are not treated the same way IEEE 754 does */
3242
    if (unlikely(float64_is_nan(u.d)))
3243
        return 0;
3244

    
3245
    return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
3246
}
3247

    
3248
uint64_t helper_efdctuidz (uint64_t val)
3249
{
3250
    CPU_DoubleU u;
3251

    
3252
    u.ll = val;
3253
    /* NaN are not treated the same way IEEE 754 does */
3254
    if (unlikely(float64_is_nan(u.d)))
3255
        return 0;
3256

    
3257
    return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
3258
}
3259

    
3260
uint64_t helper_efdcfsf (uint32_t val)
3261
{
3262
    CPU_DoubleU u;
3263
    float64 tmp;
3264

    
3265
    u.d = int32_to_float64(val, &env->spe_status);
3266
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
3267
    u.d = float64_div(u.d, tmp, &env->spe_status);
3268

    
3269
    return u.ll;
3270
}
3271

    
3272
uint64_t helper_efdcfuf (uint32_t val)
3273
{
3274
    CPU_DoubleU u;
3275
    float64 tmp;
3276

    
3277
    u.d = uint32_to_float64(val, &env->spe_status);
3278
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
3279
    u.d = float64_div(u.d, tmp, &env->spe_status);
3280

    
3281
    return u.ll;
3282
}
3283

    
3284
uint32_t helper_efdctsf (uint64_t val)
3285
{
3286
    CPU_DoubleU u;
3287
    float64 tmp;
3288

    
3289
    u.ll = val;
3290
    /* NaN are not treated the same way IEEE 754 does */
3291
    if (unlikely(float64_is_nan(u.d)))
3292
        return 0;
3293
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
3294
    u.d = float64_mul(u.d, tmp, &env->spe_status);
3295

    
3296
    return float64_to_int32(u.d, &env->spe_status);
3297
}
3298

    
3299
uint32_t helper_efdctuf (uint64_t val)
3300
{
3301
    CPU_DoubleU u;
3302
    float64 tmp;
3303

    
3304
    u.ll = val;
3305
    /* NaN are not treated the same way IEEE 754 does */
3306
    if (unlikely(float64_is_nan(u.d)))
3307
        return 0;
3308
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
3309
    u.d = float64_mul(u.d, tmp, &env->spe_status);
3310

    
3311
    return float64_to_uint32(u.d, &env->spe_status);
3312
}
3313

    
3314
uint32_t helper_efscfd (uint64_t val)
3315
{
3316
    CPU_DoubleU u1;
3317
    CPU_FloatU u2;
3318

    
3319
    u1.ll = val;
3320
    u2.f = float64_to_float32(u1.d, &env->spe_status);
3321

    
3322
    return u2.l;
3323
}
3324

    
3325
uint64_t helper_efdcfs (uint32_t val)
3326
{
3327
    CPU_DoubleU u2;
3328
    CPU_FloatU u1;
3329

    
3330
    u1.l = val;
3331
    u2.d = float32_to_float64(u1.f, &env->spe_status);
3332

    
3333
    return u2.ll;
3334
}
3335

    
3336
/* Double precision fixed-point arithmetic */
3337
uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
3338
{
3339
    CPU_DoubleU u1, u2;
3340
    u1.ll = op1;
3341
    u2.ll = op2;
3342
    u1.d = float64_add(u1.d, u2.d, &env->spe_status);
3343
    return u1.ll;
3344
}
3345

    
3346
uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
3347
{
3348
    CPU_DoubleU u1, u2;
3349
    u1.ll = op1;
3350
    u2.ll = op2;
3351
    u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
3352
    return u1.ll;
3353
}
3354

    
3355
uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
3356
{
3357
    CPU_DoubleU u1, u2;
3358
    u1.ll = op1;
3359
    u2.ll = op2;
3360
    u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
3361
    return u1.ll;
3362
}
3363

    
3364
uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
3365
{
3366
    CPU_DoubleU u1, u2;
3367
    u1.ll = op1;
3368
    u2.ll = op2;
3369
    u1.d = float64_div(u1.d, u2.d, &env->spe_status);
3370
    return u1.ll;
3371
}
3372

    
3373
/* Double precision floating point helpers */
3374
uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
3375
{
3376
    CPU_DoubleU u1, u2;
3377
    u1.ll = op1;
3378
    u2.ll = op2;
3379
    return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
3380
}
3381

    
3382
uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
3383
{
3384
    CPU_DoubleU u1, u2;
3385
    u1.ll = op1;
3386
    u2.ll = op2;
3387
    return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
3388
}
3389

    
3390
uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
3391
{
3392
    CPU_DoubleU u1, u2;
3393
    u1.ll = op1;
3394
    u2.ll = op2;
3395
    return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
3396
}
3397

    
3398
uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
3399
{
3400
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3401
    return helper_efdtstlt(op1, op2);
3402
}
3403

    
3404
uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
3405
{
3406
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3407
    return helper_efdtstgt(op1, op2);
3408
}
3409

    
3410
uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
3411
{
3412
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3413
    return helper_efdtsteq(op1, op2);
3414
}
3415

    
3416
/*****************************************************************************/
3417
/* Softmmu support */
3418
#if !defined (CONFIG_USER_ONLY)
3419

    
3420
#define MMUSUFFIX _mmu
3421

    
3422
#define SHIFT 0
3423
#include "softmmu_template.h"
3424

    
3425
#define SHIFT 1
3426
#include "softmmu_template.h"
3427

    
3428
#define SHIFT 2
3429
#include "softmmu_template.h"
3430

    
3431
#define SHIFT 3
3432
#include "softmmu_template.h"
3433

    
3434
/* try to fill the TLB and return an exception if error. If retaddr is
3435
   NULL, it means that the function was called in C code (i.e. not
3436
   from generated code or from helper.c) */
3437
/* XXX: fix it to restore all registers */
3438
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3439
{
3440
    TranslationBlock *tb;
3441
    CPUState *saved_env;
3442
    unsigned long pc;
3443
    int ret;
3444

    
3445
    /* XXX: hack to restore env in all cases, even if not called from
3446
       generated code */
3447
    saved_env = env;
3448
    env = cpu_single_env;
3449
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3450
    if (unlikely(ret != 0)) {
3451
        if (likely(retaddr)) {
3452
            /* now we have a real cpu fault */
3453
            pc = (unsigned long)retaddr;
3454
            tb = tb_find_pc(pc);
3455
            if (likely(tb)) {
3456
                /* the PC is inside the translated code. It means that we have
3457
                   a virtual CPU fault */
3458
                cpu_restore_state(tb, env, pc, NULL);
3459
            }
3460
        }
3461
        helper_raise_exception_err(env->exception_index, env->error_code);
3462
    }
3463
    env = saved_env;
3464
}
3465

    
3466
/* Segment registers load and store */
3467
target_ulong helper_load_sr (target_ulong sr_num)
3468
{
3469
    return env->sr[sr_num];
3470
}
3471

    
3472
void helper_store_sr (target_ulong sr_num, target_ulong val)
3473
{
3474
    ppc_store_sr(env, sr_num, val);
3475
}
3476

    
3477
/* SLB management */
3478
#if defined(TARGET_PPC64)
3479
target_ulong helper_load_slb (target_ulong slb_nr)
3480
{
3481
    return ppc_load_slb(env, slb_nr);
3482
}
3483

    
3484
void helper_store_slb (target_ulong slb_nr, target_ulong rs)
3485
{
3486
    ppc_store_slb(env, slb_nr, rs);
3487
}
3488

    
3489
void helper_slbia (void)
3490
{
3491
    ppc_slb_invalidate_all(env);
3492
}
3493

    
3494
void helper_slbie (target_ulong addr)
3495
{
3496
    ppc_slb_invalidate_one(env, addr);
3497
}
3498

    
3499
#endif /* defined(TARGET_PPC64) */
3500

    
3501
/* TLB management */
3502
void helper_tlbia (void)
3503
{
3504
    ppc_tlb_invalidate_all(env);
3505
}
3506

    
3507
void helper_tlbie (target_ulong addr)
3508
{
3509
    ppc_tlb_invalidate_one(env, addr);
3510
}
3511

    
3512
/* Software driven TLBs management */
3513
/* PowerPC 602/603 software TLB load instructions helpers */
3514
static void do_6xx_tlb (target_ulong new_EPN, int is_code)
3515
{
3516
    target_ulong RPN, CMP, EPN;
3517
    int way;
3518

    
3519
    RPN = env->spr[SPR_RPA];
3520
    if (is_code) {
3521
        CMP = env->spr[SPR_ICMP];
3522
        EPN = env->spr[SPR_IMISS];
3523
    } else {
3524
        CMP = env->spr[SPR_DCMP];
3525
        EPN = env->spr[SPR_DMISS];
3526
    }
3527
    way = (env->spr[SPR_SRR1] >> 17) & 1;
3528
#if defined (DEBUG_SOFTWARE_TLB)
3529
    if (loglevel != 0) {
3530
        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3531
                " PTE1 " ADDRX " way %d\n",
3532
                __func__, new_EPN, EPN, CMP, RPN, way);
3533
    }
3534
#endif
3535
    /* Store this TLB */
3536
    ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3537
                     way, is_code, CMP, RPN);
3538
}
3539

    
3540
void helper_6xx_tlbd (target_ulong EPN)
3541
{
3542
    do_6xx_tlb(EPN, 0);
3543
}
3544

    
3545
void helper_6xx_tlbi (target_ulong EPN)
3546
{
3547
    do_6xx_tlb(EPN, 1);
3548
}
3549

    
3550
/* PowerPC 74xx software TLB load instructions helpers */
3551
static void do_74xx_tlb (target_ulong new_EPN, int is_code)
3552
{
3553
    target_ulong RPN, CMP, EPN;
3554
    int way;
3555

    
3556
    RPN = env->spr[SPR_PTELO];
3557
    CMP = env->spr[SPR_PTEHI];
3558
    EPN = env->spr[SPR_TLBMISS] & ~0x3;
3559
    way = env->spr[SPR_TLBMISS] & 0x3;
3560
#if defined (DEBUG_SOFTWARE_TLB)
3561
    if (loglevel != 0) {
3562
        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3563
                " PTE1 " ADDRX " way %d\n",
3564
                __func__, new_EPN, EPN, CMP, RPN, way);
3565
    }
3566
#endif
3567
    /* Store this TLB */
3568
    ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3569
                     way, is_code, CMP, RPN);
3570
}
3571

    
3572
void helper_74xx_tlbd (target_ulong EPN)
3573
{
3574
    do_74xx_tlb(EPN, 0);
3575
}
3576

    
3577
void helper_74xx_tlbi (target_ulong EPN)
3578
{
3579
    do_74xx_tlb(EPN, 1);
3580
}
3581

    
3582
static always_inline target_ulong booke_tlb_to_page_size (int size)
3583
{
3584
    return 1024 << (2 * size);
3585
}
3586

    
3587
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
3588
{
3589
    int size;
3590

    
3591
    switch (page_size) {
3592
    case 0x00000400UL:
3593
        size = 0x0;
3594
        break;
3595
    case 0x00001000UL:
3596
        size = 0x1;
3597
        break;
3598
    case 0x00004000UL:
3599
        size = 0x2;
3600
        break;
3601
    case 0x00010000UL:
3602
        size = 0x3;
3603
        break;
3604
    case 0x00040000UL:
3605
        size = 0x4;
3606
        break;
3607
    case 0x00100000UL:
3608
        size = 0x5;
3609
        break;
3610
    case 0x00400000UL:
3611
        size = 0x6;
3612
        break;
3613
    case 0x01000000UL:
3614
        size = 0x7;
3615
        break;
3616
    case 0x04000000UL:
3617
        size = 0x8;
3618
        break;
3619
    case 0x10000000UL:
3620
        size = 0x9;
3621
        break;
3622
    case 0x40000000UL:
3623
        size = 0xA;
3624
        break;
3625
#if defined (TARGET_PPC64)
3626
    case 0x000100000000ULL:
3627
        size = 0xB;
3628
        break;
3629
    case 0x000400000000ULL:
3630
        size = 0xC;
3631
        break;
3632
    case 0x001000000000ULL:
3633
        size = 0xD;
3634
        break;
3635
    case 0x004000000000ULL:
3636
        size = 0xE;
3637
        break;
3638
    case 0x010000000000ULL:
3639
        size = 0xF;
3640
        break;
3641
#endif
3642
    default:
3643
        size = -1;
3644
        break;
3645
    }
3646

    
3647
    return size;
3648
}
3649

    
3650
/* Helpers for 4xx TLB management */
3651
target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3652
{
3653
    ppcemb_tlb_t *tlb;
3654
    target_ulong ret;
3655
    int size;
3656

    
3657
    entry &= 0x3F;
3658
    tlb = &env->tlb[entry].tlbe;
3659
    ret = tlb->EPN;
3660
    if (tlb->prot & PAGE_VALID)
3661
        ret |= 0x400;
3662
    size = booke_page_size_to_tlb(tlb->size);
3663
    if (size < 0 || size > 0x7)
3664
        size = 1;
3665
    ret |= size << 7;
3666
    env->spr[SPR_40x_PID] = tlb->PID;
3667
    return ret;
3668
}
3669

    
3670
target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3671
{
3672
    ppcemb_tlb_t *tlb;
3673
    target_ulong ret;
3674

    
3675
    entry &= 0x3F;
3676
    tlb = &env->tlb[entry].tlbe;
3677
    ret = tlb->RPN;
3678
    if (tlb->prot & PAGE_EXEC)
3679
        ret |= 0x200;
3680
    if (tlb->prot & PAGE_WRITE)
3681
        ret |= 0x100;
3682
    return ret;
3683
}
3684

    
3685
void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3686
{
3687
    ppcemb_tlb_t *tlb;
3688
    target_ulong page, end;
3689

    
3690
#if defined (DEBUG_SOFTWARE_TLB)
3691
    if (loglevel != 0) {
3692
        fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3693
    }
3694
#endif
3695
    entry &= 0x3F;
3696
    tlb = &env->tlb[entry].tlbe;
3697
    /* Invalidate previous TLB (if it's valid) */
3698
    if (tlb->prot & PAGE_VALID) {
3699
        end = tlb->EPN + tlb->size;
3700
#if defined (DEBUG_SOFTWARE_TLB)
3701
        if (loglevel != 0) {
3702
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
3703
                    " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3704
        }
3705
#endif
3706
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3707
            tlb_flush_page(env, page);
3708
    }
3709
    tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3710
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3711
     * If this ever occurs, one should use the ppcemb target instead
3712
     * of the ppc or ppc64 one
3713
     */
3714
    if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3715
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3716
                  "are not supported (%d)\n",
3717
                  tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3718
    }
3719
    tlb->EPN = val & ~(tlb->size - 1);
3720
    if (val & 0x40)
3721
        tlb->prot |= PAGE_VALID;
3722
    else
3723
        tlb->prot &= ~PAGE_VALID;
3724
    if (val & 0x20) {
3725
        /* XXX: TO BE FIXED */
3726
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3727
    }
3728
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3729
    tlb->attr = val & 0xFF;
3730
#if defined (DEBUG_SOFTWARE_TLB)
3731
    if (loglevel != 0) {
3732
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3733
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3734
                (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3735
                tlb->prot & PAGE_READ ? 'r' : '-',
3736
                tlb->prot & PAGE_WRITE ? 'w' : '-',
3737
                tlb->prot & PAGE_EXEC ? 'x' : '-',
3738
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3739
    }
3740
#endif
3741
    /* Invalidate new TLB (if valid) */
3742
    if (tlb->prot & PAGE_VALID) {
3743
        end = tlb->EPN + tlb->size;
3744
#if defined (DEBUG_SOFTWARE_TLB)
3745
        if (loglevel != 0) {
3746
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
3747
                    " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3748
        }
3749
#endif
3750
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3751
            tlb_flush_page(env, page);
3752
    }
3753
}
3754

    
3755
void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3756
{
3757
    ppcemb_tlb_t *tlb;
3758

    
3759
#if defined (DEBUG_SOFTWARE_TLB)
3760
    if (loglevel != 0) {
3761
        fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3762
    }
3763
#endif
3764
    entry &= 0x3F;
3765
    tlb = &env->tlb[entry].tlbe;
3766
    tlb->RPN = val & 0xFFFFFC00;
3767
    tlb->prot = PAGE_READ;
3768
    if (val & 0x200)
3769
        tlb->prot |= PAGE_EXEC;
3770
    if (val & 0x100)
3771
        tlb->prot |= PAGE_WRITE;
3772
#if defined (DEBUG_SOFTWARE_TLB)
3773
    if (loglevel != 0) {
3774
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3775
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3776
                (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3777
                tlb->prot & PAGE_READ ? 'r' : '-',
3778
                tlb->prot & PAGE_WRITE ? 'w' : '-',
3779
                tlb->prot & PAGE_EXEC ? 'x' : '-',
3780
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3781
    }
3782
#endif
3783
}
3784

    
3785
target_ulong helper_4xx_tlbsx (target_ulong address)
3786
{
3787
    return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3788
}
3789

    
3790
/* PowerPC 440 TLB management */
3791
void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3792
{
3793
    ppcemb_tlb_t *tlb;
3794
    target_ulong EPN, RPN, size;
3795
    int do_flush_tlbs;
3796

    
3797
#if defined (DEBUG_SOFTWARE_TLB)
3798
    if (loglevel != 0) {
3799
        fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
3800
                __func__, word, (int)entry, value);
3801
    }
3802
#endif
3803
    do_flush_tlbs = 0;
3804
    entry &= 0x3F;
3805
    tlb = &env->tlb[entry].tlbe;
3806
    switch (word) {
3807
    default:
3808
        /* Just here to please gcc */
3809
    case 0:
3810
        EPN = value & 0xFFFFFC00;
3811
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3812
            do_flush_tlbs = 1;
3813
        tlb->EPN = EPN;
3814
        size = booke_tlb_to_page_size((value >> 4) & 0xF);
3815
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3816
            do_flush_tlbs = 1;
3817
        tlb->size = size;
3818
        tlb->attr &= ~0x1;
3819
        tlb->attr |= (value >> 8) & 1;
3820
        if (value & 0x200) {
3821
            tlb->prot |= PAGE_VALID;
3822
        } else {
3823
            if (tlb->prot & PAGE_VALID) {
3824
                tlb->prot &= ~PAGE_VALID;
3825
                do_flush_tlbs = 1;
3826
            }
3827
        }
3828
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3829
        if (do_flush_tlbs)
3830
            tlb_flush(env, 1);
3831
        break;
3832
    case 1:
3833
        RPN = value & 0xFFFFFC0F;
3834
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3835
            tlb_flush(env, 1);
3836
        tlb->RPN = RPN;
3837
        break;
3838
    case 2:
3839
        tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3840
        tlb->prot = tlb->prot & PAGE_VALID;
3841
        if (value & 0x1)
3842
            tlb->prot |= PAGE_READ << 4;
3843
        if (value & 0x2)
3844
            tlb->prot |= PAGE_WRITE << 4;
3845
        if (value & 0x4)
3846
            tlb->prot |= PAGE_EXEC << 4;
3847
        if (value & 0x8)
3848
            tlb->prot |= PAGE_READ;
3849
        if (value & 0x10)
3850
            tlb->prot |= PAGE_WRITE;
3851
        if (value & 0x20)
3852
            tlb->prot |= PAGE_EXEC;
3853
        break;
3854
    }
3855
}
3856

    
3857
target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3858
{
3859
    ppcemb_tlb_t *tlb;
3860
    target_ulong ret;
3861
    int size;
3862

    
3863
    entry &= 0x3F;
3864
    tlb = &env->tlb[entry].tlbe;
3865
    switch (word) {
3866
    default:
3867
        /* Just here to please gcc */
3868
    case 0:
3869
        ret = tlb->EPN;
3870
        size = booke_page_size_to_tlb(tlb->size);
3871
        if (size < 0 || size > 0xF)
3872
            size = 1;
3873
        ret |= size << 4;
3874
        if (tlb->attr & 0x1)
3875
            ret |= 0x100;
3876
        if (tlb->prot & PAGE_VALID)
3877
            ret |= 0x200;
3878
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3879
        env->spr[SPR_440_MMUCR] |= tlb->PID;
3880
        break;
3881
    case 1:
3882
        ret = tlb->RPN;
3883
        break;
3884
    case 2:
3885
        ret = tlb->attr & ~0x1;
3886
        if (tlb->prot & (PAGE_READ << 4))
3887
            ret |= 0x1;
3888
        if (tlb->prot & (PAGE_WRITE << 4))
3889
            ret |= 0x2;
3890
        if (tlb->prot & (PAGE_EXEC << 4))
3891
            ret |= 0x4;
3892
        if (tlb->prot & PAGE_READ)
3893
            ret |= 0x8;
3894
        if (tlb->prot & PAGE_WRITE)
3895
            ret |= 0x10;
3896
        if (tlb->prot & PAGE_EXEC)
3897
            ret |= 0x20;
3898
        break;
3899
    }
3900
    return ret;
3901
}
3902

    
3903
target_ulong helper_440_tlbsx (target_ulong address)
3904
{
3905
    return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3906
}
3907

    
3908
#endif /* !CONFIG_USER_ONLY */