Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ c227f099

History | View | Annotate | Download (61.9 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>                             \
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi.h"
18
#include "scsi-disk.h"
19
#include "block_int.h"
20

    
21
//#define DEBUG_LSI
22
//#define DEBUG_LSI_REG
23

    
24
#ifdef DEBUG_LSI
25
#define DPRINTF(fmt, ...) \
26
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
27
#define BADF(fmt, ...) \
28
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
29
#else
30
#define DPRINTF(fmt, ...) do {} while(0)
31
#define BADF(fmt, ...) \
32
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
33
#endif
34

    
35
#define LSI_SCNTL0_TRG    0x01
36
#define LSI_SCNTL0_AAP    0x02
37
#define LSI_SCNTL0_EPC    0x08
38
#define LSI_SCNTL0_WATN   0x10
39
#define LSI_SCNTL0_START  0x20
40

    
41
#define LSI_SCNTL1_SST    0x01
42
#define LSI_SCNTL1_IARB   0x02
43
#define LSI_SCNTL1_AESP   0x04
44
#define LSI_SCNTL1_RST    0x08
45
#define LSI_SCNTL1_CON    0x10
46
#define LSI_SCNTL1_DHP    0x20
47
#define LSI_SCNTL1_ADB    0x40
48
#define LSI_SCNTL1_EXC    0x80
49

    
50
#define LSI_SCNTL2_WSR    0x01
51
#define LSI_SCNTL2_VUE0   0x02
52
#define LSI_SCNTL2_VUE1   0x04
53
#define LSI_SCNTL2_WSS    0x08
54
#define LSI_SCNTL2_SLPHBEN 0x10
55
#define LSI_SCNTL2_SLPMD  0x20
56
#define LSI_SCNTL2_CHM    0x40
57
#define LSI_SCNTL2_SDU    0x80
58

    
59
#define LSI_ISTAT0_DIP    0x01
60
#define LSI_ISTAT0_SIP    0x02
61
#define LSI_ISTAT0_INTF   0x04
62
#define LSI_ISTAT0_CON    0x08
63
#define LSI_ISTAT0_SEM    0x10
64
#define LSI_ISTAT0_SIGP   0x20
65
#define LSI_ISTAT0_SRST   0x40
66
#define LSI_ISTAT0_ABRT   0x80
67

    
68
#define LSI_ISTAT1_SI     0x01
69
#define LSI_ISTAT1_SRUN   0x02
70
#define LSI_ISTAT1_FLSH   0x04
71

    
72
#define LSI_SSTAT0_SDP0   0x01
73
#define LSI_SSTAT0_RST    0x02
74
#define LSI_SSTAT0_WOA    0x04
75
#define LSI_SSTAT0_LOA    0x08
76
#define LSI_SSTAT0_AIP    0x10
77
#define LSI_SSTAT0_OLF    0x20
78
#define LSI_SSTAT0_ORF    0x40
79
#define LSI_SSTAT0_ILF    0x80
80

    
81
#define LSI_SIST0_PAR     0x01
82
#define LSI_SIST0_RST     0x02
83
#define LSI_SIST0_UDC     0x04
84
#define LSI_SIST0_SGE     0x08
85
#define LSI_SIST0_RSL     0x10
86
#define LSI_SIST0_SEL     0x20
87
#define LSI_SIST0_CMP     0x40
88
#define LSI_SIST0_MA      0x80
89

    
90
#define LSI_SIST1_HTH     0x01
91
#define LSI_SIST1_GEN     0x02
92
#define LSI_SIST1_STO     0x04
93
#define LSI_SIST1_SBMC    0x10
94

    
95
#define LSI_SOCL_IO       0x01
96
#define LSI_SOCL_CD       0x02
97
#define LSI_SOCL_MSG      0x04
98
#define LSI_SOCL_ATN      0x08
99
#define LSI_SOCL_SEL      0x10
100
#define LSI_SOCL_BSY      0x20
101
#define LSI_SOCL_ACK      0x40
102
#define LSI_SOCL_REQ      0x80
103

    
104
#define LSI_DSTAT_IID     0x01
105
#define LSI_DSTAT_SIR     0x04
106
#define LSI_DSTAT_SSI     0x08
107
#define LSI_DSTAT_ABRT    0x10
108
#define LSI_DSTAT_BF      0x20
109
#define LSI_DSTAT_MDPE    0x40
110
#define LSI_DSTAT_DFE     0x80
111

    
112
#define LSI_DCNTL_COM     0x01
113
#define LSI_DCNTL_IRQD    0x02
114
#define LSI_DCNTL_STD     0x04
115
#define LSI_DCNTL_IRQM    0x08
116
#define LSI_DCNTL_SSM     0x10
117
#define LSI_DCNTL_PFEN    0x20
118
#define LSI_DCNTL_PFF     0x40
119
#define LSI_DCNTL_CLSE    0x80
120

    
121
#define LSI_DMODE_MAN     0x01
122
#define LSI_DMODE_BOF     0x02
123
#define LSI_DMODE_ERMP    0x04
124
#define LSI_DMODE_ERL     0x08
125
#define LSI_DMODE_DIOM    0x10
126
#define LSI_DMODE_SIOM    0x20
127

    
128
#define LSI_CTEST2_DACK   0x01
129
#define LSI_CTEST2_DREQ   0x02
130
#define LSI_CTEST2_TEOP   0x04
131
#define LSI_CTEST2_PCICIE 0x08
132
#define LSI_CTEST2_CM     0x10
133
#define LSI_CTEST2_CIO    0x20
134
#define LSI_CTEST2_SIGP   0x40
135
#define LSI_CTEST2_DDIR   0x80
136

    
137
#define LSI_CTEST5_BL2    0x04
138
#define LSI_CTEST5_DDIR   0x08
139
#define LSI_CTEST5_MASR   0x10
140
#define LSI_CTEST5_DFSN   0x20
141
#define LSI_CTEST5_BBCK   0x40
142
#define LSI_CTEST5_ADCK   0x80
143

    
144
#define LSI_CCNTL0_DILS   0x01
145
#define LSI_CCNTL0_DISFC  0x10
146
#define LSI_CCNTL0_ENNDJ  0x20
147
#define LSI_CCNTL0_PMJCTL 0x40
148
#define LSI_CCNTL0_ENPMJ  0x80
149

    
150
#define LSI_CCNTL1_EN64DBMV  0x01
151
#define LSI_CCNTL1_EN64TIBMV 0x02
152
#define LSI_CCNTL1_64TIMOD   0x04
153
#define LSI_CCNTL1_DDAC      0x08
154
#define LSI_CCNTL1_ZMOD      0x80
155

    
156
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
157

    
158
#define PHASE_DO          0
159
#define PHASE_DI          1
160
#define PHASE_CMD         2
161
#define PHASE_ST          3
162
#define PHASE_MO          6
163
#define PHASE_MI          7
164
#define PHASE_MASK        7
165

    
166
/* Maximum length of MSG IN data.  */
167
#define LSI_MAX_MSGIN_LEN 8
168

    
169
/* Flag set if this is a tagged command.  */
170
#define LSI_TAG_VALID     (1 << 16)
171

    
172
typedef struct {
173
    uint32_t tag;
174
    uint32_t pending;
175
    int out;
176
} lsi_queue;
177

    
178
typedef struct {
179
    PCIDevice dev;
180
    int mmio_io_addr;
181
    int ram_io_addr;
182
    uint32_t script_ram_base;
183

    
184
    int carry; /* ??? Should this be an a visible register somewhere?  */
185
    int sense;
186
    /* Action to take at the end of a MSG IN phase.
187
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
188
    int msg_action;
189
    int msg_len;
190
    uint8_t msg[LSI_MAX_MSGIN_LEN];
191
    /* 0 if SCRIPTS are running or stopped.
192
     * 1 if a Wait Reselect instruction has been issued.
193
     * 2 if processing DMA from lsi_execute_script.
194
     * 3 if a DMA operation is in progress.  */
195
    int waiting;
196
    SCSIBus *bus;
197
    SCSIDevice *current_dev;
198
    int current_lun;
199
    /* The tag is a combination of the device ID and the SCSI tag.  */
200
    uint32_t current_tag;
201
    uint32_t current_dma_len;
202
    int command_complete;
203
    uint8_t *dma_buf;
204
    lsi_queue *queue;
205
    int queue_len;
206
    int active_commands;
207

    
208
    uint32_t dsa;
209
    uint32_t temp;
210
    uint32_t dnad;
211
    uint32_t dbc;
212
    uint8_t istat0;
213
    uint8_t istat1;
214
    uint8_t dcmd;
215
    uint8_t dstat;
216
    uint8_t dien;
217
    uint8_t sist0;
218
    uint8_t sist1;
219
    uint8_t sien0;
220
    uint8_t sien1;
221
    uint8_t mbox0;
222
    uint8_t mbox1;
223
    uint8_t dfifo;
224
    uint8_t ctest2;
225
    uint8_t ctest3;
226
    uint8_t ctest4;
227
    uint8_t ctest5;
228
    uint8_t ccntl0;
229
    uint8_t ccntl1;
230
    uint32_t dsp;
231
    uint32_t dsps;
232
    uint8_t dmode;
233
    uint8_t dcntl;
234
    uint8_t scntl0;
235
    uint8_t scntl1;
236
    uint8_t scntl2;
237
    uint8_t scntl3;
238
    uint8_t sstat0;
239
    uint8_t sstat1;
240
    uint8_t scid;
241
    uint8_t sxfer;
242
    uint8_t socl;
243
    uint8_t sdid;
244
    uint8_t ssid;
245
    uint8_t sfbr;
246
    uint8_t stest1;
247
    uint8_t stest2;
248
    uint8_t stest3;
249
    uint8_t sidl;
250
    uint8_t stime0;
251
    uint8_t respid0;
252
    uint8_t respid1;
253
    uint32_t mmrs;
254
    uint32_t mmws;
255
    uint32_t sfs;
256
    uint32_t drs;
257
    uint32_t sbms;
258
    uint32_t dbms;
259
    uint32_t dnad64;
260
    uint32_t pmjad1;
261
    uint32_t pmjad2;
262
    uint32_t rbc;
263
    uint32_t ua;
264
    uint32_t ia;
265
    uint32_t sbc;
266
    uint32_t csbc;
267
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
268
    uint8_t sbr;
269

    
270
    /* Script ram is stored as 32-bit words in host byteorder.  */
271
    uint32_t script_ram[2048];
272
} LSIState;
273

    
274
static void lsi_soft_reset(LSIState *s)
275
{
276
    DPRINTF("Reset\n");
277
    s->carry = 0;
278

    
279
    s->waiting = 0;
280
    s->dsa = 0;
281
    s->dnad = 0;
282
    s->dbc = 0;
283
    s->temp = 0;
284
    memset(s->scratch, 0, sizeof(s->scratch));
285
    s->istat0 = 0;
286
    s->istat1 = 0;
287
    s->dcmd = 0;
288
    s->dstat = 0;
289
    s->dien = 0;
290
    s->sist0 = 0;
291
    s->sist1 = 0;
292
    s->sien0 = 0;
293
    s->sien1 = 0;
294
    s->mbox0 = 0;
295
    s->mbox1 = 0;
296
    s->dfifo = 0;
297
    s->ctest2 = 0;
298
    s->ctest3 = 0;
299
    s->ctest4 = 0;
300
    s->ctest5 = 0;
301
    s->ccntl0 = 0;
302
    s->ccntl1 = 0;
303
    s->dsp = 0;
304
    s->dsps = 0;
305
    s->dmode = 0;
306
    s->dcntl = 0;
307
    s->scntl0 = 0xc0;
308
    s->scntl1 = 0;
309
    s->scntl2 = 0;
310
    s->scntl3 = 0;
311
    s->sstat0 = 0;
312
    s->sstat1 = 0;
313
    s->scid = 7;
314
    s->sxfer = 0;
315
    s->socl = 0;
316
    s->stest1 = 0;
317
    s->stest2 = 0;
318
    s->stest3 = 0;
319
    s->sidl = 0;
320
    s->stime0 = 0;
321
    s->respid0 = 0x80;
322
    s->respid1 = 0;
323
    s->mmrs = 0;
324
    s->mmws = 0;
325
    s->sfs = 0;
326
    s->drs = 0;
327
    s->sbms = 0;
328
    s->dbms = 0;
329
    s->dnad64 = 0;
330
    s->pmjad1 = 0;
331
    s->pmjad2 = 0;
332
    s->rbc = 0;
333
    s->ua = 0;
334
    s->ia = 0;
335
    s->sbc = 0;
336
    s->csbc = 0;
337
    s->sbr = 0;
338
}
339

    
340
static int lsi_dma_40bit(LSIState *s)
341
{
342
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
343
        return 1;
344
    return 0;
345
}
346

    
347
static int lsi_dma_ti64bit(LSIState *s)
348
{
349
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
350
        return 1;
351
    return 0;
352
}
353

    
354
static int lsi_dma_64bit(LSIState *s)
355
{
356
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
357
        return 1;
358
    return 0;
359
}
360

    
361
static uint8_t lsi_reg_readb(LSIState *s, int offset);
362
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
363
static void lsi_execute_script(LSIState *s);
364

    
365
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
366
{
367
    uint32_t buf;
368

    
369
    /* Optimize reading from SCRIPTS RAM.  */
370
    if ((addr & 0xffffe000) == s->script_ram_base) {
371
        return s->script_ram[(addr & 0x1fff) >> 2];
372
    }
373
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
374
    return cpu_to_le32(buf);
375
}
376

    
377
static void lsi_stop_script(LSIState *s)
378
{
379
    s->istat1 &= ~LSI_ISTAT1_SRUN;
380
}
381

    
382
static void lsi_update_irq(LSIState *s)
383
{
384
    int level;
385
    static int last_level;
386

    
387
    /* It's unclear whether the DIP/SIP bits should be cleared when the
388
       Interrupt Status Registers are cleared or when istat0 is read.
389
       We currently do the formwer, which seems to work.  */
390
    level = 0;
391
    if (s->dstat) {
392
        if (s->dstat & s->dien)
393
            level = 1;
394
        s->istat0 |= LSI_ISTAT0_DIP;
395
    } else {
396
        s->istat0 &= ~LSI_ISTAT0_DIP;
397
    }
398

    
399
    if (s->sist0 || s->sist1) {
400
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
401
            level = 1;
402
        s->istat0 |= LSI_ISTAT0_SIP;
403
    } else {
404
        s->istat0 &= ~LSI_ISTAT0_SIP;
405
    }
406
    if (s->istat0 & LSI_ISTAT0_INTF)
407
        level = 1;
408

    
409
    if (level != last_level) {
410
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
411
                level, s->dstat, s->sist1, s->sist0);
412
        last_level = level;
413
    }
414
    qemu_set_irq(s->dev.irq[0], level);
415
}
416

    
417
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
418
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
419
{
420
    uint32_t mask0;
421
    uint32_t mask1;
422

    
423
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
424
            stat1, stat0, s->sist1, s->sist0);
425
    s->sist0 |= stat0;
426
    s->sist1 |= stat1;
427
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
428
       we don't stop processing when raising STO.  Instead continue
429
       execution and stop at the next insn that accesses the SCSI bus.  */
430
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
431
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
432
    mask1 &= ~LSI_SIST1_STO;
433
    if (s->sist0 & mask0 || s->sist1 & mask1) {
434
        lsi_stop_script(s);
435
    }
436
    lsi_update_irq(s);
437
}
438

    
439
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
440
static void lsi_script_dma_interrupt(LSIState *s, int stat)
441
{
442
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
443
    s->dstat |= stat;
444
    lsi_update_irq(s);
445
    lsi_stop_script(s);
446
}
447

    
448
static inline void lsi_set_phase(LSIState *s, int phase)
449
{
450
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
451
}
452

    
453
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
454
{
455
    /* Trigger a phase mismatch.  */
456
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
457
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
458
            s->dsp = s->pmjad1;
459
        } else {
460
            s->dsp = s->pmjad2;
461
        }
462
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
463
    } else {
464
        DPRINTF("Phase mismatch interrupt\n");
465
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
466
        lsi_stop_script(s);
467
    }
468
    lsi_set_phase(s, new_phase);
469
}
470

    
471

    
472
/* Resume SCRIPTS execution after a DMA operation.  */
473
static void lsi_resume_script(LSIState *s)
474
{
475
    if (s->waiting != 2) {
476
        s->waiting = 0;
477
        lsi_execute_script(s);
478
    } else {
479
        s->waiting = 0;
480
    }
481
}
482

    
483
/* Initiate a SCSI layer data transfer.  */
484
static void lsi_do_dma(LSIState *s, int out)
485
{
486
    uint32_t count;
487
    target_phys_addr_t addr;
488

    
489
    if (!s->current_dma_len) {
490
        /* Wait until data is available.  */
491
        DPRINTF("DMA no data available\n");
492
        return;
493
    }
494

    
495
    count = s->dbc;
496
    if (count > s->current_dma_len)
497
        count = s->current_dma_len;
498

    
499
    addr = s->dnad;
500
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
501
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
502
        addr |= ((uint64_t)s->dnad64 << 32);
503
    else if (s->dbms)
504
        addr |= ((uint64_t)s->dbms << 32);
505
    else if (s->sbms)
506
        addr |= ((uint64_t)s->sbms << 32);
507

    
508
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
509
    s->csbc += count;
510
    s->dnad += count;
511
    s->dbc -= count;
512

    
513
    if (s->dma_buf == NULL) {
514
        s->dma_buf = s->current_dev->info->get_buf(s->current_dev,
515
                                                   s->current_tag);
516
    }
517

    
518
    /* ??? Set SFBR to first data byte.  */
519
    if (out) {
520
        cpu_physical_memory_read(addr, s->dma_buf, count);
521
    } else {
522
        cpu_physical_memory_write(addr, s->dma_buf, count);
523
    }
524
    s->current_dma_len -= count;
525
    if (s->current_dma_len == 0) {
526
        s->dma_buf = NULL;
527
        if (out) {
528
            /* Write the data.  */
529
            s->current_dev->info->write_data(s->current_dev, s->current_tag);
530
        } else {
531
            /* Request any remaining data.  */
532
            s->current_dev->info->read_data(s->current_dev, s->current_tag);
533
        }
534
    } else {
535
        s->dma_buf += count;
536
        lsi_resume_script(s);
537
    }
538
}
539

    
540

    
541
/* Add a command to the queue.  */
542
static void lsi_queue_command(LSIState *s)
543
{
544
    lsi_queue *p;
545

    
546
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
547
    if (s->queue_len == s->active_commands) {
548
        s->queue_len++;
549
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
550
    }
551
    p = &s->queue[s->active_commands++];
552
    p->tag = s->current_tag;
553
    p->pending = 0;
554
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
555
}
556

    
557
/* Queue a byte for a MSG IN phase.  */
558
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
559
{
560
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
561
        BADF("MSG IN data too long\n");
562
    } else {
563
        DPRINTF("MSG IN 0x%02x\n", data);
564
        s->msg[s->msg_len++] = data;
565
    }
566
}
567

    
568
/* Perform reselection to continue a command.  */
569
static void lsi_reselect(LSIState *s, uint32_t tag)
570
{
571
    lsi_queue *p;
572
    int n;
573
    int id;
574

    
575
    p = NULL;
576
    for (n = 0; n < s->active_commands; n++) {
577
        p = &s->queue[n];
578
        if (p->tag == tag)
579
            break;
580
    }
581
    if (n == s->active_commands) {
582
        BADF("Reselected non-existant command tag=0x%x\n", tag);
583
        return;
584
    }
585
    id = (tag >> 8) & 0xf;
586
    s->ssid = id | 0x80;
587
    DPRINTF("Reselected target %d\n", id);
588
    s->current_dev = s->bus->devs[id];
589
    s->current_tag = tag;
590
    s->scntl1 |= LSI_SCNTL1_CON;
591
    lsi_set_phase(s, PHASE_MI);
592
    s->msg_action = p->out ? 2 : 3;
593
    s->current_dma_len = p->pending;
594
    s->dma_buf = NULL;
595
    lsi_add_msg_byte(s, 0x80);
596
    if (s->current_tag & LSI_TAG_VALID) {
597
        lsi_add_msg_byte(s, 0x20);
598
        lsi_add_msg_byte(s, tag & 0xff);
599
    }
600

    
601
    s->active_commands--;
602
    if (n != s->active_commands) {
603
        s->queue[n] = s->queue[s->active_commands];
604
    }
605
}
606

    
607
/* Record that data is available for a queued command.  Returns zero if
608
   the device was reselected, nonzero if the IO is deferred.  */
609
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
610
{
611
    lsi_queue *p;
612
    int i;
613
    for (i = 0; i < s->active_commands; i++) {
614
        p = &s->queue[i];
615
        if (p->tag == tag) {
616
            if (p->pending) {
617
                BADF("Multiple IO pending for tag %d\n", tag);
618
            }
619
            p->pending = arg;
620
            if (s->waiting == 1) {
621
                /* Reselect device.  */
622
                lsi_reselect(s, tag);
623
                return 0;
624
            } else {
625
               DPRINTF("Queueing IO tag=0x%x\n", tag);
626
                p->pending = arg;
627
                return 1;
628
            }
629
        }
630
    }
631
    BADF("IO with unknown tag %d\n", tag);
632
    return 1;
633
}
634

    
635
/* Callback to indicate that the SCSI layer has completed a transfer.  */
636
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
637
                                 uint32_t arg)
638
{
639
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
640
    int out;
641

    
642
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
643
    if (reason == SCSI_REASON_DONE) {
644
        DPRINTF("Command complete sense=%d\n", (int)arg);
645
        s->sense = arg;
646
        s->command_complete = 2;
647
        if (s->waiting && s->dbc != 0) {
648
            /* Raise phase mismatch for short transfers.  */
649
            lsi_bad_phase(s, out, PHASE_ST);
650
        } else {
651
            lsi_set_phase(s, PHASE_ST);
652
        }
653
        lsi_resume_script(s);
654
        return;
655
    }
656

    
657
    if (s->waiting == 1 || tag != s->current_tag) {
658
        if (lsi_queue_tag(s, tag, arg))
659
            return;
660
    }
661
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
662
    s->current_dma_len = arg;
663
    s->command_complete = 1;
664
    if (!s->waiting)
665
        return;
666
    if (s->waiting == 1 || s->dbc == 0) {
667
        lsi_resume_script(s);
668
    } else {
669
        lsi_do_dma(s, out);
670
    }
671
}
672

    
673
static void lsi_do_command(LSIState *s)
674
{
675
    uint8_t buf[16];
676
    int n;
677

    
678
    DPRINTF("Send command len=%d\n", s->dbc);
679
    if (s->dbc > 16)
680
        s->dbc = 16;
681
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
682
    s->sfbr = buf[0];
683
    s->command_complete = 0;
684
    n = s->current_dev->info->send_command(s->current_dev, s->current_tag, buf,
685
                                           s->current_lun);
686
    if (n > 0) {
687
        lsi_set_phase(s, PHASE_DI);
688
        s->current_dev->info->read_data(s->current_dev, s->current_tag);
689
    } else if (n < 0) {
690
        lsi_set_phase(s, PHASE_DO);
691
        s->current_dev->info->write_data(s->current_dev, s->current_tag);
692
    }
693

    
694
    if (!s->command_complete) {
695
        if (n) {
696
            /* Command did not complete immediately so disconnect.  */
697
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
698
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
699
            /* wait data */
700
            lsi_set_phase(s, PHASE_MI);
701
            s->msg_action = 1;
702
            lsi_queue_command(s);
703
        } else {
704
            /* wait command complete */
705
            lsi_set_phase(s, PHASE_DI);
706
        }
707
    }
708
}
709

    
710
static void lsi_do_status(LSIState *s)
711
{
712
    uint8_t sense;
713
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
714
    if (s->dbc != 1)
715
        BADF("Bad Status move\n");
716
    s->dbc = 1;
717
    sense = s->sense;
718
    s->sfbr = sense;
719
    cpu_physical_memory_write(s->dnad, &sense, 1);
720
    lsi_set_phase(s, PHASE_MI);
721
    s->msg_action = 1;
722
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
723
}
724

    
725
static void lsi_disconnect(LSIState *s)
726
{
727
    s->scntl1 &= ~LSI_SCNTL1_CON;
728
    s->sstat1 &= ~PHASE_MASK;
729
}
730

    
731
static void lsi_do_msgin(LSIState *s)
732
{
733
    int len;
734
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
735
    s->sfbr = s->msg[0];
736
    len = s->msg_len;
737
    if (len > s->dbc)
738
        len = s->dbc;
739
    cpu_physical_memory_write(s->dnad, s->msg, len);
740
    /* Linux drivers rely on the last byte being in the SIDL.  */
741
    s->sidl = s->msg[len - 1];
742
    s->msg_len -= len;
743
    if (s->msg_len) {
744
        memmove(s->msg, s->msg + len, s->msg_len);
745
    } else {
746
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
747
           switch to PHASE_MO.  */
748
        switch (s->msg_action) {
749
        case 0:
750
            lsi_set_phase(s, PHASE_CMD);
751
            break;
752
        case 1:
753
            lsi_disconnect(s);
754
            break;
755
        case 2:
756
            lsi_set_phase(s, PHASE_DO);
757
            break;
758
        case 3:
759
            lsi_set_phase(s, PHASE_DI);
760
            break;
761
        default:
762
            abort();
763
        }
764
    }
765
}
766

    
767
/* Read the next byte during a MSGOUT phase.  */
768
static uint8_t lsi_get_msgbyte(LSIState *s)
769
{
770
    uint8_t data;
771
    cpu_physical_memory_read(s->dnad, &data, 1);
772
    s->dnad++;
773
    s->dbc--;
774
    return data;
775
}
776

    
777
static void lsi_do_msgout(LSIState *s)
778
{
779
    uint8_t msg;
780
    int len;
781

    
782
    DPRINTF("MSG out len=%d\n", s->dbc);
783
    while (s->dbc) {
784
        msg = lsi_get_msgbyte(s);
785
        s->sfbr = msg;
786

    
787
        switch (msg) {
788
        case 0x00:
789
            DPRINTF("MSG: Disconnect\n");
790
            lsi_disconnect(s);
791
            break;
792
        case 0x08:
793
            DPRINTF("MSG: No Operation\n");
794
            lsi_set_phase(s, PHASE_CMD);
795
            break;
796
        case 0x01:
797
            len = lsi_get_msgbyte(s);
798
            msg = lsi_get_msgbyte(s);
799
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
800
            switch (msg) {
801
            case 1:
802
                DPRINTF("SDTR (ignored)\n");
803
                s->dbc -= 2;
804
                break;
805
            case 3:
806
                DPRINTF("WDTR (ignored)\n");
807
                s->dbc -= 1;
808
                break;
809
            default:
810
                goto bad;
811
            }
812
            break;
813
        case 0x20: /* SIMPLE queue */
814
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
815
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
816
            break;
817
        case 0x21: /* HEAD of queue */
818
            BADF("HEAD queue not implemented\n");
819
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
820
            break;
821
        case 0x22: /* ORDERED queue */
822
            BADF("ORDERED queue not implemented\n");
823
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
824
            break;
825
        default:
826
            if ((msg & 0x80) == 0) {
827
                goto bad;
828
            }
829
            s->current_lun = msg & 7;
830
            DPRINTF("Select LUN %d\n", s->current_lun);
831
            lsi_set_phase(s, PHASE_CMD);
832
            break;
833
        }
834
    }
835
    return;
836
bad:
837
    BADF("Unimplemented message 0x%02x\n", msg);
838
    lsi_set_phase(s, PHASE_MI);
839
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
840
    s->msg_action = 0;
841
}
842

    
843
/* Sign extend a 24-bit value.  */
844
static inline int32_t sxt24(int32_t n)
845
{
846
    return (n << 8) >> 8;
847
}
848

    
849
#define LSI_BUF_SIZE 4096
850
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
851
{
852
    int n;
853
    uint8_t buf[LSI_BUF_SIZE];
854

    
855
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
856
    while (count) {
857
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
858
        cpu_physical_memory_read(src, buf, n);
859
        cpu_physical_memory_write(dest, buf, n);
860
        src += n;
861
        dest += n;
862
        count -= n;
863
    }
864
}
865

    
866
static void lsi_wait_reselect(LSIState *s)
867
{
868
    int i;
869
    DPRINTF("Wait Reselect\n");
870
    if (s->current_dma_len)
871
        BADF("Reselect with pending DMA\n");
872
    for (i = 0; i < s->active_commands; i++) {
873
        if (s->queue[i].pending) {
874
            lsi_reselect(s, s->queue[i].tag);
875
            break;
876
        }
877
    }
878
    if (s->current_dma_len == 0) {
879
        s->waiting = 1;
880
    }
881
}
882

    
883
static void lsi_execute_script(LSIState *s)
884
{
885
    uint32_t insn;
886
    uint32_t addr, addr_high;
887
    int opcode;
888
    int insn_processed = 0;
889

    
890
    s->istat1 |= LSI_ISTAT1_SRUN;
891
again:
892
    insn_processed++;
893
    insn = read_dword(s, s->dsp);
894
    if (!insn) {
895
        /* If we receive an empty opcode increment the DSP by 4 bytes
896
           instead of 8 and execute the next opcode at that location */
897
        s->dsp += 4;
898
        goto again;
899
    }
900
    addr = read_dword(s, s->dsp + 4);
901
    addr_high = 0;
902
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
903
    s->dsps = addr;
904
    s->dcmd = insn >> 24;
905
    s->dsp += 8;
906
    switch (insn >> 30) {
907
    case 0: /* Block move.  */
908
        if (s->sist1 & LSI_SIST1_STO) {
909
            DPRINTF("Delayed select timeout\n");
910
            lsi_stop_script(s);
911
            break;
912
        }
913
        s->dbc = insn & 0xffffff;
914
        s->rbc = s->dbc;
915
        /* ??? Set ESA.  */
916
        s->ia = s->dsp - 8;
917
        if (insn & (1 << 29)) {
918
            /* Indirect addressing.  */
919
            addr = read_dword(s, addr);
920
        } else if (insn & (1 << 28)) {
921
            uint32_t buf[2];
922
            int32_t offset;
923
            /* Table indirect addressing.  */
924

    
925
            /* 32-bit Table indirect */
926
            offset = sxt24(addr);
927
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
928
            /* byte count is stored in bits 0:23 only */
929
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
930
            s->rbc = s->dbc;
931
            addr = cpu_to_le32(buf[1]);
932

    
933
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
934
             * table, bits [31:24] */
935
            if (lsi_dma_40bit(s))
936
                addr_high = cpu_to_le32(buf[0]) >> 24;
937
            else if (lsi_dma_ti64bit(s)) {
938
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
939
                switch (selector) {
940
                case 0 ... 0x0f:
941
                    /* offset index into scratch registers since
942
                     * TI64 mode can use registers C to R */
943
                    addr_high = s->scratch[2 + selector];
944
                    break;
945
                case 0x10:
946
                    addr_high = s->mmrs;
947
                    break;
948
                case 0x11:
949
                    addr_high = s->mmws;
950
                    break;
951
                case 0x12:
952
                    addr_high = s->sfs;
953
                    break;
954
                case 0x13:
955
                    addr_high = s->drs;
956
                    break;
957
                case 0x14:
958
                    addr_high = s->sbms;
959
                    break;
960
                case 0x15:
961
                    addr_high = s->dbms;
962
                    break;
963
                default:
964
                    BADF("Illegal selector specified (0x%x > 0x15)"
965
                         " for 64-bit DMA block move", selector);
966
                    break;
967
                }
968
            }
969
        } else if (lsi_dma_64bit(s)) {
970
            /* fetch a 3rd dword if 64-bit direct move is enabled and
971
               only if we're not doing table indirect or indirect addressing */
972
            s->dbms = read_dword(s, s->dsp);
973
            s->dsp += 4;
974
            s->ia = s->dsp - 12;
975
        }
976
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
977
            DPRINTF("Wrong phase got %d expected %d\n",
978
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
979
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
980
            break;
981
        }
982
        s->dnad = addr;
983
        s->dnad64 = addr_high;
984
        switch (s->sstat1 & 0x7) {
985
        case PHASE_DO:
986
            s->waiting = 2;
987
            lsi_do_dma(s, 1);
988
            if (s->waiting)
989
                s->waiting = 3;
990
            break;
991
        case PHASE_DI:
992
            s->waiting = 2;
993
            lsi_do_dma(s, 0);
994
            if (s->waiting)
995
                s->waiting = 3;
996
            break;
997
        case PHASE_CMD:
998
            lsi_do_command(s);
999
            break;
1000
        case PHASE_ST:
1001
            lsi_do_status(s);
1002
            break;
1003
        case PHASE_MO:
1004
            lsi_do_msgout(s);
1005
            break;
1006
        case PHASE_MI:
1007
            lsi_do_msgin(s);
1008
            break;
1009
        default:
1010
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1011
            exit(1);
1012
        }
1013
        s->dfifo = s->dbc & 0xff;
1014
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1015
        s->sbc = s->dbc;
1016
        s->rbc -= s->dbc;
1017
        s->ua = addr + s->dbc;
1018
        break;
1019

    
1020
    case 1: /* IO or Read/Write instruction.  */
1021
        opcode = (insn >> 27) & 7;
1022
        if (opcode < 5) {
1023
            uint32_t id;
1024

    
1025
            if (insn & (1 << 25)) {
1026
                id = read_dword(s, s->dsa + sxt24(insn));
1027
            } else {
1028
                id = addr;
1029
            }
1030
            id = (id >> 16) & 0xf;
1031
            if (insn & (1 << 26)) {
1032
                addr = s->dsp + sxt24(addr);
1033
            }
1034
            s->dnad = addr;
1035
            switch (opcode) {
1036
            case 0: /* Select */
1037
                s->sdid = id;
1038
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1039
                    DPRINTF("Already reselected by target %d\n", id);
1040
                    break;
1041
                }
1042
                s->sstat0 |= LSI_SSTAT0_WOA;
1043
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1044
                if (id >= LSI_MAX_DEVS || !s->bus->devs[id]) {
1045
                    DPRINTF("Selected absent target %d\n", id);
1046
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1047
                    lsi_disconnect(s);
1048
                    break;
1049
                }
1050
                DPRINTF("Selected target %d%s\n",
1051
                        id, insn & (1 << 3) ? " ATN" : "");
1052
                /* ??? Linux drivers compain when this is set.  Maybe
1053
                   it only applies in low-level mode (unimplemented).
1054
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1055
                s->current_dev = s->bus->devs[id];
1056
                s->current_tag = id << 8;
1057
                s->scntl1 |= LSI_SCNTL1_CON;
1058
                if (insn & (1 << 3)) {
1059
                    s->socl |= LSI_SOCL_ATN;
1060
                }
1061
                lsi_set_phase(s, PHASE_MO);
1062
                break;
1063
            case 1: /* Disconnect */
1064
                DPRINTF("Wait Disconect\n");
1065
                s->scntl1 &= ~LSI_SCNTL1_CON;
1066
                break;
1067
            case 2: /* Wait Reselect */
1068
                lsi_wait_reselect(s);
1069
                break;
1070
            case 3: /* Set */
1071
                DPRINTF("Set%s%s%s%s\n",
1072
                        insn & (1 << 3) ? " ATN" : "",
1073
                        insn & (1 << 6) ? " ACK" : "",
1074
                        insn & (1 << 9) ? " TM" : "",
1075
                        insn & (1 << 10) ? " CC" : "");
1076
                if (insn & (1 << 3)) {
1077
                    s->socl |= LSI_SOCL_ATN;
1078
                    lsi_set_phase(s, PHASE_MO);
1079
                }
1080
                if (insn & (1 << 9)) {
1081
                    BADF("Target mode not implemented\n");
1082
                    exit(1);
1083
                }
1084
                if (insn & (1 << 10))
1085
                    s->carry = 1;
1086
                break;
1087
            case 4: /* Clear */
1088
                DPRINTF("Clear%s%s%s%s\n",
1089
                        insn & (1 << 3) ? " ATN" : "",
1090
                        insn & (1 << 6) ? " ACK" : "",
1091
                        insn & (1 << 9) ? " TM" : "",
1092
                        insn & (1 << 10) ? " CC" : "");
1093
                if (insn & (1 << 3)) {
1094
                    s->socl &= ~LSI_SOCL_ATN;
1095
                }
1096
                if (insn & (1 << 10))
1097
                    s->carry = 0;
1098
                break;
1099
            }
1100
        } else {
1101
            uint8_t op0;
1102
            uint8_t op1;
1103
            uint8_t data8;
1104
            int reg;
1105
            int operator;
1106
#ifdef DEBUG_LSI
1107
            static const char *opcode_names[3] =
1108
                {"Write", "Read", "Read-Modify-Write"};
1109
            static const char *operator_names[8] =
1110
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1111
#endif
1112

    
1113
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1114
            data8 = (insn >> 8) & 0xff;
1115
            opcode = (insn >> 27) & 7;
1116
            operator = (insn >> 24) & 7;
1117
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1118
                    opcode_names[opcode - 5], reg,
1119
                    operator_names[operator], data8, s->sfbr,
1120
                    (insn & (1 << 23)) ? " SFBR" : "");
1121
            op0 = op1 = 0;
1122
            switch (opcode) {
1123
            case 5: /* From SFBR */
1124
                op0 = s->sfbr;
1125
                op1 = data8;
1126
                break;
1127
            case 6: /* To SFBR */
1128
                if (operator)
1129
                    op0 = lsi_reg_readb(s, reg);
1130
                op1 = data8;
1131
                break;
1132
            case 7: /* Read-modify-write */
1133
                if (operator)
1134
                    op0 = lsi_reg_readb(s, reg);
1135
                if (insn & (1 << 23)) {
1136
                    op1 = s->sfbr;
1137
                } else {
1138
                    op1 = data8;
1139
                }
1140
                break;
1141
            }
1142

    
1143
            switch (operator) {
1144
            case 0: /* move */
1145
                op0 = op1;
1146
                break;
1147
            case 1: /* Shift left */
1148
                op1 = op0 >> 7;
1149
                op0 = (op0 << 1) | s->carry;
1150
                s->carry = op1;
1151
                break;
1152
            case 2: /* OR */
1153
                op0 |= op1;
1154
                break;
1155
            case 3: /* XOR */
1156
                op0 ^= op1;
1157
                break;
1158
            case 4: /* AND */
1159
                op0 &= op1;
1160
                break;
1161
            case 5: /* SHR */
1162
                op1 = op0 & 1;
1163
                op0 = (op0 >> 1) | (s->carry << 7);
1164
                s->carry = op1;
1165
                break;
1166
            case 6: /* ADD */
1167
                op0 += op1;
1168
                s->carry = op0 < op1;
1169
                break;
1170
            case 7: /* ADC */
1171
                op0 += op1 + s->carry;
1172
                if (s->carry)
1173
                    s->carry = op0 <= op1;
1174
                else
1175
                    s->carry = op0 < op1;
1176
                break;
1177
            }
1178

    
1179
            switch (opcode) {
1180
            case 5: /* From SFBR */
1181
            case 7: /* Read-modify-write */
1182
                lsi_reg_writeb(s, reg, op0);
1183
                break;
1184
            case 6: /* To SFBR */
1185
                s->sfbr = op0;
1186
                break;
1187
            }
1188
        }
1189
        break;
1190

    
1191
    case 2: /* Transfer Control.  */
1192
        {
1193
            int cond;
1194
            int jmp;
1195

    
1196
            if ((insn & 0x002e0000) == 0) {
1197
                DPRINTF("NOP\n");
1198
                break;
1199
            }
1200
            if (s->sist1 & LSI_SIST1_STO) {
1201
                DPRINTF("Delayed select timeout\n");
1202
                lsi_stop_script(s);
1203
                break;
1204
            }
1205
            cond = jmp = (insn & (1 << 19)) != 0;
1206
            if (cond == jmp && (insn & (1 << 21))) {
1207
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1208
                cond = s->carry != 0;
1209
            }
1210
            if (cond == jmp && (insn & (1 << 17))) {
1211
                DPRINTF("Compare phase %d %c= %d\n",
1212
                        (s->sstat1 & PHASE_MASK),
1213
                        jmp ? '=' : '!',
1214
                        ((insn >> 24) & 7));
1215
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1216
            }
1217
            if (cond == jmp && (insn & (1 << 18))) {
1218
                uint8_t mask;
1219

    
1220
                mask = (~insn >> 8) & 0xff;
1221
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1222
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1223
                cond = (s->sfbr & mask) == (insn & mask);
1224
            }
1225
            if (cond == jmp) {
1226
                if (insn & (1 << 23)) {
1227
                    /* Relative address.  */
1228
                    addr = s->dsp + sxt24(addr);
1229
                }
1230
                switch ((insn >> 27) & 7) {
1231
                case 0: /* Jump */
1232
                    DPRINTF("Jump to 0x%08x\n", addr);
1233
                    s->dsp = addr;
1234
                    break;
1235
                case 1: /* Call */
1236
                    DPRINTF("Call 0x%08x\n", addr);
1237
                    s->temp = s->dsp;
1238
                    s->dsp = addr;
1239
                    break;
1240
                case 2: /* Return */
1241
                    DPRINTF("Return to 0x%08x\n", s->temp);
1242
                    s->dsp = s->temp;
1243
                    break;
1244
                case 3: /* Interrupt */
1245
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1246
                    if ((insn & (1 << 20)) != 0) {
1247
                        s->istat0 |= LSI_ISTAT0_INTF;
1248
                        lsi_update_irq(s);
1249
                    } else {
1250
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1251
                    }
1252
                    break;
1253
                default:
1254
                    DPRINTF("Illegal transfer control\n");
1255
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1256
                    break;
1257
                }
1258
            } else {
1259
                DPRINTF("Control condition failed\n");
1260
            }
1261
        }
1262
        break;
1263

    
1264
    case 3:
1265
        if ((insn & (1 << 29)) == 0) {
1266
            /* Memory move.  */
1267
            uint32_t dest;
1268
            /* ??? The docs imply the destination address is loaded into
1269
               the TEMP register.  However the Linux drivers rely on
1270
               the value being presrved.  */
1271
            dest = read_dword(s, s->dsp);
1272
            s->dsp += 4;
1273
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1274
        } else {
1275
            uint8_t data[7];
1276
            int reg;
1277
            int n;
1278
            int i;
1279

    
1280
            if (insn & (1 << 28)) {
1281
                addr = s->dsa + sxt24(addr);
1282
            }
1283
            n = (insn & 7);
1284
            reg = (insn >> 16) & 0xff;
1285
            if (insn & (1 << 24)) {
1286
                cpu_physical_memory_read(addr, data, n);
1287
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1288
                        addr, *(int *)data);
1289
                for (i = 0; i < n; i++) {
1290
                    lsi_reg_writeb(s, reg + i, data[i]);
1291
                }
1292
            } else {
1293
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1294
                for (i = 0; i < n; i++) {
1295
                    data[i] = lsi_reg_readb(s, reg + i);
1296
                }
1297
                cpu_physical_memory_write(addr, data, n);
1298
            }
1299
        }
1300
    }
1301
    if (insn_processed > 10000 && !s->waiting) {
1302
        /* Some windows drivers make the device spin waiting for a memory
1303
           location to change.  If we have been executed a lot of code then
1304
           assume this is the case and force an unexpected device disconnect.
1305
           This is apparently sufficient to beat the drivers into submission.
1306
         */
1307
        if (!(s->sien0 & LSI_SIST0_UDC))
1308
            fprintf(stderr, "inf. loop with UDC masked\n");
1309
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1310
        lsi_disconnect(s);
1311
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1312
        if (s->dcntl & LSI_DCNTL_SSM) {
1313
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1314
        } else {
1315
            goto again;
1316
        }
1317
    }
1318
    DPRINTF("SCRIPTS execution stopped\n");
1319
}
1320

    
1321
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1322
{
1323
    uint8_t tmp;
1324
#define CASE_GET_REG24(name, addr) \
1325
    case addr: return s->name & 0xff; \
1326
    case addr + 1: return (s->name >> 8) & 0xff; \
1327
    case addr + 2: return (s->name >> 16) & 0xff;
1328

    
1329
#define CASE_GET_REG32(name, addr) \
1330
    case addr: return s->name & 0xff; \
1331
    case addr + 1: return (s->name >> 8) & 0xff; \
1332
    case addr + 2: return (s->name >> 16) & 0xff; \
1333
    case addr + 3: return (s->name >> 24) & 0xff;
1334

    
1335
#ifdef DEBUG_LSI_REG
1336
    DPRINTF("Read reg %x\n", offset);
1337
#endif
1338
    switch (offset) {
1339
    case 0x00: /* SCNTL0 */
1340
        return s->scntl0;
1341
    case 0x01: /* SCNTL1 */
1342
        return s->scntl1;
1343
    case 0x02: /* SCNTL2 */
1344
        return s->scntl2;
1345
    case 0x03: /* SCNTL3 */
1346
        return s->scntl3;
1347
    case 0x04: /* SCID */
1348
        return s->scid;
1349
    case 0x05: /* SXFER */
1350
        return s->sxfer;
1351
    case 0x06: /* SDID */
1352
        return s->sdid;
1353
    case 0x07: /* GPREG0 */
1354
        return 0x7f;
1355
    case 0x08: /* Revision ID */
1356
        return 0x00;
1357
    case 0xa: /* SSID */
1358
        return s->ssid;
1359
    case 0xb: /* SBCL */
1360
        /* ??? This is not correct. However it's (hopefully) only
1361
           used for diagnostics, so should be ok.  */
1362
        return 0;
1363
    case 0xc: /* DSTAT */
1364
        tmp = s->dstat | 0x80;
1365
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1366
            s->dstat = 0;
1367
        lsi_update_irq(s);
1368
        return tmp;
1369
    case 0x0d: /* SSTAT0 */
1370
        return s->sstat0;
1371
    case 0x0e: /* SSTAT1 */
1372
        return s->sstat1;
1373
    case 0x0f: /* SSTAT2 */
1374
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1375
    CASE_GET_REG32(dsa, 0x10)
1376
    case 0x14: /* ISTAT0 */
1377
        return s->istat0;
1378
    case 0x15: /* ISTAT1 */
1379
        return s->istat1;
1380
    case 0x16: /* MBOX0 */
1381
        return s->mbox0;
1382
    case 0x17: /* MBOX1 */
1383
        return s->mbox1;
1384
    case 0x18: /* CTEST0 */
1385
        return 0xff;
1386
    case 0x19: /* CTEST1 */
1387
        return 0;
1388
    case 0x1a: /* CTEST2 */
1389
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1390
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1391
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1392
            tmp |= LSI_CTEST2_SIGP;
1393
        }
1394
        return tmp;
1395
    case 0x1b: /* CTEST3 */
1396
        return s->ctest3;
1397
    CASE_GET_REG32(temp, 0x1c)
1398
    case 0x20: /* DFIFO */
1399
        return 0;
1400
    case 0x21: /* CTEST4 */
1401
        return s->ctest4;
1402
    case 0x22: /* CTEST5 */
1403
        return s->ctest5;
1404
    case 0x23: /* CTEST6 */
1405
         return 0;
1406
    CASE_GET_REG24(dbc, 0x24)
1407
    case 0x27: /* DCMD */
1408
        return s->dcmd;
1409
    CASE_GET_REG32(dnad, 0x28)
1410
    CASE_GET_REG32(dsp, 0x2c)
1411
    CASE_GET_REG32(dsps, 0x30)
1412
    CASE_GET_REG32(scratch[0], 0x34)
1413
    case 0x38: /* DMODE */
1414
        return s->dmode;
1415
    case 0x39: /* DIEN */
1416
        return s->dien;
1417
    case 0x3a: /* SBR */
1418
        return s->sbr;
1419
    case 0x3b: /* DCNTL */
1420
        return s->dcntl;
1421
    case 0x40: /* SIEN0 */
1422
        return s->sien0;
1423
    case 0x41: /* SIEN1 */
1424
        return s->sien1;
1425
    case 0x42: /* SIST0 */
1426
        tmp = s->sist0;
1427
        s->sist0 = 0;
1428
        lsi_update_irq(s);
1429
        return tmp;
1430
    case 0x43: /* SIST1 */
1431
        tmp = s->sist1;
1432
        s->sist1 = 0;
1433
        lsi_update_irq(s);
1434
        return tmp;
1435
    case 0x46: /* MACNTL */
1436
        return 0x0f;
1437
    case 0x47: /* GPCNTL0 */
1438
        return 0x0f;
1439
    case 0x48: /* STIME0 */
1440
        return s->stime0;
1441
    case 0x4a: /* RESPID0 */
1442
        return s->respid0;
1443
    case 0x4b: /* RESPID1 */
1444
        return s->respid1;
1445
    case 0x4d: /* STEST1 */
1446
        return s->stest1;
1447
    case 0x4e: /* STEST2 */
1448
        return s->stest2;
1449
    case 0x4f: /* STEST3 */
1450
        return s->stest3;
1451
    case 0x50: /* SIDL */
1452
        /* This is needed by the linux drivers.  We currently only update it
1453
           during the MSG IN phase.  */
1454
        return s->sidl;
1455
    case 0x52: /* STEST4 */
1456
        return 0xe0;
1457
    case 0x56: /* CCNTL0 */
1458
        return s->ccntl0;
1459
    case 0x57: /* CCNTL1 */
1460
        return s->ccntl1;
1461
    case 0x58: /* SBDL */
1462
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1463
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1464
            return s->msg[0];
1465
        return 0;
1466
    case 0x59: /* SBDL high */
1467
        return 0;
1468
    CASE_GET_REG32(mmrs, 0xa0)
1469
    CASE_GET_REG32(mmws, 0xa4)
1470
    CASE_GET_REG32(sfs, 0xa8)
1471
    CASE_GET_REG32(drs, 0xac)
1472
    CASE_GET_REG32(sbms, 0xb0)
1473
    CASE_GET_REG32(dbms, 0xb4)
1474
    CASE_GET_REG32(dnad64, 0xb8)
1475
    CASE_GET_REG32(pmjad1, 0xc0)
1476
    CASE_GET_REG32(pmjad2, 0xc4)
1477
    CASE_GET_REG32(rbc, 0xc8)
1478
    CASE_GET_REG32(ua, 0xcc)
1479
    CASE_GET_REG32(ia, 0xd4)
1480
    CASE_GET_REG32(sbc, 0xd8)
1481
    CASE_GET_REG32(csbc, 0xdc)
1482
    }
1483
    if (offset >= 0x5c && offset < 0xa0) {
1484
        int n;
1485
        int shift;
1486
        n = (offset - 0x58) >> 2;
1487
        shift = (offset & 3) * 8;
1488
        return (s->scratch[n] >> shift) & 0xff;
1489
    }
1490
    BADF("readb 0x%x\n", offset);
1491
    exit(1);
1492
#undef CASE_GET_REG24
1493
#undef CASE_GET_REG32
1494
}
1495

    
1496
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1497
{
1498
#define CASE_SET_REG24(name, addr) \
1499
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1500
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1501
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1502

    
1503
#define CASE_SET_REG32(name, addr) \
1504
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1505
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1506
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1507
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1508

    
1509
#ifdef DEBUG_LSI_REG
1510
    DPRINTF("Write reg %x = %02x\n", offset, val);
1511
#endif
1512
    switch (offset) {
1513
    case 0x00: /* SCNTL0 */
1514
        s->scntl0 = val;
1515
        if (val & LSI_SCNTL0_START) {
1516
            BADF("Start sequence not implemented\n");
1517
        }
1518
        break;
1519
    case 0x01: /* SCNTL1 */
1520
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1521
        if (val & LSI_SCNTL1_IARB) {
1522
            BADF("Immediate Arbritration not implemented\n");
1523
        }
1524
        if (val & LSI_SCNTL1_RST) {
1525
            s->sstat0 |= LSI_SSTAT0_RST;
1526
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1527
        } else {
1528
            s->sstat0 &= ~LSI_SSTAT0_RST;
1529
        }
1530
        break;
1531
    case 0x02: /* SCNTL2 */
1532
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1533
        s->scntl2 = val;
1534
        break;
1535
    case 0x03: /* SCNTL3 */
1536
        s->scntl3 = val;
1537
        break;
1538
    case 0x04: /* SCID */
1539
        s->scid = val;
1540
        break;
1541
    case 0x05: /* SXFER */
1542
        s->sxfer = val;
1543
        break;
1544
    case 0x06: /* SDID */
1545
        if ((val & 0xf) != (s->ssid & 0xf))
1546
            BADF("Destination ID does not match SSID\n");
1547
        s->sdid = val & 0xf;
1548
        break;
1549
    case 0x07: /* GPREG0 */
1550
        break;
1551
    case 0x08: /* SFBR */
1552
        /* The CPU is not allowed to write to this register.  However the
1553
           SCRIPTS register move instructions are.  */
1554
        s->sfbr = val;
1555
        break;
1556
    case 0x0a: case 0x0b: 
1557
        /* Openserver writes to these readonly registers on startup */
1558
        return;    
1559
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1560
        /* Linux writes to these readonly registers on startup.  */
1561
        return;
1562
    CASE_SET_REG32(dsa, 0x10)
1563
    case 0x14: /* ISTAT0 */
1564
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1565
        if (val & LSI_ISTAT0_ABRT) {
1566
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1567
        }
1568
        if (val & LSI_ISTAT0_INTF) {
1569
            s->istat0 &= ~LSI_ISTAT0_INTF;
1570
            lsi_update_irq(s);
1571
        }
1572
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1573
            DPRINTF("Woken by SIGP\n");
1574
            s->waiting = 0;
1575
            s->dsp = s->dnad;
1576
            lsi_execute_script(s);
1577
        }
1578
        if (val & LSI_ISTAT0_SRST) {
1579
            lsi_soft_reset(s);
1580
        }
1581
        break;
1582
    case 0x16: /* MBOX0 */
1583
        s->mbox0 = val;
1584
        break;
1585
    case 0x17: /* MBOX1 */
1586
        s->mbox1 = val;
1587
        break;
1588
    case 0x1a: /* CTEST2 */
1589
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1590
        break;
1591
    case 0x1b: /* CTEST3 */
1592
        s->ctest3 = val & 0x0f;
1593
        break;
1594
    CASE_SET_REG32(temp, 0x1c)
1595
    case 0x21: /* CTEST4 */
1596
        if (val & 7) {
1597
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1598
        }
1599
        s->ctest4 = val;
1600
        break;
1601
    case 0x22: /* CTEST5 */
1602
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1603
            BADF("CTEST5 DMA increment not implemented\n");
1604
        }
1605
        s->ctest5 = val;
1606
        break;
1607
    CASE_SET_REG24(dbc, 0x24)
1608
    CASE_SET_REG32(dnad, 0x28)
1609
    case 0x2c: /* DSP[0:7] */
1610
        s->dsp &= 0xffffff00;
1611
        s->dsp |= val;
1612
        break;
1613
    case 0x2d: /* DSP[8:15] */
1614
        s->dsp &= 0xffff00ff;
1615
        s->dsp |= val << 8;
1616
        break;
1617
    case 0x2e: /* DSP[16:23] */
1618
        s->dsp &= 0xff00ffff;
1619
        s->dsp |= val << 16;
1620
        break;
1621
    case 0x2f: /* DSP[24:31] */
1622
        s->dsp &= 0x00ffffff;
1623
        s->dsp |= val << 24;
1624
        if ((s->dmode & LSI_DMODE_MAN) == 0
1625
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1626
            lsi_execute_script(s);
1627
        break;
1628
    CASE_SET_REG32(dsps, 0x30)
1629
    CASE_SET_REG32(scratch[0], 0x34)
1630
    case 0x38: /* DMODE */
1631
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1632
            BADF("IO mappings not implemented\n");
1633
        }
1634
        s->dmode = val;
1635
        break;
1636
    case 0x39: /* DIEN */
1637
        s->dien = val;
1638
        lsi_update_irq(s);
1639
        break;
1640
    case 0x3a: /* SBR */
1641
        s->sbr = val;
1642
        break;
1643
    case 0x3b: /* DCNTL */
1644
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1645
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1646
            lsi_execute_script(s);
1647
        break;
1648
    case 0x40: /* SIEN0 */
1649
        s->sien0 = val;
1650
        lsi_update_irq(s);
1651
        break;
1652
    case 0x41: /* SIEN1 */
1653
        s->sien1 = val;
1654
        lsi_update_irq(s);
1655
        break;
1656
    case 0x47: /* GPCNTL0 */
1657
        break;
1658
    case 0x48: /* STIME0 */
1659
        s->stime0 = val;
1660
        break;
1661
    case 0x49: /* STIME1 */
1662
        if (val & 0xf) {
1663
            DPRINTF("General purpose timer not implemented\n");
1664
            /* ??? Raising the interrupt immediately seems to be sufficient
1665
               to keep the FreeBSD driver happy.  */
1666
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1667
        }
1668
        break;
1669
    case 0x4a: /* RESPID0 */
1670
        s->respid0 = val;
1671
        break;
1672
    case 0x4b: /* RESPID1 */
1673
        s->respid1 = val;
1674
        break;
1675
    case 0x4d: /* STEST1 */
1676
        s->stest1 = val;
1677
        break;
1678
    case 0x4e: /* STEST2 */
1679
        if (val & 1) {
1680
            BADF("Low level mode not implemented\n");
1681
        }
1682
        s->stest2 = val;
1683
        break;
1684
    case 0x4f: /* STEST3 */
1685
        if (val & 0x41) {
1686
            BADF("SCSI FIFO test mode not implemented\n");
1687
        }
1688
        s->stest3 = val;
1689
        break;
1690
    case 0x56: /* CCNTL0 */
1691
        s->ccntl0 = val;
1692
        break;
1693
    case 0x57: /* CCNTL1 */
1694
        s->ccntl1 = val;
1695
        break;
1696
    CASE_SET_REG32(mmrs, 0xa0)
1697
    CASE_SET_REG32(mmws, 0xa4)
1698
    CASE_SET_REG32(sfs, 0xa8)
1699
    CASE_SET_REG32(drs, 0xac)
1700
    CASE_SET_REG32(sbms, 0xb0)
1701
    CASE_SET_REG32(dbms, 0xb4)
1702
    CASE_SET_REG32(dnad64, 0xb8)
1703
    CASE_SET_REG32(pmjad1, 0xc0)
1704
    CASE_SET_REG32(pmjad2, 0xc4)
1705
    CASE_SET_REG32(rbc, 0xc8)
1706
    CASE_SET_REG32(ua, 0xcc)
1707
    CASE_SET_REG32(ia, 0xd4)
1708
    CASE_SET_REG32(sbc, 0xd8)
1709
    CASE_SET_REG32(csbc, 0xdc)
1710
    default:
1711
        if (offset >= 0x5c && offset < 0xa0) {
1712
            int n;
1713
            int shift;
1714
            n = (offset - 0x58) >> 2;
1715
            shift = (offset & 3) * 8;
1716
            s->scratch[n] &= ~(0xff << shift);
1717
            s->scratch[n] |= (val & 0xff) << shift;
1718
        } else {
1719
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1720
        }
1721
    }
1722
#undef CASE_SET_REG24
1723
#undef CASE_SET_REG32
1724
}
1725

    
1726
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1727
{
1728
    LSIState *s = opaque;
1729

    
1730
    lsi_reg_writeb(s, addr & 0xff, val);
1731
}
1732

    
1733
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1734
{
1735
    LSIState *s = opaque;
1736

    
1737
    addr &= 0xff;
1738
    lsi_reg_writeb(s, addr, val & 0xff);
1739
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1740
}
1741

    
1742
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1743
{
1744
    LSIState *s = opaque;
1745

    
1746
    addr &= 0xff;
1747
    lsi_reg_writeb(s, addr, val & 0xff);
1748
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1749
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1750
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1751
}
1752

    
1753
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1754
{
1755
    LSIState *s = opaque;
1756

    
1757
    return lsi_reg_readb(s, addr & 0xff);
1758
}
1759

    
1760
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1761
{
1762
    LSIState *s = opaque;
1763
    uint32_t val;
1764

    
1765
    addr &= 0xff;
1766
    val = lsi_reg_readb(s, addr);
1767
    val |= lsi_reg_readb(s, addr + 1) << 8;
1768
    return val;
1769
}
1770

    
1771
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1772
{
1773
    LSIState *s = opaque;
1774
    uint32_t val;
1775
    addr &= 0xff;
1776
    val = lsi_reg_readb(s, addr);
1777
    val |= lsi_reg_readb(s, addr + 1) << 8;
1778
    val |= lsi_reg_readb(s, addr + 2) << 16;
1779
    val |= lsi_reg_readb(s, addr + 3) << 24;
1780
    return val;
1781
}
1782

    
1783
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1784
    lsi_mmio_readb,
1785
    lsi_mmio_readw,
1786
    lsi_mmio_readl,
1787
};
1788

    
1789
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1790
    lsi_mmio_writeb,
1791
    lsi_mmio_writew,
1792
    lsi_mmio_writel,
1793
};
1794

    
1795
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1796
{
1797
    LSIState *s = opaque;
1798
    uint32_t newval;
1799
    int shift;
1800

    
1801
    addr &= 0x1fff;
1802
    newval = s->script_ram[addr >> 2];
1803
    shift = (addr & 3) * 8;
1804
    newval &= ~(0xff << shift);
1805
    newval |= val << shift;
1806
    s->script_ram[addr >> 2] = newval;
1807
}
1808

    
1809
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1810
{
1811
    LSIState *s = opaque;
1812
    uint32_t newval;
1813

    
1814
    addr &= 0x1fff;
1815
    newval = s->script_ram[addr >> 2];
1816
    if (addr & 2) {
1817
        newval = (newval & 0xffff) | (val << 16);
1818
    } else {
1819
        newval = (newval & 0xffff0000) | val;
1820
    }
1821
    s->script_ram[addr >> 2] = newval;
1822
}
1823

    
1824

    
1825
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1826
{
1827
    LSIState *s = opaque;
1828

    
1829
    addr &= 0x1fff;
1830
    s->script_ram[addr >> 2] = val;
1831
}
1832

    
1833
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1834
{
1835
    LSIState *s = opaque;
1836
    uint32_t val;
1837

    
1838
    addr &= 0x1fff;
1839
    val = s->script_ram[addr >> 2];
1840
    val >>= (addr & 3) * 8;
1841
    return val & 0xff;
1842
}
1843

    
1844
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1845
{
1846
    LSIState *s = opaque;
1847
    uint32_t val;
1848

    
1849
    addr &= 0x1fff;
1850
    val = s->script_ram[addr >> 2];
1851
    if (addr & 2)
1852
        val >>= 16;
1853
    return le16_to_cpu(val);
1854
}
1855

    
1856
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1857
{
1858
    LSIState *s = opaque;
1859

    
1860
    addr &= 0x1fff;
1861
    return le32_to_cpu(s->script_ram[addr >> 2]);
1862
}
1863

    
1864
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1865
    lsi_ram_readb,
1866
    lsi_ram_readw,
1867
    lsi_ram_readl,
1868
};
1869

    
1870
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1871
    lsi_ram_writeb,
1872
    lsi_ram_writew,
1873
    lsi_ram_writel,
1874
};
1875

    
1876
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1877
{
1878
    LSIState *s = opaque;
1879
    return lsi_reg_readb(s, addr & 0xff);
1880
}
1881

    
1882
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1883
{
1884
    LSIState *s = opaque;
1885
    uint32_t val;
1886
    addr &= 0xff;
1887
    val = lsi_reg_readb(s, addr);
1888
    val |= lsi_reg_readb(s, addr + 1) << 8;
1889
    return val;
1890
}
1891

    
1892
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1893
{
1894
    LSIState *s = opaque;
1895
    uint32_t val;
1896
    addr &= 0xff;
1897
    val = lsi_reg_readb(s, addr);
1898
    val |= lsi_reg_readb(s, addr + 1) << 8;
1899
    val |= lsi_reg_readb(s, addr + 2) << 16;
1900
    val |= lsi_reg_readb(s, addr + 3) << 24;
1901
    return val;
1902
}
1903

    
1904
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1905
{
1906
    LSIState *s = opaque;
1907
    lsi_reg_writeb(s, addr & 0xff, val);
1908
}
1909

    
1910
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1911
{
1912
    LSIState *s = opaque;
1913
    addr &= 0xff;
1914
    lsi_reg_writeb(s, addr, val & 0xff);
1915
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1916
}
1917

    
1918
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1919
{
1920
    LSIState *s = opaque;
1921
    addr &= 0xff;
1922
    lsi_reg_writeb(s, addr, val & 0xff);
1923
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1924
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1925
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1926
}
1927

    
1928
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1929
                           uint32_t addr, uint32_t size, int type)
1930
{
1931
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1932

    
1933
    DPRINTF("Mapping IO at %08x\n", addr);
1934

    
1935
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1936
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1937
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1938
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1939
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1940
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1941
}
1942

    
1943
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1944
                            uint32_t addr, uint32_t size, int type)
1945
{
1946
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1947

    
1948
    DPRINTF("Mapping ram at %08x\n", addr);
1949
    s->script_ram_base = addr;
1950
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1951
}
1952

    
1953
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1954
                             uint32_t addr, uint32_t size, int type)
1955
{
1956
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
1957

    
1958
    DPRINTF("Mapping registers at %08x\n", addr);
1959
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1960
}
1961

    
1962
static void lsi_scsi_save(QEMUFile *f, void *opaque)
1963
{
1964
    LSIState *s = opaque;
1965

    
1966
    assert(s->dma_buf == NULL);
1967
    assert(s->current_dma_len == 0);
1968
    assert(s->active_commands == 0);
1969

    
1970
    pci_device_save(&s->dev, f);
1971

    
1972
    qemu_put_sbe32s(f, &s->carry);
1973
    qemu_put_sbe32s(f, &s->sense);
1974
    qemu_put_sbe32s(f, &s->msg_action);
1975
    qemu_put_sbe32s(f, &s->msg_len);
1976
    qemu_put_buffer(f, s->msg, sizeof (s->msg));
1977
    qemu_put_sbe32s(f, &s->waiting);
1978

    
1979
    qemu_put_be32s(f, &s->dsa);
1980
    qemu_put_be32s(f, &s->temp);
1981
    qemu_put_be32s(f, &s->dnad);
1982
    qemu_put_be32s(f, &s->dbc);
1983
    qemu_put_8s(f, &s->istat0);
1984
    qemu_put_8s(f, &s->istat1);
1985
    qemu_put_8s(f, &s->dcmd);
1986
    qemu_put_8s(f, &s->dstat);
1987
    qemu_put_8s(f, &s->dien);
1988
    qemu_put_8s(f, &s->sist0);
1989
    qemu_put_8s(f, &s->sist1);
1990
    qemu_put_8s(f, &s->sien0);
1991
    qemu_put_8s(f, &s->sien1);
1992
    qemu_put_8s(f, &s->mbox0);
1993
    qemu_put_8s(f, &s->mbox1);
1994
    qemu_put_8s(f, &s->dfifo);
1995
    qemu_put_8s(f, &s->ctest2);
1996
    qemu_put_8s(f, &s->ctest3);
1997
    qemu_put_8s(f, &s->ctest4);
1998
    qemu_put_8s(f, &s->ctest5);
1999
    qemu_put_8s(f, &s->ccntl0);
2000
    qemu_put_8s(f, &s->ccntl1);
2001
    qemu_put_be32s(f, &s->dsp);
2002
    qemu_put_be32s(f, &s->dsps);
2003
    qemu_put_8s(f, &s->dmode);
2004
    qemu_put_8s(f, &s->dcntl);
2005
    qemu_put_8s(f, &s->scntl0);
2006
    qemu_put_8s(f, &s->scntl1);
2007
    qemu_put_8s(f, &s->scntl2);
2008
    qemu_put_8s(f, &s->scntl3);
2009
    qemu_put_8s(f, &s->sstat0);
2010
    qemu_put_8s(f, &s->sstat1);
2011
    qemu_put_8s(f, &s->scid);
2012
    qemu_put_8s(f, &s->sxfer);
2013
    qemu_put_8s(f, &s->socl);
2014
    qemu_put_8s(f, &s->sdid);
2015
    qemu_put_8s(f, &s->ssid);
2016
    qemu_put_8s(f, &s->sfbr);
2017
    qemu_put_8s(f, &s->stest1);
2018
    qemu_put_8s(f, &s->stest2);
2019
    qemu_put_8s(f, &s->stest3);
2020
    qemu_put_8s(f, &s->sidl);
2021
    qemu_put_8s(f, &s->stime0);
2022
    qemu_put_8s(f, &s->respid0);
2023
    qemu_put_8s(f, &s->respid1);
2024
    qemu_put_be32s(f, &s->mmrs);
2025
    qemu_put_be32s(f, &s->mmws);
2026
    qemu_put_be32s(f, &s->sfs);
2027
    qemu_put_be32s(f, &s->drs);
2028
    qemu_put_be32s(f, &s->sbms);
2029
    qemu_put_be32s(f, &s->dbms);
2030
    qemu_put_be32s(f, &s->dnad64);
2031
    qemu_put_be32s(f, &s->pmjad1);
2032
    qemu_put_be32s(f, &s->pmjad2);
2033
    qemu_put_be32s(f, &s->rbc);
2034
    qemu_put_be32s(f, &s->ua);
2035
    qemu_put_be32s(f, &s->ia);
2036
    qemu_put_be32s(f, &s->sbc);
2037
    qemu_put_be32s(f, &s->csbc);
2038
    qemu_put_buffer(f, (uint8_t *)s->scratch, sizeof (s->scratch));
2039
    qemu_put_8s(f, &s->sbr);
2040

    
2041
    qemu_put_buffer(f, (uint8_t *)s->script_ram, sizeof (s->script_ram));
2042
}
2043

    
2044
static int lsi_scsi_load(QEMUFile *f, void *opaque, int version_id)
2045
{
2046
    LSIState *s = opaque;
2047
    int ret;
2048

    
2049
    if (version_id > 0) {
2050
        return -EINVAL;
2051
    }
2052

    
2053
    if ((ret = pci_device_load(&s->dev, f)) < 0)
2054
        return ret;
2055

    
2056
    qemu_get_sbe32s(f, &s->carry);
2057
    qemu_get_sbe32s(f, &s->sense);
2058
    qemu_get_sbe32s(f, &s->msg_action);
2059
    qemu_get_sbe32s(f, &s->msg_len);
2060
    qemu_get_buffer(f, s->msg, sizeof (s->msg));
2061
    qemu_get_sbe32s(f, &s->waiting);
2062

    
2063
    qemu_get_be32s(f, &s->dsa);
2064
    qemu_get_be32s(f, &s->temp);
2065
    qemu_get_be32s(f, &s->dnad);
2066
    qemu_get_be32s(f, &s->dbc);
2067
    qemu_get_8s(f, &s->istat0);
2068
    qemu_get_8s(f, &s->istat1);
2069
    qemu_get_8s(f, &s->dcmd);
2070
    qemu_get_8s(f, &s->dstat);
2071
    qemu_get_8s(f, &s->dien);
2072
    qemu_get_8s(f, &s->sist0);
2073
    qemu_get_8s(f, &s->sist1);
2074
    qemu_get_8s(f, &s->sien0);
2075
    qemu_get_8s(f, &s->sien1);
2076
    qemu_get_8s(f, &s->mbox0);
2077
    qemu_get_8s(f, &s->mbox1);
2078
    qemu_get_8s(f, &s->dfifo);
2079
    qemu_get_8s(f, &s->ctest2);
2080
    qemu_get_8s(f, &s->ctest3);
2081
    qemu_get_8s(f, &s->ctest4);
2082
    qemu_get_8s(f, &s->ctest5);
2083
    qemu_get_8s(f, &s->ccntl0);
2084
    qemu_get_8s(f, &s->ccntl1);
2085
    qemu_get_be32s(f, &s->dsp);
2086
    qemu_get_be32s(f, &s->dsps);
2087
    qemu_get_8s(f, &s->dmode);
2088
    qemu_get_8s(f, &s->dcntl);
2089
    qemu_get_8s(f, &s->scntl0);
2090
    qemu_get_8s(f, &s->scntl1);
2091
    qemu_get_8s(f, &s->scntl2);
2092
    qemu_get_8s(f, &s->scntl3);
2093
    qemu_get_8s(f, &s->sstat0);
2094
    qemu_get_8s(f, &s->sstat1);
2095
    qemu_get_8s(f, &s->scid);
2096
    qemu_get_8s(f, &s->sxfer);
2097
    qemu_get_8s(f, &s->socl);
2098
    qemu_get_8s(f, &s->sdid);
2099
    qemu_get_8s(f, &s->ssid);
2100
    qemu_get_8s(f, &s->sfbr);
2101
    qemu_get_8s(f, &s->stest1);
2102
    qemu_get_8s(f, &s->stest2);
2103
    qemu_get_8s(f, &s->stest3);
2104
    qemu_get_8s(f, &s->sidl);
2105
    qemu_get_8s(f, &s->stime0);
2106
    qemu_get_8s(f, &s->respid0);
2107
    qemu_get_8s(f, &s->respid1);
2108
    qemu_get_be32s(f, &s->mmrs);
2109
    qemu_get_be32s(f, &s->mmws);
2110
    qemu_get_be32s(f, &s->sfs);
2111
    qemu_get_be32s(f, &s->drs);
2112
    qemu_get_be32s(f, &s->sbms);
2113
    qemu_get_be32s(f, &s->dbms);
2114
    qemu_get_be32s(f, &s->dnad64);
2115
    qemu_get_be32s(f, &s->pmjad1);
2116
    qemu_get_be32s(f, &s->pmjad2);
2117
    qemu_get_be32s(f, &s->rbc);
2118
    qemu_get_be32s(f, &s->ua);
2119
    qemu_get_be32s(f, &s->ia);
2120
    qemu_get_be32s(f, &s->sbc);
2121
    qemu_get_be32s(f, &s->csbc);
2122
    qemu_get_buffer(f, (uint8_t *)s->scratch, sizeof (s->scratch));
2123
    qemu_get_8s(f, &s->sbr);
2124

    
2125
    qemu_get_buffer(f, (uint8_t *)s->script_ram, sizeof (s->script_ram));
2126

    
2127
    return 0;
2128
}
2129

    
2130
static int lsi_scsi_uninit(PCIDevice *d)
2131
{
2132
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2133

    
2134
    cpu_unregister_io_memory(s->mmio_io_addr);
2135
    cpu_unregister_io_memory(s->ram_io_addr);
2136

    
2137
    qemu_free(s->queue);
2138

    
2139
    return 0;
2140
}
2141

    
2142
static int lsi_scsi_init(PCIDevice *dev)
2143
{
2144
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2145
    uint8_t *pci_conf;
2146

    
2147
    pci_conf = s->dev.config;
2148

    
2149
    /* PCI Vendor ID (word) */
2150
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2151
    /* PCI device ID (word) */
2152
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2153
    /* PCI base class code */
2154
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2155
    /* PCI subsystem ID */
2156
    pci_conf[0x2e] = 0x00;
2157
    pci_conf[0x2f] = 0x10;
2158
    /* PCI latency timer = 255 */
2159
    pci_conf[0x0d] = 0xff;
2160
    /* Interrupt pin 1 */
2161
    pci_conf[0x3d] = 0x01;
2162

    
2163
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2164
                                             lsi_mmio_writefn, s);
2165
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2166
                                            lsi_ram_writefn, s);
2167

    
2168
    pci_register_bar((struct PCIDevice *)s, 0, 256,
2169
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2170
    pci_register_bar((struct PCIDevice *)s, 1, 0x400,
2171
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2172
    pci_register_bar((struct PCIDevice *)s, 2, 0x2000,
2173
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2174
    s->queue = qemu_malloc(sizeof(lsi_queue));
2175
    s->queue_len = 1;
2176
    s->active_commands = 0;
2177
    s->dev.unregister = lsi_scsi_uninit;
2178

    
2179
    lsi_soft_reset(s);
2180

    
2181
    s->bus = scsi_bus_new(&dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2182
    scsi_bus_legacy_handle_cmdline(s->bus);
2183
    register_savevm("lsiscsi", -1, 0, lsi_scsi_save, lsi_scsi_load, s);
2184
    return 0;
2185
}
2186

    
2187
static PCIDeviceInfo lsi_info = {
2188
    .qdev.name  = "lsi53c895a",
2189
    .qdev.alias = "lsi",
2190
    .qdev.size  = sizeof(LSIState),
2191
    .init       = lsi_scsi_init,
2192
};
2193

    
2194
static void lsi53c895a_register_devices(void)
2195
{
2196
    pci_qdev_register(&lsi_info);
2197
}
2198

    
2199
device_init(lsi53c895a_register_devices);