Statistics
| Branch: | Revision:

root / cpu-all.h @ c27004ec

History | View | Annotate | Download (17.6 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#if defined(__arm__) || defined(__sparc__)
24
#define WORDS_ALIGNED
25
#endif
26

    
27
/* some important defines: 
28
 * 
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 * 
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 * 
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 * 
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#include "bswap.h"
41

    
42
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
43
#define BSWAP_NEEDED
44
#endif
45

    
46
#ifdef BSWAP_NEEDED
47

    
48
static inline uint16_t tswap16(uint16_t s)
49
{
50
    return bswap16(s);
51
}
52

    
53
static inline uint32_t tswap32(uint32_t s)
54
{
55
    return bswap32(s);
56
}
57

    
58
static inline uint64_t tswap64(uint64_t s)
59
{
60
    return bswap64(s);
61
}
62

    
63
static inline void tswap16s(uint16_t *s)
64
{
65
    *s = bswap16(*s);
66
}
67

    
68
static inline void tswap32s(uint32_t *s)
69
{
70
    *s = bswap32(*s);
71
}
72

    
73
static inline void tswap64s(uint64_t *s)
74
{
75
    *s = bswap64(*s);
76
}
77

    
78
#else
79

    
80
static inline uint16_t tswap16(uint16_t s)
81
{
82
    return s;
83
}
84

    
85
static inline uint32_t tswap32(uint32_t s)
86
{
87
    return s;
88
}
89

    
90
static inline uint64_t tswap64(uint64_t s)
91
{
92
    return s;
93
}
94

    
95
static inline void tswap16s(uint16_t *s)
96
{
97
}
98

    
99
static inline void tswap32s(uint32_t *s)
100
{
101
}
102

    
103
static inline void tswap64s(uint64_t *s)
104
{
105
}
106

    
107
#endif
108

    
109
#if TARGET_LONG_SIZE == 4
110
#define tswapl(s) tswap32(s)
111
#define tswapls(s) tswap32s((uint32_t *)(s))
112
#else
113
#define tswapl(s) tswap64(s)
114
#define tswapls(s) tswap64s((uint64_t *)(s))
115
#endif
116

    
117
/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
118
typedef union {
119
    double d;
120
#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
121
    struct {
122
        uint32_t lower;
123
        uint32_t upper;
124
    } l;
125
#else
126
    struct {
127
        uint32_t upper;
128
        uint32_t lower;
129
    } l;
130
#endif
131
    uint64_t ll;
132
} CPU_DoubleU;
133

    
134
/* CPU memory access without any memory or io remapping */
135

    
136
/*
137
 * the generic syntax for the memory accesses is:
138
 *
139
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
140
 *
141
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
142
 *
143
 * type is:
144
 * (empty): integer access
145
 *   f    : float access
146
 * 
147
 * sign is:
148
 * (empty): for floats or 32 bit size
149
 *   u    : unsigned
150
 *   s    : signed
151
 *
152
 * size is:
153
 *   b: 8 bits
154
 *   w: 16 bits
155
 *   l: 32 bits
156
 *   q: 64 bits
157
 * 
158
 * endian is:
159
 * (empty): target cpu endianness or 8 bit access
160
 *   r    : reversed target cpu endianness (not implemented yet)
161
 *   be   : big endian (not implemented yet)
162
 *   le   : little endian (not implemented yet)
163
 *
164
 * access_type is:
165
 *   raw    : host memory access
166
 *   user   : user mode access using soft MMU
167
 *   kernel : kernel mode access using soft MMU
168
 */
169
static inline int ldub_p(void *ptr)
170
{
171
    return *(uint8_t *)ptr;
172
}
173

    
174
static inline int ldsb_p(void *ptr)
175
{
176
    return *(int8_t *)ptr;
177
}
178

    
179
static inline void stb_p(void *ptr, int v)
180
{
181
    *(uint8_t *)ptr = v;
182
}
183

    
184
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
185
   kernel handles unaligned load/stores may give better results, but
186
   it is a system wide setting : bad */
187
#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
188

    
189
/* conservative code for little endian unaligned accesses */
190
static inline int lduw_p(void *ptr)
191
{
192
#ifdef __powerpc__
193
    int val;
194
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
195
    return val;
196
#else
197
    uint8_t *p = ptr;
198
    return p[0] | (p[1] << 8);
199
#endif
200
}
201

    
202
static inline int ldsw_p(void *ptr)
203
{
204
#ifdef __powerpc__
205
    int val;
206
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
207
    return (int16_t)val;
208
#else
209
    uint8_t *p = ptr;
210
    return (int16_t)(p[0] | (p[1] << 8));
211
#endif
212
}
213

    
214
static inline int ldl_p(void *ptr)
215
{
216
#ifdef __powerpc__
217
    int val;
218
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
219
    return val;
220
#else
221
    uint8_t *p = ptr;
222
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
223
#endif
224
}
225

    
226
static inline uint64_t ldq_p(void *ptr)
227
{
228
    uint8_t *p = ptr;
229
    uint32_t v1, v2;
230
    v1 = ldl_p(p);
231
    v2 = ldl_p(p + 4);
232
    return v1 | ((uint64_t)v2 << 32);
233
}
234

    
235
static inline void stw_p(void *ptr, int v)
236
{
237
#ifdef __powerpc__
238
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
239
#else
240
    uint8_t *p = ptr;
241
    p[0] = v;
242
    p[1] = v >> 8;
243
#endif
244
}
245

    
246
static inline void stl_p(void *ptr, int v)
247
{
248
#ifdef __powerpc__
249
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
250
#else
251
    uint8_t *p = ptr;
252
    p[0] = v;
253
    p[1] = v >> 8;
254
    p[2] = v >> 16;
255
    p[3] = v >> 24;
256
#endif
257
}
258

    
259
static inline void stq_p(void *ptr, uint64_t v)
260
{
261
    uint8_t *p = ptr;
262
    stl_p(p, (uint32_t)v);
263
    stl_p(p + 4, v >> 32);
264
}
265

    
266
/* float access */
267

    
268
static inline float ldfl_p(void *ptr)
269
{
270
    union {
271
        float f;
272
        uint32_t i;
273
    } u;
274
    u.i = ldl_p(ptr);
275
    return u.f;
276
}
277

    
278
static inline void stfl_p(void *ptr, float v)
279
{
280
    union {
281
        float f;
282
        uint32_t i;
283
    } u;
284
    u.f = v;
285
    stl_p(ptr, u.i);
286
}
287

    
288
static inline double ldfq_p(void *ptr)
289
{
290
    CPU_DoubleU u;
291
    u.l.lower = ldl_p(ptr);
292
    u.l.upper = ldl_p(ptr + 4);
293
    return u.d;
294
}
295

    
296
static inline void stfq_p(void *ptr, double v)
297
{
298
    CPU_DoubleU u;
299
    u.d = v;
300
    stl_p(ptr, u.l.lower);
301
    stl_p(ptr + 4, u.l.upper);
302
}
303

    
304
#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
305

    
306
static inline int lduw_p(void *ptr)
307
{
308
#if defined(__i386__)
309
    int val;
310
    asm volatile ("movzwl %1, %0\n"
311
                  "xchgb %b0, %h0\n"
312
                  : "=q" (val)
313
                  : "m" (*(uint16_t *)ptr));
314
    return val;
315
#else
316
    uint8_t *b = (uint8_t *) ptr;
317
    return ((b[0] << 8) | b[1]);
318
#endif
319
}
320

    
321
static inline int ldsw_p(void *ptr)
322
{
323
#if defined(__i386__)
324
    int val;
325
    asm volatile ("movzwl %1, %0\n"
326
                  "xchgb %b0, %h0\n"
327
                  : "=q" (val)
328
                  : "m" (*(uint16_t *)ptr));
329
    return (int16_t)val;
330
#else
331
    uint8_t *b = (uint8_t *) ptr;
332
    return (int16_t)((b[0] << 8) | b[1]);
333
#endif
334
}
335

    
336
static inline int ldl_p(void *ptr)
337
{
338
#if defined(__i386__) || defined(__x86_64__)
339
    int val;
340
    asm volatile ("movl %1, %0\n"
341
                  "bswap %0\n"
342
                  : "=r" (val)
343
                  : "m" (*(uint32_t *)ptr));
344
    return val;
345
#else
346
    uint8_t *b = (uint8_t *) ptr;
347
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
348
#endif
349
}
350

    
351
static inline uint64_t ldq_p(void *ptr)
352
{
353
    uint32_t a,b;
354
    a = ldl_p(ptr);
355
    b = ldl_p(ptr+4);
356
    return (((uint64_t)a<<32)|b);
357
}
358

    
359
static inline void stw_p(void *ptr, int v)
360
{
361
#if defined(__i386__)
362
    asm volatile ("xchgb %b0, %h0\n"
363
                  "movw %w0, %1\n"
364
                  : "=q" (v)
365
                  : "m" (*(uint16_t *)ptr), "0" (v));
366
#else
367
    uint8_t *d = (uint8_t *) ptr;
368
    d[0] = v >> 8;
369
    d[1] = v;
370
#endif
371
}
372

    
373
static inline void stl_p(void *ptr, int v)
374
{
375
#if defined(__i386__) || defined(__x86_64__)
376
    asm volatile ("bswap %0\n"
377
                  "movl %0, %1\n"
378
                  : "=r" (v)
379
                  : "m" (*(uint32_t *)ptr), "0" (v));
380
#else
381
    uint8_t *d = (uint8_t *) ptr;
382
    d[0] = v >> 24;
383
    d[1] = v >> 16;
384
    d[2] = v >> 8;
385
    d[3] = v;
386
#endif
387
}
388

    
389
static inline void stq_p(void *ptr, uint64_t v)
390
{
391
    stl_p(ptr, v >> 32);
392
    stl_p(ptr + 4, v);
393
}
394

    
395
/* float access */
396

    
397
static inline float ldfl_p(void *ptr)
398
{
399
    union {
400
        float f;
401
        uint32_t i;
402
    } u;
403
    u.i = ldl_p(ptr);
404
    return u.f;
405
}
406

    
407
static inline void stfl_p(void *ptr, float v)
408
{
409
    union {
410
        float f;
411
        uint32_t i;
412
    } u;
413
    u.f = v;
414
    stl_p(ptr, u.i);
415
}
416

    
417
static inline double ldfq_p(void *ptr)
418
{
419
    CPU_DoubleU u;
420
    u.l.upper = ldl_p(ptr);
421
    u.l.lower = ldl_p(ptr + 4);
422
    return u.d;
423
}
424

    
425
static inline void stfq_p(void *ptr, double v)
426
{
427
    CPU_DoubleU u;
428
    u.d = v;
429
    stl_p(ptr, u.l.upper);
430
    stl_p(ptr + 4, u.l.lower);
431
}
432

    
433
#else
434

    
435
static inline int lduw_p(void *ptr)
436
{
437
    return *(uint16_t *)ptr;
438
}
439

    
440
static inline int ldsw_p(void *ptr)
441
{
442
    return *(int16_t *)ptr;
443
}
444

    
445
static inline int ldl_p(void *ptr)
446
{
447
    return *(uint32_t *)ptr;
448
}
449

    
450
static inline uint64_t ldq_p(void *ptr)
451
{
452
    return *(uint64_t *)ptr;
453
}
454

    
455
static inline void stw_p(void *ptr, int v)
456
{
457
    *(uint16_t *)ptr = v;
458
}
459

    
460
static inline void stl_p(void *ptr, int v)
461
{
462
    *(uint32_t *)ptr = v;
463
}
464

    
465
static inline void stq_p(void *ptr, uint64_t v)
466
{
467
    *(uint64_t *)ptr = v;
468
}
469

    
470
/* float access */
471

    
472
static inline float ldfl_p(void *ptr)
473
{
474
    return *(float *)ptr;
475
}
476

    
477
static inline double ldfq_p(void *ptr)
478
{
479
    return *(double *)ptr;
480
}
481

    
482
static inline void stfl_p(void *ptr, float v)
483
{
484
    *(float *)ptr = v;
485
}
486

    
487
static inline void stfq_p(void *ptr, double v)
488
{
489
    *(double *)ptr = v;
490
}
491
#endif
492

    
493
/* MMU memory access macros */
494

    
495
/* NOTE: we use double casts if pointers and target_ulong have
496
   different sizes */
497
#define ldub_raw(p) ldub_p((uint8_t *)(long)(p))
498
#define ldsb_raw(p) ldsb_p((uint8_t *)(long)(p))
499
#define lduw_raw(p) lduw_p((uint8_t *)(long)(p))
500
#define ldsw_raw(p) ldsw_p((uint8_t *)(long)(p))
501
#define ldl_raw(p) ldl_p((uint8_t *)(long)(p))
502
#define ldq_raw(p) ldq_p((uint8_t *)(long)(p))
503
#define ldfl_raw(p) ldfl_p((uint8_t *)(long)(p))
504
#define ldfq_raw(p) ldfq_p((uint8_t *)(long)(p))
505
#define stb_raw(p, v) stb_p((uint8_t *)(long)(p), v)
506
#define stw_raw(p, v) stw_p((uint8_t *)(long)(p), v)
507
#define stl_raw(p, v) stl_p((uint8_t *)(long)(p), v)
508
#define stq_raw(p, v) stq_p((uint8_t *)(long)(p), v)
509
#define stfl_raw(p, v) stfl_p((uint8_t *)(long)(p), v)
510
#define stfq_raw(p, v) stfq_p((uint8_t *)(long)(p), v)
511

    
512

    
513
#if defined(CONFIG_USER_ONLY) 
514

    
515
/* if user mode, no other memory access functions */
516
#define ldub(p) ldub_raw(p)
517
#define ldsb(p) ldsb_raw(p)
518
#define lduw(p) lduw_raw(p)
519
#define ldsw(p) ldsw_raw(p)
520
#define ldl(p) ldl_raw(p)
521
#define ldq(p) ldq_raw(p)
522
#define ldfl(p) ldfl_raw(p)
523
#define ldfq(p) ldfq_raw(p)
524
#define stb(p, v) stb_raw(p, v)
525
#define stw(p, v) stw_raw(p, v)
526
#define stl(p, v) stl_raw(p, v)
527
#define stq(p, v) stq_raw(p, v)
528
#define stfl(p, v) stfl_raw(p, v)
529
#define stfq(p, v) stfq_raw(p, v)
530

    
531
#define ldub_code(p) ldub_raw(p)
532
#define ldsb_code(p) ldsb_raw(p)
533
#define lduw_code(p) lduw_raw(p)
534
#define ldsw_code(p) ldsw_raw(p)
535
#define ldl_code(p) ldl_raw(p)
536

    
537
#define ldub_kernel(p) ldub_raw(p)
538
#define ldsb_kernel(p) ldsb_raw(p)
539
#define lduw_kernel(p) lduw_raw(p)
540
#define ldsw_kernel(p) ldsw_raw(p)
541
#define ldl_kernel(p) ldl_raw(p)
542
#define ldfl_kernel(p) ldfl_raw(p)
543
#define ldfq_kernel(p) ldfq_raw(p)
544
#define stb_kernel(p, v) stb_raw(p, v)
545
#define stw_kernel(p, v) stw_raw(p, v)
546
#define stl_kernel(p, v) stl_raw(p, v)
547
#define stq_kernel(p, v) stq_raw(p, v)
548
#define stfl_kernel(p, v) stfl_raw(p, v)
549
#define stfq_kernel(p, vt) stfq_raw(p, v)
550

    
551
#endif /* defined(CONFIG_USER_ONLY) */
552

    
553
/* page related stuff */
554

    
555
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
556
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
557
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
558

    
559
extern unsigned long qemu_real_host_page_size;
560
extern unsigned long qemu_host_page_bits;
561
extern unsigned long qemu_host_page_size;
562
extern unsigned long qemu_host_page_mask;
563

    
564
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
565

    
566
/* same as PROT_xxx */
567
#define PAGE_READ      0x0001
568
#define PAGE_WRITE     0x0002
569
#define PAGE_EXEC      0x0004
570
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
571
#define PAGE_VALID     0x0008
572
/* original state of the write flag (used when tracking self-modifying
573
   code */
574
#define PAGE_WRITE_ORG 0x0010 
575

    
576
void page_dump(FILE *f);
577
int page_get_flags(unsigned long address);
578
void page_set_flags(unsigned long start, unsigned long end, int flags);
579
void page_unprotect_range(uint8_t *data, unsigned long data_size);
580

    
581
#define SINGLE_CPU_DEFINES
582
#ifdef SINGLE_CPU_DEFINES
583

    
584
#if defined(TARGET_I386)
585

    
586
#define CPUState CPUX86State
587
#define cpu_init cpu_x86_init
588
#define cpu_exec cpu_x86_exec
589
#define cpu_gen_code cpu_x86_gen_code
590
#define cpu_signal_handler cpu_x86_signal_handler
591

    
592
#elif defined(TARGET_ARM)
593

    
594
#define CPUState CPUARMState
595
#define cpu_init cpu_arm_init
596
#define cpu_exec cpu_arm_exec
597
#define cpu_gen_code cpu_arm_gen_code
598
#define cpu_signal_handler cpu_arm_signal_handler
599

    
600
#elif defined(TARGET_SPARC)
601

    
602
#define CPUState CPUSPARCState
603
#define cpu_init cpu_sparc_init
604
#define cpu_exec cpu_sparc_exec
605
#define cpu_gen_code cpu_sparc_gen_code
606
#define cpu_signal_handler cpu_sparc_signal_handler
607

    
608
#elif defined(TARGET_PPC)
609

    
610
#define CPUState CPUPPCState
611
#define cpu_init cpu_ppc_init
612
#define cpu_exec cpu_ppc_exec
613
#define cpu_gen_code cpu_ppc_gen_code
614
#define cpu_signal_handler cpu_ppc_signal_handler
615

    
616
#else
617

    
618
#error unsupported target CPU
619

    
620
#endif
621

    
622
#endif /* SINGLE_CPU_DEFINES */
623

    
624
void cpu_dump_state(CPUState *env, FILE *f, 
625
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
626
                    int flags);
627

    
628
void cpu_abort(CPUState *env, const char *fmt, ...);
629
extern CPUState *cpu_single_env;
630
extern int code_copy_enabled;
631

    
632
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
633
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
634
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
635
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
636
void cpu_interrupt(CPUState *s, int mask);
637
void cpu_reset_interrupt(CPUState *env, int mask);
638

    
639
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
640
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
641
void cpu_single_step(CPUState *env, int enabled);
642
void cpu_reset(CPUState *s);
643

    
644
/* Return the physical page corresponding to a virtual one. Use it
645
   only for debugging because no protection checks are done. Return -1
646
   if no page found. */
647
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
648

    
649
#define CPU_LOG_TB_OUT_ASM (1 << 0) 
650
#define CPU_LOG_TB_IN_ASM  (1 << 1)
651
#define CPU_LOG_TB_OP      (1 << 2)
652
#define CPU_LOG_TB_OP_OPT  (1 << 3)
653
#define CPU_LOG_INT        (1 << 4)
654
#define CPU_LOG_EXEC       (1 << 5)
655
#define CPU_LOG_PCALL      (1 << 6)
656
#define CPU_LOG_IOPORT     (1 << 7)
657
#define CPU_LOG_TB_CPU     (1 << 8)
658

    
659
/* define log items */
660
typedef struct CPULogItem {
661
    int mask;
662
    const char *name;
663
    const char *help;
664
} CPULogItem;
665

    
666
extern CPULogItem cpu_log_items[];
667

    
668
void cpu_set_log(int log_flags);
669
void cpu_set_log_filename(const char *filename);
670
int cpu_str_to_log_mask(const char *str);
671

    
672
/* IO ports API */
673

    
674
/* NOTE: as these functions may be even used when there is an isa
675
   brige on non x86 targets, we always defined them */
676
#ifndef NO_CPU_IO_DEFS
677
void cpu_outb(CPUState *env, int addr, int val);
678
void cpu_outw(CPUState *env, int addr, int val);
679
void cpu_outl(CPUState *env, int addr, int val);
680
int cpu_inb(CPUState *env, int addr);
681
int cpu_inw(CPUState *env, int addr);
682
int cpu_inl(CPUState *env, int addr);
683
#endif
684

    
685
/* memory API */
686

    
687
extern int phys_ram_size;
688
extern int phys_ram_fd;
689
extern uint8_t *phys_ram_base;
690
extern uint8_t *phys_ram_dirty;
691

    
692
/* physical memory access */
693
#define IO_MEM_NB_ENTRIES  256
694
#define TLB_INVALID_MASK   (1 << 3)
695
#define IO_MEM_SHIFT       4
696

    
697
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
698
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
699
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
700
#define IO_MEM_CODE        (3 << IO_MEM_SHIFT) /* used internally, never use directly */
701
#define IO_MEM_NOTDIRTY    (4 << IO_MEM_SHIFT) /* used internally, never use directly */
702

    
703
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
704
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
705

    
706
void cpu_register_physical_memory(target_phys_addr_t start_addr, 
707
                                  unsigned long size,
708
                                  unsigned long phys_offset);
709
int cpu_register_io_memory(int io_index,
710
                           CPUReadMemoryFunc **mem_read,
711
                           CPUWriteMemoryFunc **mem_write,
712
                           void *opaque);
713
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
714
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
715

    
716
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
717
                            int len, int is_write);
718
static inline void cpu_physical_memory_read(target_phys_addr_t addr, 
719
                                            uint8_t *buf, int len)
720
{
721
    cpu_physical_memory_rw(addr, buf, len, 0);
722
}
723
static inline void cpu_physical_memory_write(target_phys_addr_t addr, 
724
                                             const uint8_t *buf, int len)
725
{
726
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
727
}
728

    
729
int cpu_memory_rw_debug(CPUState *env, target_ulong addr, 
730
                        uint8_t *buf, int len, int is_write);
731

    
732
/* read dirty bit (return 0 or 1) */
733
static inline int cpu_physical_memory_is_dirty(target_ulong addr)
734
{
735
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS];
736
}
737

    
738
static inline void cpu_physical_memory_set_dirty(target_ulong addr)
739
{
740
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 1;
741
}
742

    
743
void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end);
744

    
745
#endif /* CPU_ALL_H */