Statistics
| Branch: | Revision:

root / target-arm / helper.c @ c227f099

History | View | Annotate | Download (71.4 kB)

1
#include <stdio.h>
2
#include <stdlib.h>
3
#include <string.h>
4

    
5
#include "cpu.h"
6
#include "exec-all.h"
7
#include "gdbstub.h"
8
#include "helpers.h"
9
#include "qemu-common.h"
10

    
11
static uint32_t cortexa8_cp15_c0_c1[8] =
12
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
13

    
14
static uint32_t cortexa8_cp15_c0_c2[8] =
15
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
16

    
17
static uint32_t mpcore_cp15_c0_c1[8] =
18
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
19

    
20
static uint32_t mpcore_cp15_c0_c2[8] =
21
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
22

    
23
static uint32_t arm1136_cp15_c0_c1[8] =
24
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
25

    
26
static uint32_t arm1136_cp15_c0_c2[8] =
27
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
28

    
29
static uint32_t cpu_arm_find_by_name(const char *name);
30

    
31
static inline void set_feature(CPUARMState *env, int feature)
32
{
33
    env->features |= 1u << feature;
34
}
35

    
36
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
37
{
38
    env->cp15.c0_cpuid = id;
39
    switch (id) {
40
    case ARM_CPUID_ARM926:
41
        set_feature(env, ARM_FEATURE_VFP);
42
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
43
        env->cp15.c0_cachetype = 0x1dd20d2;
44
        env->cp15.c1_sys = 0x00090078;
45
        break;
46
    case ARM_CPUID_ARM946:
47
        set_feature(env, ARM_FEATURE_MPU);
48
        env->cp15.c0_cachetype = 0x0f004006;
49
        env->cp15.c1_sys = 0x00000078;
50
        break;
51
    case ARM_CPUID_ARM1026:
52
        set_feature(env, ARM_FEATURE_VFP);
53
        set_feature(env, ARM_FEATURE_AUXCR);
54
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
55
        env->cp15.c0_cachetype = 0x1dd20d2;
56
        env->cp15.c1_sys = 0x00090078;
57
        break;
58
    case ARM_CPUID_ARM1136_R2:
59
    case ARM_CPUID_ARM1136:
60
        set_feature(env, ARM_FEATURE_V6);
61
        set_feature(env, ARM_FEATURE_VFP);
62
        set_feature(env, ARM_FEATURE_AUXCR);
63
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
64
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
65
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
66
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
67
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
68
        env->cp15.c0_cachetype = 0x1dd20d2;
69
        break;
70
    case ARM_CPUID_ARM11MPCORE:
71
        set_feature(env, ARM_FEATURE_V6);
72
        set_feature(env, ARM_FEATURE_V6K);
73
        set_feature(env, ARM_FEATURE_VFP);
74
        set_feature(env, ARM_FEATURE_AUXCR);
75
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
76
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
77
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
78
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
79
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
80
        env->cp15.c0_cachetype = 0x1dd20d2;
81
        break;
82
    case ARM_CPUID_CORTEXA8:
83
        set_feature(env, ARM_FEATURE_V6);
84
        set_feature(env, ARM_FEATURE_V6K);
85
        set_feature(env, ARM_FEATURE_V7);
86
        set_feature(env, ARM_FEATURE_AUXCR);
87
        set_feature(env, ARM_FEATURE_THUMB2);
88
        set_feature(env, ARM_FEATURE_VFP);
89
        set_feature(env, ARM_FEATURE_VFP3);
90
        set_feature(env, ARM_FEATURE_NEON);
91
        set_feature(env, ARM_FEATURE_THUMB2EE);
92
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
93
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
94
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
95
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
96
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
97
        env->cp15.c0_cachetype = 0x82048004;
98
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
99
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
100
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
101
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
102
        break;
103
    case ARM_CPUID_CORTEXM3:
104
        set_feature(env, ARM_FEATURE_V6);
105
        set_feature(env, ARM_FEATURE_THUMB2);
106
        set_feature(env, ARM_FEATURE_V7);
107
        set_feature(env, ARM_FEATURE_M);
108
        set_feature(env, ARM_FEATURE_DIV);
109
        break;
110
    case ARM_CPUID_ANY: /* For userspace emulation.  */
111
        set_feature(env, ARM_FEATURE_V6);
112
        set_feature(env, ARM_FEATURE_V6K);
113
        set_feature(env, ARM_FEATURE_V7);
114
        set_feature(env, ARM_FEATURE_THUMB2);
115
        set_feature(env, ARM_FEATURE_VFP);
116
        set_feature(env, ARM_FEATURE_VFP3);
117
        set_feature(env, ARM_FEATURE_NEON);
118
        set_feature(env, ARM_FEATURE_THUMB2EE);
119
        set_feature(env, ARM_FEATURE_DIV);
120
        break;
121
    case ARM_CPUID_TI915T:
122
    case ARM_CPUID_TI925T:
123
        set_feature(env, ARM_FEATURE_OMAPCP);
124
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
125
        env->cp15.c0_cachetype = 0x5109149;
126
        env->cp15.c1_sys = 0x00000070;
127
        env->cp15.c15_i_max = 0x000;
128
        env->cp15.c15_i_min = 0xff0;
129
        break;
130
    case ARM_CPUID_PXA250:
131
    case ARM_CPUID_PXA255:
132
    case ARM_CPUID_PXA260:
133
    case ARM_CPUID_PXA261:
134
    case ARM_CPUID_PXA262:
135
        set_feature(env, ARM_FEATURE_XSCALE);
136
        /* JTAG_ID is ((id << 28) | 0x09265013) */
137
        env->cp15.c0_cachetype = 0xd172172;
138
        env->cp15.c1_sys = 0x00000078;
139
        break;
140
    case ARM_CPUID_PXA270_A0:
141
    case ARM_CPUID_PXA270_A1:
142
    case ARM_CPUID_PXA270_B0:
143
    case ARM_CPUID_PXA270_B1:
144
    case ARM_CPUID_PXA270_C0:
145
    case ARM_CPUID_PXA270_C5:
146
        set_feature(env, ARM_FEATURE_XSCALE);
147
        /* JTAG_ID is ((id << 28) | 0x09265013) */
148
        set_feature(env, ARM_FEATURE_IWMMXT);
149
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
150
        env->cp15.c0_cachetype = 0xd172172;
151
        env->cp15.c1_sys = 0x00000078;
152
        break;
153
    default:
154
        cpu_abort(env, "Bad CPU ID: %x\n", id);
155
        break;
156
    }
157
}
158

    
159
void cpu_reset(CPUARMState *env)
160
{
161
    uint32_t id;
162

    
163
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
164
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
165
        log_cpu_state(env, 0);
166
    }
167

    
168
    id = env->cp15.c0_cpuid;
169
    memset(env, 0, offsetof(CPUARMState, breakpoints));
170
    if (id)
171
        cpu_reset_model_id(env, id);
172
#if defined (CONFIG_USER_ONLY)
173
    env->uncached_cpsr = ARM_CPU_MODE_USR;
174
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
175
#else
176
    /* SVC mode with interrupts disabled.  */
177
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
178
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
179
       clear at reset.  */
180
    if (IS_M(env))
181
        env->uncached_cpsr &= ~CPSR_I;
182
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
183
    env->cp15.c2_base_mask = 0xffffc000u;
184
#endif
185
    env->regs[15] = 0;
186
    tlb_flush(env, 1);
187
}
188

    
189
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
190
{
191
    int nregs;
192

    
193
    /* VFP data registers are always little-endian.  */
194
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
195
    if (reg < nregs) {
196
        stfq_le_p(buf, env->vfp.regs[reg]);
197
        return 8;
198
    }
199
    if (arm_feature(env, ARM_FEATURE_NEON)) {
200
        /* Aliases for Q regs.  */
201
        nregs += 16;
202
        if (reg < nregs) {
203
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
204
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
205
            return 16;
206
        }
207
    }
208
    switch (reg - nregs) {
209
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
210
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
211
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
212
    }
213
    return 0;
214
}
215

    
216
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
217
{
218
    int nregs;
219

    
220
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
221
    if (reg < nregs) {
222
        env->vfp.regs[reg] = ldfq_le_p(buf);
223
        return 8;
224
    }
225
    if (arm_feature(env, ARM_FEATURE_NEON)) {
226
        nregs += 16;
227
        if (reg < nregs) {
228
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
229
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
230
            return 16;
231
        }
232
    }
233
    switch (reg - nregs) {
234
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
235
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
236
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf); return 4;
237
    }
238
    return 0;
239
}
240

    
241
CPUARMState *cpu_arm_init(const char *cpu_model)
242
{
243
    CPUARMState *env;
244
    uint32_t id;
245
    static int inited = 0;
246

    
247
    id = cpu_arm_find_by_name(cpu_model);
248
    if (id == 0)
249
        return NULL;
250
    env = qemu_mallocz(sizeof(CPUARMState));
251
    cpu_exec_init(env);
252
    if (!inited) {
253
        inited = 1;
254
        arm_translate_init();
255
    }
256

    
257
    env->cpu_model_str = cpu_model;
258
    env->cp15.c0_cpuid = id;
259
    cpu_reset(env);
260
    if (arm_feature(env, ARM_FEATURE_NEON)) {
261
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
262
                                 51, "arm-neon.xml", 0);
263
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
264
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
265
                                 35, "arm-vfp3.xml", 0);
266
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
267
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
268
                                 19, "arm-vfp.xml", 0);
269
    }
270
    qemu_init_vcpu(env);
271
    return env;
272
}
273

    
274
struct arm_cpu_t {
275
    uint32_t id;
276
    const char *name;
277
};
278

    
279
static const struct arm_cpu_t arm_cpu_names[] = {
280
    { ARM_CPUID_ARM926, "arm926"},
281
    { ARM_CPUID_ARM946, "arm946"},
282
    { ARM_CPUID_ARM1026, "arm1026"},
283
    { ARM_CPUID_ARM1136, "arm1136"},
284
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
285
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
286
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
287
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
288
    { ARM_CPUID_TI925T, "ti925t" },
289
    { ARM_CPUID_PXA250, "pxa250" },
290
    { ARM_CPUID_PXA255, "pxa255" },
291
    { ARM_CPUID_PXA260, "pxa260" },
292
    { ARM_CPUID_PXA261, "pxa261" },
293
    { ARM_CPUID_PXA262, "pxa262" },
294
    { ARM_CPUID_PXA270, "pxa270" },
295
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
296
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
297
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
298
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
299
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
300
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
301
    { ARM_CPUID_ANY, "any"},
302
    { 0, NULL}
303
};
304

    
305
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
306
{
307
    int i;
308

    
309
    (*cpu_fprintf)(f, "Available CPUs:\n");
310
    for (i = 0; arm_cpu_names[i].name; i++) {
311
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
312
    }
313
}
314

    
315
/* return 0 if not found */
316
static uint32_t cpu_arm_find_by_name(const char *name)
317
{
318
    int i;
319
    uint32_t id;
320

    
321
    id = 0;
322
    for (i = 0; arm_cpu_names[i].name; i++) {
323
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
324
            id = arm_cpu_names[i].id;
325
            break;
326
        }
327
    }
328
    return id;
329
}
330

    
331
void cpu_arm_close(CPUARMState *env)
332
{
333
    free(env);
334
}
335

    
336
uint32_t cpsr_read(CPUARMState *env)
337
{
338
    int ZF;
339
    ZF = (env->ZF == 0);
340
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
341
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
342
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
343
        | ((env->condexec_bits & 0xfc) << 8)
344
        | (env->GE << 16);
345
}
346

    
347
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
348
{
349
    if (mask & CPSR_NZCV) {
350
        env->ZF = (~val) & CPSR_Z;
351
        env->NF = val;
352
        env->CF = (val >> 29) & 1;
353
        env->VF = (val << 3) & 0x80000000;
354
    }
355
    if (mask & CPSR_Q)
356
        env->QF = ((val & CPSR_Q) != 0);
357
    if (mask & CPSR_T)
358
        env->thumb = ((val & CPSR_T) != 0);
359
    if (mask & CPSR_IT_0_1) {
360
        env->condexec_bits &= ~3;
361
        env->condexec_bits |= (val >> 25) & 3;
362
    }
363
    if (mask & CPSR_IT_2_7) {
364
        env->condexec_bits &= 3;
365
        env->condexec_bits |= (val >> 8) & 0xfc;
366
    }
367
    if (mask & CPSR_GE) {
368
        env->GE = (val >> 16) & 0xf;
369
    }
370

    
371
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
372
        switch_mode(env, val & CPSR_M);
373
    }
374
    mask &= ~CACHED_CPSR_BITS;
375
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
376
}
377

    
378
/* Sign/zero extend */
379
uint32_t HELPER(sxtb16)(uint32_t x)
380
{
381
    uint32_t res;
382
    res = (uint16_t)(int8_t)x;
383
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
384
    return res;
385
}
386

    
387
uint32_t HELPER(uxtb16)(uint32_t x)
388
{
389
    uint32_t res;
390
    res = (uint16_t)(uint8_t)x;
391
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
392
    return res;
393
}
394

    
395
uint32_t HELPER(clz)(uint32_t x)
396
{
397
    int count;
398
    for (count = 32; x; count--)
399
        x >>= 1;
400
    return count;
401
}
402

    
403
int32_t HELPER(sdiv)(int32_t num, int32_t den)
404
{
405
    if (den == 0)
406
      return 0;
407
    return num / den;
408
}
409

    
410
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
411
{
412
    if (den == 0)
413
      return 0;
414
    return num / den;
415
}
416

    
417
uint32_t HELPER(rbit)(uint32_t x)
418
{
419
    x =  ((x & 0xff000000) >> 24)
420
       | ((x & 0x00ff0000) >> 8)
421
       | ((x & 0x0000ff00) << 8)
422
       | ((x & 0x000000ff) << 24);
423
    x =  ((x & 0xf0f0f0f0) >> 4)
424
       | ((x & 0x0f0f0f0f) << 4);
425
    x =  ((x & 0x88888888) >> 3)
426
       | ((x & 0x44444444) >> 1)
427
       | ((x & 0x22222222) << 1)
428
       | ((x & 0x11111111) << 3);
429
    return x;
430
}
431

    
432
uint32_t HELPER(abs)(uint32_t x)
433
{
434
    return ((int32_t)x < 0) ? -x : x;
435
}
436

    
437
#if defined(CONFIG_USER_ONLY)
438

    
439
void do_interrupt (CPUState *env)
440
{
441
    env->exception_index = -1;
442
}
443

    
444
/* Structure used to record exclusive memory locations.  */
445
typedef struct mmon_state {
446
    struct mmon_state *next;
447
    CPUARMState *cpu_env;
448
    uint32_t addr;
449
} mmon_state;
450

    
451
/* Chain of current locks.  */
452
static mmon_state* mmon_head = NULL;
453

    
454
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
455
                              int mmu_idx, int is_softmmu)
456
{
457
    if (rw == 2) {
458
        env->exception_index = EXCP_PREFETCH_ABORT;
459
        env->cp15.c6_insn = address;
460
    } else {
461
        env->exception_index = EXCP_DATA_ABORT;
462
        env->cp15.c6_data = address;
463
    }
464
    return 1;
465
}
466

    
467
static void allocate_mmon_state(CPUState *env)
468
{
469
    env->mmon_entry = malloc(sizeof (mmon_state));
470
    memset (env->mmon_entry, 0, sizeof (mmon_state));
471
    env->mmon_entry->cpu_env = env;
472
    mmon_head = env->mmon_entry;
473
}
474

    
475
/* Flush any monitor locks for the specified address.  */
476
static void flush_mmon(uint32_t addr)
477
{
478
    mmon_state *mon;
479

    
480
    for (mon = mmon_head; mon; mon = mon->next)
481
      {
482
        if (mon->addr != addr)
483
          continue;
484

    
485
        mon->addr = 0;
486
        break;
487
      }
488
}
489

    
490
/* Mark an address for exclusive access.  */
491
void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
492
{
493
    if (!env->mmon_entry)
494
        allocate_mmon_state(env);
495
    /* Clear any previous locks.  */
496
    flush_mmon(addr);
497
    env->mmon_entry->addr = addr;
498
}
499

    
500
/* Test if an exclusive address is still exclusive.  Returns zero
501
   if the address is still exclusive.   */
502
uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
503
{
504
    int res;
505

    
506
    if (!env->mmon_entry)
507
        return 1;
508
    if (env->mmon_entry->addr == addr)
509
        res = 0;
510
    else
511
        res = 1;
512
    flush_mmon(addr);
513
    return res;
514
}
515

    
516
void HELPER(clrex)(CPUState *env)
517
{
518
    if (!(env->mmon_entry && env->mmon_entry->addr))
519
        return;
520
    flush_mmon(env->mmon_entry->addr);
521
}
522

    
523
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
524
{
525
    return addr;
526
}
527

    
528
/* These should probably raise undefined insn exceptions.  */
529
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
530
{
531
    int op1 = (insn >> 8) & 0xf;
532
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
533
    return;
534
}
535

    
536
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
537
{
538
    int op1 = (insn >> 8) & 0xf;
539
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
540
    return 0;
541
}
542

    
543
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
544
{
545
    cpu_abort(env, "cp15 insn %08x\n", insn);
546
}
547

    
548
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
549
{
550
    cpu_abort(env, "cp15 insn %08x\n", insn);
551
    return 0;
552
}
553

    
554
/* These should probably raise undefined insn exceptions.  */
555
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
556
{
557
    cpu_abort(env, "v7m_mrs %d\n", reg);
558
}
559

    
560
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
561
{
562
    cpu_abort(env, "v7m_mrs %d\n", reg);
563
    return 0;
564
}
565

    
566
void switch_mode(CPUState *env, int mode)
567
{
568
    if (mode != ARM_CPU_MODE_USR)
569
        cpu_abort(env, "Tried to switch out of user mode\n");
570
}
571

    
572
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
573
{
574
    cpu_abort(env, "banked r13 write\n");
575
}
576

    
577
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
578
{
579
    cpu_abort(env, "banked r13 read\n");
580
    return 0;
581
}
582

    
583
#else
584

    
585
extern int semihosting_enabled;
586

    
587
/* Map CPU modes onto saved register banks.  */
588
static inline int bank_number (int mode)
589
{
590
    switch (mode) {
591
    case ARM_CPU_MODE_USR:
592
    case ARM_CPU_MODE_SYS:
593
        return 0;
594
    case ARM_CPU_MODE_SVC:
595
        return 1;
596
    case ARM_CPU_MODE_ABT:
597
        return 2;
598
    case ARM_CPU_MODE_UND:
599
        return 3;
600
    case ARM_CPU_MODE_IRQ:
601
        return 4;
602
    case ARM_CPU_MODE_FIQ:
603
        return 5;
604
    }
605
    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
606
    return -1;
607
}
608

    
609
void switch_mode(CPUState *env, int mode)
610
{
611
    int old_mode;
612
    int i;
613

    
614
    old_mode = env->uncached_cpsr & CPSR_M;
615
    if (mode == old_mode)
616
        return;
617

    
618
    if (old_mode == ARM_CPU_MODE_FIQ) {
619
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
620
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
621
    } else if (mode == ARM_CPU_MODE_FIQ) {
622
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
623
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
624
    }
625

    
626
    i = bank_number(old_mode);
627
    env->banked_r13[i] = env->regs[13];
628
    env->banked_r14[i] = env->regs[14];
629
    env->banked_spsr[i] = env->spsr;
630

    
631
    i = bank_number(mode);
632
    env->regs[13] = env->banked_r13[i];
633
    env->regs[14] = env->banked_r14[i];
634
    env->spsr = env->banked_spsr[i];
635
}
636

    
637
static void v7m_push(CPUARMState *env, uint32_t val)
638
{
639
    env->regs[13] -= 4;
640
    stl_phys(env->regs[13], val);
641
}
642

    
643
static uint32_t v7m_pop(CPUARMState *env)
644
{
645
    uint32_t val;
646
    val = ldl_phys(env->regs[13]);
647
    env->regs[13] += 4;
648
    return val;
649
}
650

    
651
/* Switch to V7M main or process stack pointer.  */
652
static void switch_v7m_sp(CPUARMState *env, int process)
653
{
654
    uint32_t tmp;
655
    if (env->v7m.current_sp != process) {
656
        tmp = env->v7m.other_sp;
657
        env->v7m.other_sp = env->regs[13];
658
        env->regs[13] = tmp;
659
        env->v7m.current_sp = process;
660
    }
661
}
662

    
663
static void do_v7m_exception_exit(CPUARMState *env)
664
{
665
    uint32_t type;
666
    uint32_t xpsr;
667

    
668
    type = env->regs[15];
669
    if (env->v7m.exception != 0)
670
        armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
671

    
672
    /* Switch to the target stack.  */
673
    switch_v7m_sp(env, (type & 4) != 0);
674
    /* Pop registers.  */
675
    env->regs[0] = v7m_pop(env);
676
    env->regs[1] = v7m_pop(env);
677
    env->regs[2] = v7m_pop(env);
678
    env->regs[3] = v7m_pop(env);
679
    env->regs[12] = v7m_pop(env);
680
    env->regs[14] = v7m_pop(env);
681
    env->regs[15] = v7m_pop(env);
682
    xpsr = v7m_pop(env);
683
    xpsr_write(env, xpsr, 0xfffffdff);
684
    /* Undo stack alignment.  */
685
    if (xpsr & 0x200)
686
        env->regs[13] |= 4;
687
    /* ??? The exception return type specifies Thread/Handler mode.  However
688
       this is also implied by the xPSR value. Not sure what to do
689
       if there is a mismatch.  */
690
    /* ??? Likewise for mismatches between the CONTROL register and the stack
691
       pointer.  */
692
}
693

    
694
static void do_interrupt_v7m(CPUARMState *env)
695
{
696
    uint32_t xpsr = xpsr_read(env);
697
    uint32_t lr;
698
    uint32_t addr;
699

    
700
    lr = 0xfffffff1;
701
    if (env->v7m.current_sp)
702
        lr |= 4;
703
    if (env->v7m.exception == 0)
704
        lr |= 8;
705

    
706
    /* For exceptions we just mark as pending on the NVIC, and let that
707
       handle it.  */
708
    /* TODO: Need to escalate if the current priority is higher than the
709
       one we're raising.  */
710
    switch (env->exception_index) {
711
    case EXCP_UDEF:
712
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
713
        return;
714
    case EXCP_SWI:
715
        env->regs[15] += 2;
716
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
717
        return;
718
    case EXCP_PREFETCH_ABORT:
719
    case EXCP_DATA_ABORT:
720
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
721
        return;
722
    case EXCP_BKPT:
723
        if (semihosting_enabled) {
724
            int nr;
725
            nr = lduw_code(env->regs[15]) & 0xff;
726
            if (nr == 0xab) {
727
                env->regs[15] += 2;
728
                env->regs[0] = do_arm_semihosting(env);
729
                return;
730
            }
731
        }
732
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
733
        return;
734
    case EXCP_IRQ:
735
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
736
        break;
737
    case EXCP_EXCEPTION_EXIT:
738
        do_v7m_exception_exit(env);
739
        return;
740
    default:
741
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
742
        return; /* Never happens.  Keep compiler happy.  */
743
    }
744

    
745
    /* Align stack pointer.  */
746
    /* ??? Should only do this if Configuration Control Register
747
       STACKALIGN bit is set.  */
748
    if (env->regs[13] & 4) {
749
        env->regs[13] -= 4;
750
        xpsr |= 0x200;
751
    }
752
    /* Switch to the handler mode.  */
753
    v7m_push(env, xpsr);
754
    v7m_push(env, env->regs[15]);
755
    v7m_push(env, env->regs[14]);
756
    v7m_push(env, env->regs[12]);
757
    v7m_push(env, env->regs[3]);
758
    v7m_push(env, env->regs[2]);
759
    v7m_push(env, env->regs[1]);
760
    v7m_push(env, env->regs[0]);
761
    switch_v7m_sp(env, 0);
762
    env->uncached_cpsr &= ~CPSR_IT;
763
    env->regs[14] = lr;
764
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
765
    env->regs[15] = addr & 0xfffffffe;
766
    env->thumb = addr & 1;
767
}
768

    
769
/* Handle a CPU exception.  */
770
void do_interrupt(CPUARMState *env)
771
{
772
    uint32_t addr;
773
    uint32_t mask;
774
    int new_mode;
775
    uint32_t offset;
776

    
777
    if (IS_M(env)) {
778
        do_interrupt_v7m(env);
779
        return;
780
    }
781
    /* TODO: Vectored interrupt controller.  */
782
    switch (env->exception_index) {
783
    case EXCP_UDEF:
784
        new_mode = ARM_CPU_MODE_UND;
785
        addr = 0x04;
786
        mask = CPSR_I;
787
        if (env->thumb)
788
            offset = 2;
789
        else
790
            offset = 4;
791
        break;
792
    case EXCP_SWI:
793
        if (semihosting_enabled) {
794
            /* Check for semihosting interrupt.  */
795
            if (env->thumb) {
796
                mask = lduw_code(env->regs[15] - 2) & 0xff;
797
            } else {
798
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
799
            }
800
            /* Only intercept calls from privileged modes, to provide some
801
               semblance of security.  */
802
            if (((mask == 0x123456 && !env->thumb)
803
                    || (mask == 0xab && env->thumb))
804
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
805
                env->regs[0] = do_arm_semihosting(env);
806
                return;
807
            }
808
        }
809
        new_mode = ARM_CPU_MODE_SVC;
810
        addr = 0x08;
811
        mask = CPSR_I;
812
        /* The PC already points to the next instruction.  */
813
        offset = 0;
814
        break;
815
    case EXCP_BKPT:
816
        /* See if this is a semihosting syscall.  */
817
        if (env->thumb && semihosting_enabled) {
818
            mask = lduw_code(env->regs[15]) & 0xff;
819
            if (mask == 0xab
820
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
821
                env->regs[15] += 2;
822
                env->regs[0] = do_arm_semihosting(env);
823
                return;
824
            }
825
        }
826
        /* Fall through to prefetch abort.  */
827
    case EXCP_PREFETCH_ABORT:
828
        new_mode = ARM_CPU_MODE_ABT;
829
        addr = 0x0c;
830
        mask = CPSR_A | CPSR_I;
831
        offset = 4;
832
        break;
833
    case EXCP_DATA_ABORT:
834
        new_mode = ARM_CPU_MODE_ABT;
835
        addr = 0x10;
836
        mask = CPSR_A | CPSR_I;
837
        offset = 8;
838
        break;
839
    case EXCP_IRQ:
840
        new_mode = ARM_CPU_MODE_IRQ;
841
        addr = 0x18;
842
        /* Disable IRQ and imprecise data aborts.  */
843
        mask = CPSR_A | CPSR_I;
844
        offset = 4;
845
        break;
846
    case EXCP_FIQ:
847
        new_mode = ARM_CPU_MODE_FIQ;
848
        addr = 0x1c;
849
        /* Disable FIQ, IRQ and imprecise data aborts.  */
850
        mask = CPSR_A | CPSR_I | CPSR_F;
851
        offset = 4;
852
        break;
853
    default:
854
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
855
        return; /* Never happens.  Keep compiler happy.  */
856
    }
857
    /* High vectors.  */
858
    if (env->cp15.c1_sys & (1 << 13)) {
859
        addr += 0xffff0000;
860
    }
861
    switch_mode (env, new_mode);
862
    env->spsr = cpsr_read(env);
863
    /* Clear IT bits.  */
864
    env->condexec_bits = 0;
865
    /* Switch to the new mode, and switch to Arm mode.  */
866
    /* ??? Thumb interrupt handlers not implemented.  */
867
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
868
    env->uncached_cpsr |= mask;
869
    env->thumb = 0;
870
    env->regs[14] = env->regs[15] + offset;
871
    env->regs[15] = addr;
872
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
873
}
874

    
875
/* Check section/page access permissions.
876
   Returns the page protection flags, or zero if the access is not
877
   permitted.  */
878
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
879
                           int is_user)
880
{
881
  int prot_ro;
882

    
883
  if (domain == 3)
884
    return PAGE_READ | PAGE_WRITE;
885

    
886
  if (access_type == 1)
887
      prot_ro = 0;
888
  else
889
      prot_ro = PAGE_READ;
890

    
891
  switch (ap) {
892
  case 0:
893
      if (access_type == 1)
894
          return 0;
895
      switch ((env->cp15.c1_sys >> 8) & 3) {
896
      case 1:
897
          return is_user ? 0 : PAGE_READ;
898
      case 2:
899
          return PAGE_READ;
900
      default:
901
          return 0;
902
      }
903
  case 1:
904
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
905
  case 2:
906
      if (is_user)
907
          return prot_ro;
908
      else
909
          return PAGE_READ | PAGE_WRITE;
910
  case 3:
911
      return PAGE_READ | PAGE_WRITE;
912
  case 4: /* Reserved.  */
913
      return 0;
914
  case 5:
915
      return is_user ? 0 : prot_ro;
916
  case 6:
917
      return prot_ro;
918
  case 7:
919
      if (!arm_feature (env, ARM_FEATURE_V7))
920
          return 0;
921
      return prot_ro;
922
  default:
923
      abort();
924
  }
925
}
926

    
927
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
928
{
929
    uint32_t table;
930

    
931
    if (address & env->cp15.c2_mask)
932
        table = env->cp15.c2_base1 & 0xffffc000;
933
    else
934
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
935

    
936
    table |= (address >> 18) & 0x3ffc;
937
    return table;
938
}
939

    
940
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
941
                            int is_user, uint32_t *phys_ptr, int *prot)
942
{
943
    int code;
944
    uint32_t table;
945
    uint32_t desc;
946
    int type;
947
    int ap;
948
    int domain;
949
    uint32_t phys_addr;
950

    
951
    /* Pagetable walk.  */
952
    /* Lookup l1 descriptor.  */
953
    table = get_level1_table_address(env, address);
954
    desc = ldl_phys(table);
955
    type = (desc & 3);
956
    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
957
    if (type == 0) {
958
        /* Section translation fault.  */
959
        code = 5;
960
        goto do_fault;
961
    }
962
    if (domain == 0 || domain == 2) {
963
        if (type == 2)
964
            code = 9; /* Section domain fault.  */
965
        else
966
            code = 11; /* Page domain fault.  */
967
        goto do_fault;
968
    }
969
    if (type == 2) {
970
        /* 1Mb section.  */
971
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
972
        ap = (desc >> 10) & 3;
973
        code = 13;
974
    } else {
975
        /* Lookup l2 entry.  */
976
        if (type == 1) {
977
            /* Coarse pagetable.  */
978
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
979
        } else {
980
            /* Fine pagetable.  */
981
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
982
        }
983
        desc = ldl_phys(table);
984
        switch (desc & 3) {
985
        case 0: /* Page translation fault.  */
986
            code = 7;
987
            goto do_fault;
988
        case 1: /* 64k page.  */
989
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
990
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
991
            break;
992
        case 2: /* 4k page.  */
993
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
994
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
995
            break;
996
        case 3: /* 1k page.  */
997
            if (type == 1) {
998
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
999
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1000
                } else {
1001
                    /* Page translation fault.  */
1002
                    code = 7;
1003
                    goto do_fault;
1004
                }
1005
            } else {
1006
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1007
            }
1008
            ap = (desc >> 4) & 3;
1009
            break;
1010
        default:
1011
            /* Never happens, but compiler isn't smart enough to tell.  */
1012
            abort();
1013
        }
1014
        code = 15;
1015
    }
1016
    *prot = check_ap(env, ap, domain, access_type, is_user);
1017
    if (!*prot) {
1018
        /* Access permission fault.  */
1019
        goto do_fault;
1020
    }
1021
    *phys_ptr = phys_addr;
1022
    return 0;
1023
do_fault:
1024
    return code | (domain << 4);
1025
}
1026

    
1027
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
1028
                            int is_user, uint32_t *phys_ptr, int *prot)
1029
{
1030
    int code;
1031
    uint32_t table;
1032
    uint32_t desc;
1033
    uint32_t xn;
1034
    int type;
1035
    int ap;
1036
    int domain;
1037
    uint32_t phys_addr;
1038

    
1039
    /* Pagetable walk.  */
1040
    /* Lookup l1 descriptor.  */
1041
    table = get_level1_table_address(env, address);
1042
    desc = ldl_phys(table);
1043
    type = (desc & 3);
1044
    if (type == 0) {
1045
        /* Section translation fault.  */
1046
        code = 5;
1047
        domain = 0;
1048
        goto do_fault;
1049
    } else if (type == 2 && (desc & (1 << 18))) {
1050
        /* Supersection.  */
1051
        domain = 0;
1052
    } else {
1053
        /* Section or page.  */
1054
        domain = (desc >> 4) & 0x1e;
1055
    }
1056
    domain = (env->cp15.c3 >> domain) & 3;
1057
    if (domain == 0 || domain == 2) {
1058
        if (type == 2)
1059
            code = 9; /* Section domain fault.  */
1060
        else
1061
            code = 11; /* Page domain fault.  */
1062
        goto do_fault;
1063
    }
1064
    if (type == 2) {
1065
        if (desc & (1 << 18)) {
1066
            /* Supersection.  */
1067
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1068
        } else {
1069
            /* Section.  */
1070
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1071
        }
1072
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1073
        xn = desc & (1 << 4);
1074
        code = 13;
1075
    } else {
1076
        /* Lookup l2 entry.  */
1077
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1078
        desc = ldl_phys(table);
1079
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1080
        switch (desc & 3) {
1081
        case 0: /* Page translation fault.  */
1082
            code = 7;
1083
            goto do_fault;
1084
        case 1: /* 64k page.  */
1085
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1086
            xn = desc & (1 << 15);
1087
            break;
1088
        case 2: case 3: /* 4k page.  */
1089
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1090
            xn = desc & 1;
1091
            break;
1092
        default:
1093
            /* Never happens, but compiler isn't smart enough to tell.  */
1094
            abort();
1095
        }
1096
        code = 15;
1097
    }
1098
    if (xn && access_type == 2)
1099
        goto do_fault;
1100

    
1101
    /* The simplified model uses AP[0] as an access control bit.  */
1102
    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1103
        /* Access flag fault.  */
1104
        code = (code == 15) ? 6 : 3;
1105
        goto do_fault;
1106
    }
1107
    *prot = check_ap(env, ap, domain, access_type, is_user);
1108
    if (!*prot) {
1109
        /* Access permission fault.  */
1110
        goto do_fault;
1111
    }
1112
    *phys_ptr = phys_addr;
1113
    return 0;
1114
do_fault:
1115
    return code | (domain << 4);
1116
}
1117

    
1118
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1119
                             int is_user, uint32_t *phys_ptr, int *prot)
1120
{
1121
    int n;
1122
    uint32_t mask;
1123
    uint32_t base;
1124

    
1125
    *phys_ptr = address;
1126
    for (n = 7; n >= 0; n--) {
1127
        base = env->cp15.c6_region[n];
1128
        if ((base & 1) == 0)
1129
            continue;
1130
        mask = 1 << ((base >> 1) & 0x1f);
1131
        /* Keep this shift separate from the above to avoid an
1132
           (undefined) << 32.  */
1133
        mask = (mask << 1) - 1;
1134
        if (((base ^ address) & ~mask) == 0)
1135
            break;
1136
    }
1137
    if (n < 0)
1138
        return 2;
1139

    
1140
    if (access_type == 2) {
1141
        mask = env->cp15.c5_insn;
1142
    } else {
1143
        mask = env->cp15.c5_data;
1144
    }
1145
    mask = (mask >> (n * 4)) & 0xf;
1146
    switch (mask) {
1147
    case 0:
1148
        return 1;
1149
    case 1:
1150
        if (is_user)
1151
          return 1;
1152
        *prot = PAGE_READ | PAGE_WRITE;
1153
        break;
1154
    case 2:
1155
        *prot = PAGE_READ;
1156
        if (!is_user)
1157
            *prot |= PAGE_WRITE;
1158
        break;
1159
    case 3:
1160
        *prot = PAGE_READ | PAGE_WRITE;
1161
        break;
1162
    case 5:
1163
        if (is_user)
1164
            return 1;
1165
        *prot = PAGE_READ;
1166
        break;
1167
    case 6:
1168
        *prot = PAGE_READ;
1169
        break;
1170
    default:
1171
        /* Bad permission.  */
1172
        return 1;
1173
    }
1174
    return 0;
1175
}
1176

    
1177
static inline int get_phys_addr(CPUState *env, uint32_t address,
1178
                                int access_type, int is_user,
1179
                                uint32_t *phys_ptr, int *prot)
1180
{
1181
    /* Fast Context Switch Extension.  */
1182
    if (address < 0x02000000)
1183
        address += env->cp15.c13_fcse;
1184

    
1185
    if ((env->cp15.c1_sys & 1) == 0) {
1186
        /* MMU/MPU disabled.  */
1187
        *phys_ptr = address;
1188
        *prot = PAGE_READ | PAGE_WRITE;
1189
        return 0;
1190
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1191
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1192
                                 prot);
1193
    } else if (env->cp15.c1_sys & (1 << 23)) {
1194
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1195
                                prot);
1196
    } else {
1197
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1198
                                prot);
1199
    }
1200
}
1201

    
1202
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1203
                              int access_type, int mmu_idx, int is_softmmu)
1204
{
1205
    uint32_t phys_addr;
1206
    int prot;
1207
    int ret, is_user;
1208

    
1209
    is_user = mmu_idx == MMU_USER_IDX;
1210
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1211
    if (ret == 0) {
1212
        /* Map a single [sub]page.  */
1213
        phys_addr &= ~(uint32_t)0x3ff;
1214
        address &= ~(uint32_t)0x3ff;
1215
        return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1216
                             is_softmmu);
1217
    }
1218

    
1219
    if (access_type == 2) {
1220
        env->cp15.c5_insn = ret;
1221
        env->cp15.c6_insn = address;
1222
        env->exception_index = EXCP_PREFETCH_ABORT;
1223
    } else {
1224
        env->cp15.c5_data = ret;
1225
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1226
            env->cp15.c5_data |= (1 << 11);
1227
        env->cp15.c6_data = address;
1228
        env->exception_index = EXCP_DATA_ABORT;
1229
    }
1230
    return 1;
1231
}
1232

    
1233
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1234
{
1235
    uint32_t phys_addr;
1236
    int prot;
1237
    int ret;
1238

    
1239
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1240

    
1241
    if (ret != 0)
1242
        return -1;
1243

    
1244
    return phys_addr;
1245
}
1246

    
1247
/* Not really implemented.  Need to figure out a sane way of doing this.
1248
   Maybe add generic watchpoint support and use that.  */
1249

    
1250
void HELPER(mark_exclusive)(CPUState *env, uint32_t addr)
1251
{
1252
    env->mmon_addr = addr;
1253
}
1254

    
1255
uint32_t HELPER(test_exclusive)(CPUState *env, uint32_t addr)
1256
{
1257
    return (env->mmon_addr != addr);
1258
}
1259

    
1260
void HELPER(clrex)(CPUState *env)
1261
{
1262
    env->mmon_addr = -1;
1263
}
1264

    
1265
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1266
{
1267
    int cp_num = (insn >> 8) & 0xf;
1268
    int cp_info = (insn >> 5) & 7;
1269
    int src = (insn >> 16) & 0xf;
1270
    int operand = insn & 0xf;
1271

    
1272
    if (env->cp[cp_num].cp_write)
1273
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1274
                                 cp_info, src, operand, val);
1275
}
1276

    
1277
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1278
{
1279
    int cp_num = (insn >> 8) & 0xf;
1280
    int cp_info = (insn >> 5) & 7;
1281
    int dest = (insn >> 16) & 0xf;
1282
    int operand = insn & 0xf;
1283

    
1284
    if (env->cp[cp_num].cp_read)
1285
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1286
                                       cp_info, dest, operand);
1287
    return 0;
1288
}
1289

    
1290
/* Return basic MPU access permission bits.  */
1291
static uint32_t simple_mpu_ap_bits(uint32_t val)
1292
{
1293
    uint32_t ret;
1294
    uint32_t mask;
1295
    int i;
1296
    ret = 0;
1297
    mask = 3;
1298
    for (i = 0; i < 16; i += 2) {
1299
        ret |= (val >> i) & mask;
1300
        mask <<= 2;
1301
    }
1302
    return ret;
1303
}
1304

    
1305
/* Pad basic MPU access permission bits to extended format.  */
1306
static uint32_t extended_mpu_ap_bits(uint32_t val)
1307
{
1308
    uint32_t ret;
1309
    uint32_t mask;
1310
    int i;
1311
    ret = 0;
1312
    mask = 3;
1313
    for (i = 0; i < 16; i += 2) {
1314
        ret |= (val & mask) << i;
1315
        mask <<= 2;
1316
    }
1317
    return ret;
1318
}
1319

    
1320
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1321
{
1322
    int op1;
1323
    int op2;
1324
    int crm;
1325

    
1326
    op1 = (insn >> 21) & 7;
1327
    op2 = (insn >> 5) & 7;
1328
    crm = insn & 0xf;
1329
    switch ((insn >> 16) & 0xf) {
1330
    case 0:
1331
        /* ID codes.  */
1332
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1333
            break;
1334
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1335
            break;
1336
        if (arm_feature(env, ARM_FEATURE_V7)
1337
                && op1 == 2 && crm == 0 && op2 == 0) {
1338
            env->cp15.c0_cssel = val & 0xf;
1339
            break;
1340
        }
1341
        goto bad_reg;
1342
    case 1: /* System configuration.  */
1343
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1344
            op2 = 0;
1345
        switch (op2) {
1346
        case 0:
1347
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1348
                env->cp15.c1_sys = val;
1349
            /* ??? Lots of these bits are not implemented.  */
1350
            /* This may enable/disable the MMU, so do a TLB flush.  */
1351
            tlb_flush(env, 1);
1352
            break;
1353
        case 1: /* Auxiliary cotrol register.  */
1354
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1355
                env->cp15.c1_xscaleauxcr = val;
1356
                break;
1357
            }
1358
            /* Not implemented.  */
1359
            break;
1360
        case 2:
1361
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1362
                goto bad_reg;
1363
            if (env->cp15.c1_coproc != val) {
1364
                env->cp15.c1_coproc = val;
1365
                /* ??? Is this safe when called from within a TB?  */
1366
                tb_flush(env);
1367
            }
1368
            break;
1369
        default:
1370
            goto bad_reg;
1371
        }
1372
        break;
1373
    case 2: /* MMU Page table control / MPU cache control.  */
1374
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1375
            switch (op2) {
1376
            case 0:
1377
                env->cp15.c2_data = val;
1378
                break;
1379
            case 1:
1380
                env->cp15.c2_insn = val;
1381
                break;
1382
            default:
1383
                goto bad_reg;
1384
            }
1385
        } else {
1386
            switch (op2) {
1387
            case 0:
1388
                env->cp15.c2_base0 = val;
1389
                break;
1390
            case 1:
1391
                env->cp15.c2_base1 = val;
1392
                break;
1393
            case 2:
1394
                val &= 7;
1395
                env->cp15.c2_control = val;
1396
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1397
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1398
                break;
1399
            default:
1400
                goto bad_reg;
1401
            }
1402
        }
1403
        break;
1404
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1405
        env->cp15.c3 = val;
1406
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1407
        break;
1408
    case 4: /* Reserved.  */
1409
        goto bad_reg;
1410
    case 5: /* MMU Fault status / MPU access permission.  */
1411
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1412
            op2 = 0;
1413
        switch (op2) {
1414
        case 0:
1415
            if (arm_feature(env, ARM_FEATURE_MPU))
1416
                val = extended_mpu_ap_bits(val);
1417
            env->cp15.c5_data = val;
1418
            break;
1419
        case 1:
1420
            if (arm_feature(env, ARM_FEATURE_MPU))
1421
                val = extended_mpu_ap_bits(val);
1422
            env->cp15.c5_insn = val;
1423
            break;
1424
        case 2:
1425
            if (!arm_feature(env, ARM_FEATURE_MPU))
1426
                goto bad_reg;
1427
            env->cp15.c5_data = val;
1428
            break;
1429
        case 3:
1430
            if (!arm_feature(env, ARM_FEATURE_MPU))
1431
                goto bad_reg;
1432
            env->cp15.c5_insn = val;
1433
            break;
1434
        default:
1435
            goto bad_reg;
1436
        }
1437
        break;
1438
    case 6: /* MMU Fault address / MPU base/size.  */
1439
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1440
            if (crm >= 8)
1441
                goto bad_reg;
1442
            env->cp15.c6_region[crm] = val;
1443
        } else {
1444
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1445
                op2 = 0;
1446
            switch (op2) {
1447
            case 0:
1448
                env->cp15.c6_data = val;
1449
                break;
1450
            case 1: /* ??? This is WFAR on armv6 */
1451
            case 2:
1452
                env->cp15.c6_insn = val;
1453
                break;
1454
            default:
1455
                goto bad_reg;
1456
            }
1457
        }
1458
        break;
1459
    case 7: /* Cache control.  */
1460
        env->cp15.c15_i_max = 0x000;
1461
        env->cp15.c15_i_min = 0xff0;
1462
        /* No cache, so nothing to do.  */
1463
        /* ??? MPCore has VA to PA translation functions.  */
1464
        break;
1465
    case 8: /* MMU TLB control.  */
1466
        switch (op2) {
1467
        case 0: /* Invalidate all.  */
1468
            tlb_flush(env, 0);
1469
            break;
1470
        case 1: /* Invalidate single TLB entry.  */
1471
#if 0
1472
            /* ??? This is wrong for large pages and sections.  */
1473
            /* As an ugly hack to make linux work we always flush a 4K
1474
               pages.  */
1475
            val &= 0xfffff000;
1476
            tlb_flush_page(env, val);
1477
            tlb_flush_page(env, val + 0x400);
1478
            tlb_flush_page(env, val + 0x800);
1479
            tlb_flush_page(env, val + 0xc00);
1480
#else
1481
            tlb_flush(env, 1);
1482
#endif
1483
            break;
1484
        case 2: /* Invalidate on ASID.  */
1485
            tlb_flush(env, val == 0);
1486
            break;
1487
        case 3: /* Invalidate single entry on MVA.  */
1488
            /* ??? This is like case 1, but ignores ASID.  */
1489
            tlb_flush(env, 1);
1490
            break;
1491
        default:
1492
            goto bad_reg;
1493
        }
1494
        break;
1495
    case 9:
1496
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1497
            break;
1498
        switch (crm) {
1499
        case 0: /* Cache lockdown.  */
1500
            switch (op1) {
1501
            case 0: /* L1 cache.  */
1502
                switch (op2) {
1503
                case 0:
1504
                    env->cp15.c9_data = val;
1505
                    break;
1506
                case 1:
1507
                    env->cp15.c9_insn = val;
1508
                    break;
1509
                default:
1510
                    goto bad_reg;
1511
                }
1512
                break;
1513
            case 1: /* L2 cache.  */
1514
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1515
                break;
1516
            default:
1517
                goto bad_reg;
1518
            }
1519
            break;
1520
        case 1: /* TCM memory region registers.  */
1521
            /* Not implemented.  */
1522
            goto bad_reg;
1523
        default:
1524
            goto bad_reg;
1525
        }
1526
        break;
1527
    case 10: /* MMU TLB lockdown.  */
1528
        /* ??? TLB lockdown not implemented.  */
1529
        break;
1530
    case 12: /* Reserved.  */
1531
        goto bad_reg;
1532
    case 13: /* Process ID.  */
1533
        switch (op2) {
1534
        case 0:
1535
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1536
               not modified virtual addresses, so this causes a TLB flush.
1537
             */
1538
            if (env->cp15.c13_fcse != val)
1539
              tlb_flush(env, 1);
1540
            env->cp15.c13_fcse = val;
1541
            break;
1542
        case 1:
1543
            /* This changes the ASID, so do a TLB flush.  */
1544
            if (env->cp15.c13_context != val
1545
                && !arm_feature(env, ARM_FEATURE_MPU))
1546
              tlb_flush(env, 0);
1547
            env->cp15.c13_context = val;
1548
            break;
1549
        case 2:
1550
            env->cp15.c13_tls1 = val;
1551
            break;
1552
        case 3:
1553
            env->cp15.c13_tls2 = val;
1554
            break;
1555
        case 4:
1556
            env->cp15.c13_tls3 = val;
1557
            break;
1558
        default:
1559
            goto bad_reg;
1560
        }
1561
        break;
1562
    case 14: /* Reserved.  */
1563
        goto bad_reg;
1564
    case 15: /* Implementation specific.  */
1565
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1566
            if (op2 == 0 && crm == 1) {
1567
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1568
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1569
                    tb_flush(env);
1570
                    env->cp15.c15_cpar = val & 0x3fff;
1571
                }
1572
                break;
1573
            }
1574
            goto bad_reg;
1575
        }
1576
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1577
            switch (crm) {
1578
            case 0:
1579
                break;
1580
            case 1: /* Set TI925T configuration.  */
1581
                env->cp15.c15_ticonfig = val & 0xe7;
1582
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1583
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1584
                break;
1585
            case 2: /* Set I_max.  */
1586
                env->cp15.c15_i_max = val;
1587
                break;
1588
            case 3: /* Set I_min.  */
1589
                env->cp15.c15_i_min = val;
1590
                break;
1591
            case 4: /* Set thread-ID.  */
1592
                env->cp15.c15_threadid = val & 0xffff;
1593
                break;
1594
            case 8: /* Wait-for-interrupt (deprecated).  */
1595
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1596
                break;
1597
            default:
1598
                goto bad_reg;
1599
            }
1600
        }
1601
        break;
1602
    }
1603
    return;
1604
bad_reg:
1605
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1606
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1607
              (insn >> 16) & 0xf, crm, op1, op2);
1608
}
1609

    
1610
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1611
{
1612
    int op1;
1613
    int op2;
1614
    int crm;
1615

    
1616
    op1 = (insn >> 21) & 7;
1617
    op2 = (insn >> 5) & 7;
1618
    crm = insn & 0xf;
1619
    switch ((insn >> 16) & 0xf) {
1620
    case 0: /* ID codes.  */
1621
        switch (op1) {
1622
        case 0:
1623
            switch (crm) {
1624
            case 0:
1625
                switch (op2) {
1626
                case 0: /* Device ID.  */
1627
                    return env->cp15.c0_cpuid;
1628
                case 1: /* Cache Type.  */
1629
                    return env->cp15.c0_cachetype;
1630
                case 2: /* TCM status.  */
1631
                    return 0;
1632
                case 3: /* TLB type register.  */
1633
                    return 0; /* No lockable TLB entries.  */
1634
                case 5: /* CPU ID */
1635
                    return env->cpu_index;
1636
                default:
1637
                    goto bad_reg;
1638
                }
1639
            case 1:
1640
                if (!arm_feature(env, ARM_FEATURE_V6))
1641
                    goto bad_reg;
1642
                return env->cp15.c0_c1[op2];
1643
            case 2:
1644
                if (!arm_feature(env, ARM_FEATURE_V6))
1645
                    goto bad_reg;
1646
                return env->cp15.c0_c2[op2];
1647
            case 3: case 4: case 5: case 6: case 7:
1648
                return 0;
1649
            default:
1650
                goto bad_reg;
1651
            }
1652
        case 1:
1653
            /* These registers aren't documented on arm11 cores.  However
1654
               Linux looks at them anyway.  */
1655
            if (!arm_feature(env, ARM_FEATURE_V6))
1656
                goto bad_reg;
1657
            if (crm != 0)
1658
                goto bad_reg;
1659
            if (!arm_feature(env, ARM_FEATURE_V7))
1660
                return 0;
1661

    
1662
            switch (op2) {
1663
            case 0:
1664
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1665
            case 1:
1666
                return env->cp15.c0_clid;
1667
            case 7:
1668
                return 0;
1669
            }
1670
            goto bad_reg;
1671
        case 2:
1672
            if (op2 != 0 || crm != 0)
1673
                goto bad_reg;
1674
            return env->cp15.c0_cssel;
1675
        default:
1676
            goto bad_reg;
1677
        }
1678
    case 1: /* System configuration.  */
1679
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1680
            op2 = 0;
1681
        switch (op2) {
1682
        case 0: /* Control register.  */
1683
            return env->cp15.c1_sys;
1684
        case 1: /* Auxiliary control register.  */
1685
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1686
                return env->cp15.c1_xscaleauxcr;
1687
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1688
                goto bad_reg;
1689
            switch (ARM_CPUID(env)) {
1690
            case ARM_CPUID_ARM1026:
1691
                return 1;
1692
            case ARM_CPUID_ARM1136:
1693
            case ARM_CPUID_ARM1136_R2:
1694
                return 7;
1695
            case ARM_CPUID_ARM11MPCORE:
1696
                return 1;
1697
            case ARM_CPUID_CORTEXA8:
1698
                return 2;
1699
            default:
1700
                goto bad_reg;
1701
            }
1702
        case 2: /* Coprocessor access register.  */
1703
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1704
                goto bad_reg;
1705
            return env->cp15.c1_coproc;
1706
        default:
1707
            goto bad_reg;
1708
        }
1709
    case 2: /* MMU Page table control / MPU cache control.  */
1710
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1711
            switch (op2) {
1712
            case 0:
1713
                return env->cp15.c2_data;
1714
                break;
1715
            case 1:
1716
                return env->cp15.c2_insn;
1717
                break;
1718
            default:
1719
                goto bad_reg;
1720
            }
1721
        } else {
1722
            switch (op2) {
1723
            case 0:
1724
                return env->cp15.c2_base0;
1725
            case 1:
1726
                return env->cp15.c2_base1;
1727
            case 2:
1728
                return env->cp15.c2_control;
1729
            default:
1730
                goto bad_reg;
1731
            }
1732
        }
1733
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1734
        return env->cp15.c3;
1735
    case 4: /* Reserved.  */
1736
        goto bad_reg;
1737
    case 5: /* MMU Fault status / MPU access permission.  */
1738
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1739
            op2 = 0;
1740
        switch (op2) {
1741
        case 0:
1742
            if (arm_feature(env, ARM_FEATURE_MPU))
1743
                return simple_mpu_ap_bits(env->cp15.c5_data);
1744
            return env->cp15.c5_data;
1745
        case 1:
1746
            if (arm_feature(env, ARM_FEATURE_MPU))
1747
                return simple_mpu_ap_bits(env->cp15.c5_data);
1748
            return env->cp15.c5_insn;
1749
        case 2:
1750
            if (!arm_feature(env, ARM_FEATURE_MPU))
1751
                goto bad_reg;
1752
            return env->cp15.c5_data;
1753
        case 3:
1754
            if (!arm_feature(env, ARM_FEATURE_MPU))
1755
                goto bad_reg;
1756
            return env->cp15.c5_insn;
1757
        default:
1758
            goto bad_reg;
1759
        }
1760
    case 6: /* MMU Fault address.  */
1761
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1762
            if (crm >= 8)
1763
                goto bad_reg;
1764
            return env->cp15.c6_region[crm];
1765
        } else {
1766
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1767
                op2 = 0;
1768
            switch (op2) {
1769
            case 0:
1770
                return env->cp15.c6_data;
1771
            case 1:
1772
                if (arm_feature(env, ARM_FEATURE_V6)) {
1773
                    /* Watchpoint Fault Adrress.  */
1774
                    return 0; /* Not implemented.  */
1775
                } else {
1776
                    /* Instruction Fault Adrress.  */
1777
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1778
                       shouldn't do any harm.  */
1779
                    return env->cp15.c6_insn;
1780
                }
1781
            case 2:
1782
                if (arm_feature(env, ARM_FEATURE_V6)) {
1783
                    /* Instruction Fault Adrress.  */
1784
                    return env->cp15.c6_insn;
1785
                } else {
1786
                    goto bad_reg;
1787
                }
1788
            default:
1789
                goto bad_reg;
1790
            }
1791
        }
1792
    case 7: /* Cache control.  */
1793
        /* FIXME: Should only clear Z flag if destination is r15.  */
1794
        env->ZF = 0;
1795
        return 0;
1796
    case 8: /* MMU TLB control.  */
1797
        goto bad_reg;
1798
    case 9: /* Cache lockdown.  */
1799
        switch (op1) {
1800
        case 0: /* L1 cache.  */
1801
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1802
                return 0;
1803
            switch (op2) {
1804
            case 0:
1805
                return env->cp15.c9_data;
1806
            case 1:
1807
                return env->cp15.c9_insn;
1808
            default:
1809
                goto bad_reg;
1810
            }
1811
        case 1: /* L2 cache */
1812
            if (crm != 0)
1813
                goto bad_reg;
1814
            /* L2 Lockdown and Auxiliary control.  */
1815
            return 0;
1816
        default:
1817
            goto bad_reg;
1818
        }
1819
    case 10: /* MMU TLB lockdown.  */
1820
        /* ??? TLB lockdown not implemented.  */
1821
        return 0;
1822
    case 11: /* TCM DMA control.  */
1823
    case 12: /* Reserved.  */
1824
        goto bad_reg;
1825
    case 13: /* Process ID.  */
1826
        switch (op2) {
1827
        case 0:
1828
            return env->cp15.c13_fcse;
1829
        case 1:
1830
            return env->cp15.c13_context;
1831
        case 2:
1832
            return env->cp15.c13_tls1;
1833
        case 3:
1834
            return env->cp15.c13_tls2;
1835
        case 4:
1836
            return env->cp15.c13_tls3;
1837
        default:
1838
            goto bad_reg;
1839
        }
1840
    case 14: /* Reserved.  */
1841
        goto bad_reg;
1842
    case 15: /* Implementation specific.  */
1843
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1844
            if (op2 == 0 && crm == 1)
1845
                return env->cp15.c15_cpar;
1846

    
1847
            goto bad_reg;
1848
        }
1849
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1850
            switch (crm) {
1851
            case 0:
1852
                return 0;
1853
            case 1: /* Read TI925T configuration.  */
1854
                return env->cp15.c15_ticonfig;
1855
            case 2: /* Read I_max.  */
1856
                return env->cp15.c15_i_max;
1857
            case 3: /* Read I_min.  */
1858
                return env->cp15.c15_i_min;
1859
            case 4: /* Read thread-ID.  */
1860
                return env->cp15.c15_threadid;
1861
            case 8: /* TI925T_status */
1862
                return 0;
1863
            }
1864
            /* TODO: Peripheral port remap register:
1865
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1866
             * controller base address at $rn & ~0xfff and map size of
1867
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1868
            goto bad_reg;
1869
        }
1870
        return 0;
1871
    }
1872
bad_reg:
1873
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1874
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1875
              (insn >> 16) & 0xf, crm, op1, op2);
1876
    return 0;
1877
}
1878

    
1879
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1880
{
1881
    env->banked_r13[bank_number(mode)] = val;
1882
}
1883

    
1884
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1885
{
1886
    return env->banked_r13[bank_number(mode)];
1887
}
1888

    
1889
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1890
{
1891
    switch (reg) {
1892
    case 0: /* APSR */
1893
        return xpsr_read(env) & 0xf8000000;
1894
    case 1: /* IAPSR */
1895
        return xpsr_read(env) & 0xf80001ff;
1896
    case 2: /* EAPSR */
1897
        return xpsr_read(env) & 0xff00fc00;
1898
    case 3: /* xPSR */
1899
        return xpsr_read(env) & 0xff00fdff;
1900
    case 5: /* IPSR */
1901
        return xpsr_read(env) & 0x000001ff;
1902
    case 6: /* EPSR */
1903
        return xpsr_read(env) & 0x0700fc00;
1904
    case 7: /* IEPSR */
1905
        return xpsr_read(env) & 0x0700edff;
1906
    case 8: /* MSP */
1907
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1908
    case 9: /* PSP */
1909
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1910
    case 16: /* PRIMASK */
1911
        return (env->uncached_cpsr & CPSR_I) != 0;
1912
    case 17: /* FAULTMASK */
1913
        return (env->uncached_cpsr & CPSR_F) != 0;
1914
    case 18: /* BASEPRI */
1915
    case 19: /* BASEPRI_MAX */
1916
        return env->v7m.basepri;
1917
    case 20: /* CONTROL */
1918
        return env->v7m.control;
1919
    default:
1920
        /* ??? For debugging only.  */
1921
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1922
        return 0;
1923
    }
1924
}
1925

    
1926
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1927
{
1928
    switch (reg) {
1929
    case 0: /* APSR */
1930
        xpsr_write(env, val, 0xf8000000);
1931
        break;
1932
    case 1: /* IAPSR */
1933
        xpsr_write(env, val, 0xf8000000);
1934
        break;
1935
    case 2: /* EAPSR */
1936
        xpsr_write(env, val, 0xfe00fc00);
1937
        break;
1938
    case 3: /* xPSR */
1939
        xpsr_write(env, val, 0xfe00fc00);
1940
        break;
1941
    case 5: /* IPSR */
1942
        /* IPSR bits are readonly.  */
1943
        break;
1944
    case 6: /* EPSR */
1945
        xpsr_write(env, val, 0x0600fc00);
1946
        break;
1947
    case 7: /* IEPSR */
1948
        xpsr_write(env, val, 0x0600fc00);
1949
        break;
1950
    case 8: /* MSP */
1951
        if (env->v7m.current_sp)
1952
            env->v7m.other_sp = val;
1953
        else
1954
            env->regs[13] = val;
1955
        break;
1956
    case 9: /* PSP */
1957
        if (env->v7m.current_sp)
1958
            env->regs[13] = val;
1959
        else
1960
            env->v7m.other_sp = val;
1961
        break;
1962
    case 16: /* PRIMASK */
1963
        if (val & 1)
1964
            env->uncached_cpsr |= CPSR_I;
1965
        else
1966
            env->uncached_cpsr &= ~CPSR_I;
1967
        break;
1968
    case 17: /* FAULTMASK */
1969
        if (val & 1)
1970
            env->uncached_cpsr |= CPSR_F;
1971
        else
1972
            env->uncached_cpsr &= ~CPSR_F;
1973
        break;
1974
    case 18: /* BASEPRI */
1975
        env->v7m.basepri = val & 0xff;
1976
        break;
1977
    case 19: /* BASEPRI_MAX */
1978
        val &= 0xff;
1979
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1980
            env->v7m.basepri = val;
1981
        break;
1982
    case 20: /* CONTROL */
1983
        env->v7m.control = val & 3;
1984
        switch_v7m_sp(env, (val & 2) != 0);
1985
        break;
1986
    default:
1987
        /* ??? For debugging only.  */
1988
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1989
        return;
1990
    }
1991
}
1992

    
1993
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1994
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1995
                void *opaque)
1996
{
1997
    if (cpnum < 0 || cpnum > 14) {
1998
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1999
        return;
2000
    }
2001

    
2002
    env->cp[cpnum].cp_read = cp_read;
2003
    env->cp[cpnum].cp_write = cp_write;
2004
    env->cp[cpnum].opaque = opaque;
2005
}
2006

    
2007
#endif
2008

    
2009
/* Note that signed overflow is undefined in C.  The following routines are
2010
   careful to use unsigned types where modulo arithmetic is required.
2011
   Failure to do so _will_ break on newer gcc.  */
2012

    
2013
/* Signed saturating arithmetic.  */
2014

    
2015
/* Perform 16-bit signed saturating addition.  */
2016
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2017
{
2018
    uint16_t res;
2019

    
2020
    res = a + b;
2021
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2022
        if (a & 0x8000)
2023
            res = 0x8000;
2024
        else
2025
            res = 0x7fff;
2026
    }
2027
    return res;
2028
}
2029

    
2030
/* Perform 8-bit signed saturating addition.  */
2031
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2032
{
2033
    uint8_t res;
2034

    
2035
    res = a + b;
2036
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2037
        if (a & 0x80)
2038
            res = 0x80;
2039
        else
2040
            res = 0x7f;
2041
    }
2042
    return res;
2043
}
2044

    
2045
/* Perform 16-bit signed saturating subtraction.  */
2046
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2047
{
2048
    uint16_t res;
2049

    
2050
    res = a - b;
2051
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2052
        if (a & 0x8000)
2053
            res = 0x8000;
2054
        else
2055
            res = 0x7fff;
2056
    }
2057
    return res;
2058
}
2059

    
2060
/* Perform 8-bit signed saturating subtraction.  */
2061
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2062
{
2063
    uint8_t res;
2064

    
2065
    res = a - b;
2066
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2067
        if (a & 0x80)
2068
            res = 0x80;
2069
        else
2070
            res = 0x7f;
2071
    }
2072
    return res;
2073
}
2074

    
2075
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2076
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2077
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2078
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2079
#define PFX q
2080

    
2081
#include "op_addsub.h"
2082

    
2083
/* Unsigned saturating arithmetic.  */
2084
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2085
{
2086
    uint16_t res;
2087
    res = a + b;
2088
    if (res < a)
2089
        res = 0xffff;
2090
    return res;
2091
}
2092

    
2093
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2094
{
2095
    if (a < b)
2096
        return a - b;
2097
    else
2098
        return 0;
2099
}
2100

    
2101
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2102
{
2103
    uint8_t res;
2104
    res = a + b;
2105
    if (res < a)
2106
        res = 0xff;
2107
    return res;
2108
}
2109

    
2110
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2111
{
2112
    if (a < b)
2113
        return a - b;
2114
    else
2115
        return 0;
2116
}
2117

    
2118
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2119
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2120
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2121
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2122
#define PFX uq
2123

    
2124
#include "op_addsub.h"
2125

    
2126
/* Signed modulo arithmetic.  */
2127
#define SARITH16(a, b, n, op) do { \
2128
    int32_t sum; \
2129
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2130
    RESULT(sum, n, 16); \
2131
    if (sum >= 0) \
2132
        ge |= 3 << (n * 2); \
2133
    } while(0)
2134

    
2135
#define SARITH8(a, b, n, op) do { \
2136
    int32_t sum; \
2137
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2138
    RESULT(sum, n, 8); \
2139
    if (sum >= 0) \
2140
        ge |= 1 << n; \
2141
    } while(0)
2142

    
2143

    
2144
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2145
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2146
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2147
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2148
#define PFX s
2149
#define ARITH_GE
2150

    
2151
#include "op_addsub.h"
2152

    
2153
/* Unsigned modulo arithmetic.  */
2154
#define ADD16(a, b, n) do { \
2155
    uint32_t sum; \
2156
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2157
    RESULT(sum, n, 16); \
2158
    if ((sum >> 16) == 1) \
2159
        ge |= 3 << (n * 2); \
2160
    } while(0)
2161

    
2162
#define ADD8(a, b, n) do { \
2163
    uint32_t sum; \
2164
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2165
    RESULT(sum, n, 8); \
2166
    if ((sum >> 8) == 1) \
2167
        ge |= 1 << n; \
2168
    } while(0)
2169

    
2170
#define SUB16(a, b, n) do { \
2171
    uint32_t sum; \
2172
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2173
    RESULT(sum, n, 16); \
2174
    if ((sum >> 16) == 0) \
2175
        ge |= 3 << (n * 2); \
2176
    } while(0)
2177

    
2178
#define SUB8(a, b, n) do { \
2179
    uint32_t sum; \
2180
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2181
    RESULT(sum, n, 8); \
2182
    if ((sum >> 8) == 0) \
2183
        ge |= 1 << n; \
2184
    } while(0)
2185

    
2186
#define PFX u
2187
#define ARITH_GE
2188

    
2189
#include "op_addsub.h"
2190

    
2191
/* Halved signed arithmetic.  */
2192
#define ADD16(a, b, n) \
2193
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2194
#define SUB16(a, b, n) \
2195
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2196
#define ADD8(a, b, n) \
2197
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2198
#define SUB8(a, b, n) \
2199
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2200
#define PFX sh
2201

    
2202
#include "op_addsub.h"
2203

    
2204
/* Halved unsigned arithmetic.  */
2205
#define ADD16(a, b, n) \
2206
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2207
#define SUB16(a, b, n) \
2208
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2209
#define ADD8(a, b, n) \
2210
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2211
#define SUB8(a, b, n) \
2212
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2213
#define PFX uh
2214

    
2215
#include "op_addsub.h"
2216

    
2217
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2218
{
2219
    if (a > b)
2220
        return a - b;
2221
    else
2222
        return b - a;
2223
}
2224

    
2225
/* Unsigned sum of absolute byte differences.  */
2226
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2227
{
2228
    uint32_t sum;
2229
    sum = do_usad(a, b);
2230
    sum += do_usad(a >> 8, b >> 8);
2231
    sum += do_usad(a >> 16, b >>16);
2232
    sum += do_usad(a >> 24, b >> 24);
2233
    return sum;
2234
}
2235

    
2236
/* For ARMv6 SEL instruction.  */
2237
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2238
{
2239
    uint32_t mask;
2240

    
2241
    mask = 0;
2242
    if (flags & 1)
2243
        mask |= 0xff;
2244
    if (flags & 2)
2245
        mask |= 0xff00;
2246
    if (flags & 4)
2247
        mask |= 0xff0000;
2248
    if (flags & 8)
2249
        mask |= 0xff000000;
2250
    return (a & mask) | (b & ~mask);
2251
}
2252

    
2253
uint32_t HELPER(logicq_cc)(uint64_t val)
2254
{
2255
    return (val >> 32) | (val != 0);
2256
}
2257

    
2258
/* VFP support.  We follow the convention used for VFP instrunctions:
2259
   Single precition routines have a "s" suffix, double precision a
2260
   "d" suffix.  */
2261

    
2262
/* Convert host exception flags to vfp form.  */
2263
static inline int vfp_exceptbits_from_host(int host_bits)
2264
{
2265
    int target_bits = 0;
2266

    
2267
    if (host_bits & float_flag_invalid)
2268
        target_bits |= 1;
2269
    if (host_bits & float_flag_divbyzero)
2270
        target_bits |= 2;
2271
    if (host_bits & float_flag_overflow)
2272
        target_bits |= 4;
2273
    if (host_bits & float_flag_underflow)
2274
        target_bits |= 8;
2275
    if (host_bits & float_flag_inexact)
2276
        target_bits |= 0x10;
2277
    return target_bits;
2278
}
2279

    
2280
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2281
{
2282
    int i;
2283
    uint32_t fpscr;
2284

    
2285
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2286
            | (env->vfp.vec_len << 16)
2287
            | (env->vfp.vec_stride << 20);
2288
    i = get_float_exception_flags(&env->vfp.fp_status);
2289
    fpscr |= vfp_exceptbits_from_host(i);
2290
    return fpscr;
2291
}
2292

    
2293
/* Convert vfp exception flags to target form.  */
2294
static inline int vfp_exceptbits_to_host(int target_bits)
2295
{
2296
    int host_bits = 0;
2297

    
2298
    if (target_bits & 1)
2299
        host_bits |= float_flag_invalid;
2300
    if (target_bits & 2)
2301
        host_bits |= float_flag_divbyzero;
2302
    if (target_bits & 4)
2303
        host_bits |= float_flag_overflow;
2304
    if (target_bits & 8)
2305
        host_bits |= float_flag_underflow;
2306
    if (target_bits & 0x10)
2307
        host_bits |= float_flag_inexact;
2308
    return host_bits;
2309
}
2310

    
2311
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2312
{
2313
    int i;
2314
    uint32_t changed;
2315

    
2316
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2317
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2318
    env->vfp.vec_len = (val >> 16) & 7;
2319
    env->vfp.vec_stride = (val >> 20) & 3;
2320

    
2321
    changed ^= val;
2322
    if (changed & (3 << 22)) {
2323
        i = (val >> 22) & 3;
2324
        switch (i) {
2325
        case 0:
2326
            i = float_round_nearest_even;
2327
            break;
2328
        case 1:
2329
            i = float_round_up;
2330
            break;
2331
        case 2:
2332
            i = float_round_down;
2333
            break;
2334
        case 3:
2335
            i = float_round_to_zero;
2336
            break;
2337
        }
2338
        set_float_rounding_mode(i, &env->vfp.fp_status);
2339
    }
2340
    if (changed & (1 << 24))
2341
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2342
    if (changed & (1 << 25))
2343
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2344

    
2345
    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2346
    set_float_exception_flags(i, &env->vfp.fp_status);
2347
}
2348

    
2349
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2350

    
2351
#define VFP_BINOP(name) \
2352
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2353
{ \
2354
    return float32_ ## name (a, b, &env->vfp.fp_status); \
2355
} \
2356
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2357
{ \
2358
    return float64_ ## name (a, b, &env->vfp.fp_status); \
2359
}
2360
VFP_BINOP(add)
2361
VFP_BINOP(sub)
2362
VFP_BINOP(mul)
2363
VFP_BINOP(div)
2364
#undef VFP_BINOP
2365

    
2366
float32 VFP_HELPER(neg, s)(float32 a)
2367
{
2368
    return float32_chs(a);
2369
}
2370

    
2371
float64 VFP_HELPER(neg, d)(float64 a)
2372
{
2373
    return float64_chs(a);
2374
}
2375

    
2376
float32 VFP_HELPER(abs, s)(float32 a)
2377
{
2378
    return float32_abs(a);
2379
}
2380

    
2381
float64 VFP_HELPER(abs, d)(float64 a)
2382
{
2383
    return float64_abs(a);
2384
}
2385

    
2386
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2387
{
2388
    return float32_sqrt(a, &env->vfp.fp_status);
2389
}
2390

    
2391
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2392
{
2393
    return float64_sqrt(a, &env->vfp.fp_status);
2394
}
2395

    
2396
/* XXX: check quiet/signaling case */
2397
#define DO_VFP_cmp(p, type) \
2398
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2399
{ \
2400
    uint32_t flags; \
2401
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2402
    case 0: flags = 0x6; break; \
2403
    case -1: flags = 0x8; break; \
2404
    case 1: flags = 0x2; break; \
2405
    default: case 2: flags = 0x3; break; \
2406
    } \
2407
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2408
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2409
} \
2410
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2411
{ \
2412
    uint32_t flags; \
2413
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2414
    case 0: flags = 0x6; break; \
2415
    case -1: flags = 0x8; break; \
2416
    case 1: flags = 0x2; break; \
2417
    default: case 2: flags = 0x3; break; \
2418
    } \
2419
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2420
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2421
}
2422
DO_VFP_cmp(s, float32)
2423
DO_VFP_cmp(d, float64)
2424
#undef DO_VFP_cmp
2425

    
2426
/* Helper routines to perform bitwise copies between float and int.  */
2427
static inline float32 vfp_itos(uint32_t i)
2428
{
2429
    union {
2430
        uint32_t i;
2431
        float32 s;
2432
    } v;
2433

    
2434
    v.i = i;
2435
    return v.s;
2436
}
2437

    
2438
static inline uint32_t vfp_stoi(float32 s)
2439
{
2440
    union {
2441
        uint32_t i;
2442
        float32 s;
2443
    } v;
2444

    
2445
    v.s = s;
2446
    return v.i;
2447
}
2448

    
2449
static inline float64 vfp_itod(uint64_t i)
2450
{
2451
    union {
2452
        uint64_t i;
2453
        float64 d;
2454
    } v;
2455

    
2456
    v.i = i;
2457
    return v.d;
2458
}
2459

    
2460
static inline uint64_t vfp_dtoi(float64 d)
2461
{
2462
    union {
2463
        uint64_t i;
2464
        float64 d;
2465
    } v;
2466

    
2467
    v.d = d;
2468
    return v.i;
2469
}
2470

    
2471
/* Integer to float conversion.  */
2472
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2473
{
2474
    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2475
}
2476

    
2477
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2478
{
2479
    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2480
}
2481

    
2482
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2483
{
2484
    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2485
}
2486

    
2487
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2488
{
2489
    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2490
}
2491

    
2492
/* Float to integer conversion.  */
2493
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2494
{
2495
    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2496
}
2497

    
2498
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2499
{
2500
    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2501
}
2502

    
2503
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2504
{
2505
    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2506
}
2507

    
2508
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2509
{
2510
    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2511
}
2512

    
2513
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2514
{
2515
    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2516
}
2517

    
2518
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2519
{
2520
    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2521
}
2522

    
2523
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2524
{
2525
    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2526
}
2527

    
2528
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2529
{
2530
    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2531
}
2532

    
2533
/* floating point conversion */
2534
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2535
{
2536
    return float32_to_float64(x, &env->vfp.fp_status);
2537
}
2538

    
2539
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2540
{
2541
    return float64_to_float32(x, &env->vfp.fp_status);
2542
}
2543

    
2544
/* VFP3 fixed point conversion.  */
2545
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2546
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2547
{ \
2548
    ftype tmp; \
2549
    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2550
                                  &env->vfp.fp_status); \
2551
    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2552
} \
2553
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2554
{ \
2555
    ftype tmp; \
2556
    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2557
    return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2558
        &env->vfp.fp_status)); \
2559
}
2560

    
2561
VFP_CONV_FIX(sh, d, float64, int16, )
2562
VFP_CONV_FIX(sl, d, float64, int32, )
2563
VFP_CONV_FIX(uh, d, float64, uint16, u)
2564
VFP_CONV_FIX(ul, d, float64, uint32, u)
2565
VFP_CONV_FIX(sh, s, float32, int16, )
2566
VFP_CONV_FIX(sl, s, float32, int32, )
2567
VFP_CONV_FIX(uh, s, float32, uint16, u)
2568
VFP_CONV_FIX(ul, s, float32, uint32, u)
2569
#undef VFP_CONV_FIX
2570

    
2571
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2572
{
2573
    float_status *s = &env->vfp.fp_status;
2574
    float32 two = int32_to_float32(2, s);
2575
    return float32_sub(two, float32_mul(a, b, s), s);
2576
}
2577

    
2578
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2579
{
2580
    float_status *s = &env->vfp.fp_status;
2581
    float32 three = int32_to_float32(3, s);
2582
    return float32_sub(three, float32_mul(a, b, s), s);
2583
}
2584

    
2585
/* NEON helpers.  */
2586

    
2587
/* TODO: The architecture specifies the value that the estimate functions
2588
   should return.  We return the exact reciprocal/root instead.  */
2589
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2590
{
2591
    float_status *s = &env->vfp.fp_status;
2592
    float32 one = int32_to_float32(1, s);
2593
    return float32_div(one, a, s);
2594
}
2595

    
2596
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2597
{
2598
    float_status *s = &env->vfp.fp_status;
2599
    float32 one = int32_to_float32(1, s);
2600
    return float32_div(one, float32_sqrt(a, s), s);
2601
}
2602

    
2603
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2604
{
2605
    float_status *s = &env->vfp.fp_status;
2606
    float32 tmp;
2607
    tmp = int32_to_float32(a, s);
2608
    tmp = float32_scalbn(tmp, -32, s);
2609
    tmp = helper_recpe_f32(tmp, env);
2610
    tmp = float32_scalbn(tmp, 31, s);
2611
    return float32_to_int32(tmp, s);
2612
}
2613

    
2614
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2615
{
2616
    float_status *s = &env->vfp.fp_status;
2617
    float32 tmp;
2618
    tmp = int32_to_float32(a, s);
2619
    tmp = float32_scalbn(tmp, -32, s);
2620
    tmp = helper_rsqrte_f32(tmp, env);
2621
    tmp = float32_scalbn(tmp, 31, s);
2622
    return float32_to_int32(tmp, s);
2623
}
2624

    
2625
void HELPER(set_teecr)(CPUState *env, uint32_t val)
2626
{
2627
    val &= 1;
2628
    if (env->teecr != val) {
2629
        env->teecr = val;
2630
        tb_flush(env);
2631
    }
2632
}