Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ c227f099

History | View | Annotate | Download (13.9 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27
#include "sysbus.h"
28

    
29
//#define DEBUG_TIMER
30

    
31
#ifdef DEBUG_TIMER
32
#define DPRINTF(fmt, ...)                                       \
33
    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
34
#else
35
#define DPRINTF(fmt, ...) do {} while (0)
36
#endif
37

    
38
/*
39
 * Registers of hardware timer in sun4m.
40
 *
41
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46
 * are zero. Bit 31 is 1 when count has been reached.
47
 *
48
 * Per-CPU timers interrupt local CPU, system timer uses normal
49
 * interrupt routing.
50
 *
51
 */
52

    
53
#define MAX_CPUS 16
54

    
55
typedef struct CPUTimerState {
56
    qemu_irq irq;
57
    ptimer_state *timer;
58
    uint32_t count, counthigh, reached;
59
    uint64_t limit;
60
    // processor only
61
    uint32_t running;
62
} CPUTimerState;
63

    
64
typedef struct SLAVIO_TIMERState {
65
    SysBusDevice busdev;
66
    uint32_t num_cpus;
67
    CPUTimerState cputimer[MAX_CPUS + 1];
68
    uint32_t cputimer_mode;
69
} SLAVIO_TIMERState;
70

    
71
typedef struct TimerContext {
72
    SLAVIO_TIMERState *s;
73
    unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
74
} TimerContext;
75

    
76
#define SYS_TIMER_SIZE 0x14
77
#define CPU_TIMER_SIZE 0x10
78

    
79
#define TIMER_LIMIT         0
80
#define TIMER_COUNTER       1
81
#define TIMER_COUNTER_NORST 2
82
#define TIMER_STATUS        3
83
#define TIMER_MODE          4
84

    
85
#define TIMER_COUNT_MASK32 0xfffffe00
86
#define TIMER_LIMIT_MASK32 0x7fffffff
87
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
88
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
89
#define TIMER_REACHED      0x80000000
90
#define TIMER_PERIOD       500ULL // 500ns
91
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
92
#define PERIODS_TO_LIMIT(l) ((l) << 9)
93

    
94
static int slavio_timer_is_user(TimerContext *tc)
95
{
96
    SLAVIO_TIMERState *s = tc->s;
97
    unsigned int timer_index = tc->timer_index;
98

    
99
    return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
100
}
101

    
102
// Update count, set irq, update expire_time
103
// Convert from ptimer countdown units
104
static void slavio_timer_get_out(CPUTimerState *t)
105
{
106
    uint64_t count, limit;
107

    
108
    if (t->limit == 0) { /* free-run system or processor counter */
109
        limit = TIMER_MAX_COUNT32;
110
    } else {
111
        limit = t->limit;
112
    }
113
    count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
114

    
115
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", t->limit, t->counthigh,
116
            t->count);
117
    t->count = count & TIMER_COUNT_MASK32;
118
    t->counthigh = count >> 32;
119
}
120

    
121
// timer callback
122
static void slavio_timer_irq(void *opaque)
123
{
124
    TimerContext *tc = opaque;
125
    SLAVIO_TIMERState *s = tc->s;
126
    CPUTimerState *t = &s->cputimer[tc->timer_index];
127

    
128
    slavio_timer_get_out(t);
129
    DPRINTF("callback: count %x%08x\n", t->counthigh, t->count);
130
    t->reached = TIMER_REACHED;
131
    if (!slavio_timer_is_user(tc)) {
132
        qemu_irq_raise(t->irq);
133
    }
134
}
135

    
136
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
137
{
138
    TimerContext *tc = opaque;
139
    SLAVIO_TIMERState *s = tc->s;
140
    uint32_t saddr, ret;
141
    unsigned int timer_index = tc->timer_index;
142
    CPUTimerState *t = &s->cputimer[timer_index];
143

    
144
    saddr = addr >> 2;
145
    switch (saddr) {
146
    case TIMER_LIMIT:
147
        // read limit (system counter mode) or read most signifying
148
        // part of counter (user mode)
149
        if (slavio_timer_is_user(tc)) {
150
            // read user timer MSW
151
            slavio_timer_get_out(t);
152
            ret = t->counthigh | t->reached;
153
        } else {
154
            // read limit
155
            // clear irq
156
            qemu_irq_lower(t->irq);
157
            t->reached = 0;
158
            ret = t->limit & TIMER_LIMIT_MASK32;
159
        }
160
        break;
161
    case TIMER_COUNTER:
162
        // read counter and reached bit (system mode) or read lsbits
163
        // of counter (user mode)
164
        slavio_timer_get_out(t);
165
        if (slavio_timer_is_user(tc)) { // read user timer LSW
166
            ret = t->count & TIMER_MAX_COUNT64;
167
        } else { // read limit
168
            ret = (t->count & TIMER_MAX_COUNT32) |
169
                t->reached;
170
        }
171
        break;
172
    case TIMER_STATUS:
173
        // only available in processor counter/timer
174
        // read start/stop status
175
        if (timer_index > 0) {
176
            ret = t->running;
177
        } else {
178
            ret = 0;
179
        }
180
        break;
181
    case TIMER_MODE:
182
        // only available in system counter
183
        // read user/system mode
184
        ret = s->cputimer_mode;
185
        break;
186
    default:
187
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
188
        ret = 0;
189
        break;
190
    }
191
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
192

    
193
    return ret;
194
}
195

    
196
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
197
                                    uint32_t val)
198
{
199
    TimerContext *tc = opaque;
200
    SLAVIO_TIMERState *s = tc->s;
201
    uint32_t saddr;
202
    unsigned int timer_index = tc->timer_index;
203
    CPUTimerState *t = &s->cputimer[timer_index];
204

    
205
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
206
    saddr = addr >> 2;
207
    switch (saddr) {
208
    case TIMER_LIMIT:
209
        if (slavio_timer_is_user(tc)) {
210
            uint64_t count;
211

    
212
            // set user counter MSW, reset counter
213
            t->limit = TIMER_MAX_COUNT64;
214
            t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
215
            t->reached = 0;
216
            count = ((uint64_t)t->counthigh << 32) | t->count;
217
            DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
218
                    timer_index, count);
219
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
220
        } else {
221
            // set limit, reset counter
222
            qemu_irq_lower(t->irq);
223
            t->limit = val & TIMER_MAX_COUNT32;
224
            if (t->timer) {
225
                if (t->limit == 0) { /* free-run */
226
                    ptimer_set_limit(t->timer,
227
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
228
                } else {
229
                    ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
230
                }
231
            }
232
        }
233
        break;
234
    case TIMER_COUNTER:
235
        if (slavio_timer_is_user(tc)) {
236
            uint64_t count;
237

    
238
            // set user counter LSW, reset counter
239
            t->limit = TIMER_MAX_COUNT64;
240
            t->count = val & TIMER_MAX_COUNT64;
241
            t->reached = 0;
242
            count = ((uint64_t)t->counthigh) << 32 | t->count;
243
            DPRINTF("processor %d user timer set to %016" PRIx64 "\n",
244
                    timer_index, count);
245
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
246
        } else
247
            DPRINTF("not user timer\n");
248
        break;
249
    case TIMER_COUNTER_NORST:
250
        // set limit without resetting counter
251
        t->limit = val & TIMER_MAX_COUNT32;
252
        if (t->limit == 0) { /* free-run */
253
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
254
        } else {
255
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
256
        }
257
        break;
258
    case TIMER_STATUS:
259
        if (slavio_timer_is_user(tc)) {
260
            // start/stop user counter
261
            if ((val & 1) && !t->running) {
262
                DPRINTF("processor %d user timer started\n",
263
                        timer_index);
264
                ptimer_run(t->timer, 0);
265
                t->running = 1;
266
            } else if (!(val & 1) && t->running) {
267
                DPRINTF("processor %d user timer stopped\n",
268
                        timer_index);
269
                ptimer_stop(t->timer);
270
                t->running = 0;
271
            }
272
        }
273
        break;
274
    case TIMER_MODE:
275
        if (timer_index == 0) {
276
            unsigned int i;
277

    
278
            for (i = 0; i < s->num_cpus; i++) {
279
                unsigned int processor = 1 << i;
280
                CPUTimerState *curr_timer = &s->cputimer[i + 1];
281

    
282
                // check for a change in timer mode for this processor
283
                if ((val & processor) != (s->cputimer_mode & processor)) {
284
                    if (val & processor) { // counter -> user timer
285
                        qemu_irq_lower(curr_timer->irq);
286
                        // counters are always running
287
                        ptimer_stop(curr_timer->timer);
288
                        curr_timer->running = 0;
289
                        // user timer limit is always the same
290
                        curr_timer->limit = TIMER_MAX_COUNT64;
291
                        ptimer_set_limit(curr_timer->timer,
292
                                         LIMIT_TO_PERIODS(curr_timer->limit),
293
                                         1);
294
                        // set this processors user timer bit in config
295
                        // register
296
                        s->cputimer_mode |= processor;
297
                        DPRINTF("processor %d changed from counter to user "
298
                                "timer\n", timer_index);
299
                    } else { // user timer -> counter
300
                        // stop the user timer if it is running
301
                        if (curr_timer->running) {
302
                            ptimer_stop(curr_timer->timer);
303
                        }
304
                        // start the counter
305
                        ptimer_run(curr_timer->timer, 0);
306
                        curr_timer->running = 1;
307
                        // clear this processors user timer bit in config
308
                        // register
309
                        s->cputimer_mode &= ~processor;
310
                        DPRINTF("processor %d changed from user timer to "
311
                                "counter\n", timer_index);
312
                    }
313
                }
314
            }
315
        } else {
316
            DPRINTF("not system timer\n");
317
        }
318
        break;
319
    default:
320
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
321
        break;
322
    }
323
}
324

    
325
static CPUReadMemoryFunc * const slavio_timer_mem_read[3] = {
326
    NULL,
327
    NULL,
328
    slavio_timer_mem_readl,
329
};
330

    
331
static CPUWriteMemoryFunc * const slavio_timer_mem_write[3] = {
332
    NULL,
333
    NULL,
334
    slavio_timer_mem_writel,
335
};
336

    
337
static const VMStateDescription vmstate_timer = {
338
    .name ="timer",
339
    .version_id = 3,
340
    .minimum_version_id = 3,
341
    .minimum_version_id_old = 3,
342
    .fields      = (VMStateField []) {
343
        VMSTATE_UINT64(limit, CPUTimerState),
344
        VMSTATE_UINT32(count, CPUTimerState),
345
        VMSTATE_UINT32(counthigh, CPUTimerState),
346
        VMSTATE_UINT32(reached, CPUTimerState),
347
        VMSTATE_UINT32(running, CPUTimerState),
348
        VMSTATE_PTIMER(timer, CPUTimerState),
349
        VMSTATE_END_OF_LIST()
350
    }
351
};
352

    
353
static const VMStateDescription vmstate_slavio_timer = {
354
    .name ="slavio_timer",
355
    .version_id = 3,
356
    .minimum_version_id = 3,
357
    .minimum_version_id_old = 3,
358
    .fields      = (VMStateField []) {
359
        VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
360
                             vmstate_timer, CPUTimerState),
361
        VMSTATE_END_OF_LIST()
362
    }
363
};
364

    
365
static void slavio_timer_reset(void *opaque)
366
{
367
    SLAVIO_TIMERState *s = opaque;
368
    unsigned int i;
369
    CPUTimerState *curr_timer;
370

    
371
    for (i = 0; i <= MAX_CPUS; i++) {
372
        curr_timer = &s->cputimer[i];
373
        curr_timer->limit = 0;
374
        curr_timer->count = 0;
375
        curr_timer->reached = 0;
376
        if (i < s->num_cpus) {
377
            ptimer_set_limit(curr_timer->timer,
378
                             LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
379
            ptimer_run(curr_timer->timer, 0);
380
        }
381
        curr_timer->running = 1;
382
    }
383
    s->cputimer_mode = 0;
384
}
385

    
386
static int slavio_timer_init1(SysBusDevice *dev)
387
{
388
    int io;
389
    SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
390
    QEMUBH *bh;
391
    unsigned int i;
392
    TimerContext *tc;
393

    
394
    for (i = 0; i <= MAX_CPUS; i++) {
395
        tc = qemu_mallocz(sizeof(TimerContext));
396
        tc->s = s;
397
        tc->timer_index = i;
398

    
399
        bh = qemu_bh_new(slavio_timer_irq, tc);
400
        s->cputimer[i].timer = ptimer_init(bh);
401
        ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
402

    
403
        io = cpu_register_io_memory(slavio_timer_mem_read,
404
                                    slavio_timer_mem_write, tc);
405
        if (i == 0) {
406
            sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
407
        } else {
408
            sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
409
        }
410

    
411
        sysbus_init_irq(dev, &s->cputimer[i].irq);
412
    }
413

    
414
    vmstate_register(-1, &vmstate_slavio_timer, s);
415
    qemu_register_reset(slavio_timer_reset, s);
416
    slavio_timer_reset(s);
417
    return 0;
418
}
419

    
420
static SysBusDeviceInfo slavio_timer_info = {
421
    .init = slavio_timer_init1,
422
    .qdev.name  = "slavio_timer",
423
    .qdev.size  = sizeof(SLAVIO_TIMERState),
424
    .qdev.props = (Property[]) {
425
        DEFINE_PROP_UINT32("num_cpus",  SLAVIO_TIMERState, num_cpus,  0),
426
        DEFINE_PROP_END_OF_LIST(),
427
    }
428
};
429

    
430
static void slavio_timer_register_devices(void)
431
{
432
    sysbus_register_withprop(&slavio_timer_info);
433
}
434

    
435
device_init(slavio_timer_register_devices)