Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ c5999bfc

History | View | Annotate | Download (51.9 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67
static bool has_msr_async_pf_en;
68
#endif
69
static int lm_capable_kernel;
70

    
71
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72
{
73
    struct kvm_cpuid2 *cpuid;
74
    int r, size;
75

    
76
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78
    cpuid->nent = max;
79
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80
    if (r == 0 && cpuid->nent >= max) {
81
        r = -E2BIG;
82
    }
83
    if (r < 0) {
84
        if (r == -E2BIG) {
85
            qemu_free(cpuid);
86
            return NULL;
87
        } else {
88
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89
                    strerror(-r));
90
            exit(1);
91
        }
92
    }
93
    return cpuid;
94
}
95

    
96
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97
                                      uint32_t index, int reg)
98
{
99
    struct kvm_cpuid2 *cpuid;
100
    int i, max;
101
    uint32_t ret = 0;
102
    uint32_t cpuid_1_edx;
103

    
104
    max = 1;
105
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106
        max *= 2;
107
    }
108

    
109
    for (i = 0; i < cpuid->nent; ++i) {
110
        if (cpuid->entries[i].function == function &&
111
            cpuid->entries[i].index == index) {
112
            switch (reg) {
113
            case R_EAX:
114
                ret = cpuid->entries[i].eax;
115
                break;
116
            case R_EBX:
117
                ret = cpuid->entries[i].ebx;
118
                break;
119
            case R_ECX:
120
                ret = cpuid->entries[i].ecx;
121
                break;
122
            case R_EDX:
123
                ret = cpuid->entries[i].edx;
124
                switch (function) {
125
                case 1:
126
                    /* KVM before 2.6.30 misreports the following features */
127
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128
                    break;
129
                case 0x80000001:
130
                    /* On Intel, kvm returns cpuid according to the Intel spec,
131
                     * so add missing bits according to the AMD spec:
132
                     */
133
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134
                    ret |= cpuid_1_edx & 0x183f7ff;
135
                    break;
136
                }
137
                break;
138
            }
139
        }
140
    }
141

    
142
    qemu_free(cpuid);
143

    
144
    return ret;
145
}
146

    
147
#ifdef CONFIG_KVM_PARA
148
struct kvm_para_features {
149
    int cap;
150
    int feature;
151
} para_features[] = {
152
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155
#ifdef KVM_CAP_ASYNC_PF
156
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157
#endif
158
    { -1, -1 }
159
};
160

    
161
static int get_para_features(CPUState *env)
162
{
163
    int i, features = 0;
164

    
165
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167
            features |= (1 << para_features[i].feature);
168
        }
169
    }
170
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171
    return features;
172
}
173
#endif
174

    
175
#ifdef KVM_CAP_MCE
176
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
177
                                     int *max_banks)
178
{
179
    int r;
180

    
181
    r = kvm_check_extension(s, KVM_CAP_MCE);
182
    if (r > 0) {
183
        *max_banks = r;
184
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
185
    }
186
    return -ENOSYS;
187
}
188

    
189
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
190
{
191
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
192
}
193

    
194
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
195
{
196
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
197
}
198

    
199
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
200
{
201
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
202
    int r;
203

    
204
    kmsrs->nmsrs = n;
205
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
206
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
207
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
208
    free(kmsrs);
209
    return r;
210
}
211

    
212
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
213
static int kvm_mce_in_progress(CPUState *env)
214
{
215
    struct kvm_msr_entry msr_mcg_status = {
216
        .index = MSR_MCG_STATUS,
217
    };
218
    int r;
219

    
220
    r = kvm_get_msr(env, &msr_mcg_status, 1);
221
    if (r == -1 || r == 0) {
222
        fprintf(stderr, "Failed to get MCE status\n");
223
        return 0;
224
    }
225
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
226
}
227

    
228
struct kvm_x86_mce_data
229
{
230
    CPUState *env;
231
    struct kvm_x86_mce *mce;
232
    int abort_on_error;
233
};
234

    
235
static void kvm_do_inject_x86_mce(void *_data)
236
{
237
    struct kvm_x86_mce_data *data = _data;
238
    int r;
239

    
240
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
241
    if ((data->env->mcg_cap & MCG_SER_P) &&
242
        !(data->mce->status & MCI_STATUS_AR)) {
243
        if (kvm_mce_in_progress(data->env)) {
244
            return;
245
        }
246
    }
247

    
248
    r = kvm_set_mce(data->env, data->mce);
249
    if (r < 0) {
250
        perror("kvm_set_mce FAILED");
251
        if (data->abort_on_error) {
252
            abort();
253
        }
254
    }
255
}
256

    
257
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
258
                                  int flag)
259
{
260
    struct kvm_x86_mce_data data = {
261
        .env = env,
262
        .mce = mce,
263
        .abort_on_error = (flag & ABORT_ON_ERROR),
264
    };
265

    
266
    if (!env->mcg_cap) {
267
        fprintf(stderr, "MCE support is not enabled!\n");
268
        return;
269
    }
270

    
271
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
272
}
273

    
274
static void kvm_mce_broadcast_rest(CPUState *env);
275
#endif
276

    
277
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
278
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
279
                        int flag)
280
{
281
#ifdef KVM_CAP_MCE
282
    struct kvm_x86_mce mce = {
283
        .bank = bank,
284
        .status = status,
285
        .mcg_status = mcg_status,
286
        .addr = addr,
287
        .misc = misc,
288
    };
289

    
290
    if (flag & MCE_BROADCAST) {
291
        kvm_mce_broadcast_rest(cenv);
292
    }
293

    
294
    kvm_inject_x86_mce_on(cenv, &mce, flag);
295
#else
296
    if (flag & ABORT_ON_ERROR) {
297
        abort();
298
    }
299
#endif
300
}
301

    
302
int kvm_arch_init_vcpu(CPUState *env)
303
{
304
    struct {
305
        struct kvm_cpuid2 cpuid;
306
        struct kvm_cpuid_entry2 entries[100];
307
    } __attribute__((packed)) cpuid_data;
308
    uint32_t limit, i, j, cpuid_i;
309
    uint32_t unused;
310
    struct kvm_cpuid_entry2 *c;
311
#ifdef CONFIG_KVM_PARA
312
    uint32_t signature[3];
313
#endif
314

    
315
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
316

    
317
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
318
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
319
    env->cpuid_ext_features |= i;
320

    
321
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
322
                                                             0, R_EDX);
323
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
324
                                                             0, R_ECX);
325
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
326
                                                             0, R_EDX);
327

    
328

    
329
    cpuid_i = 0;
330

    
331
#ifdef CONFIG_KVM_PARA
332
    /* Paravirtualization CPUIDs */
333
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
334
    c = &cpuid_data.entries[cpuid_i++];
335
    memset(c, 0, sizeof(*c));
336
    c->function = KVM_CPUID_SIGNATURE;
337
    c->eax = 0;
338
    c->ebx = signature[0];
339
    c->ecx = signature[1];
340
    c->edx = signature[2];
341

    
342
    c = &cpuid_data.entries[cpuid_i++];
343
    memset(c, 0, sizeof(*c));
344
    c->function = KVM_CPUID_FEATURES;
345
    c->eax = env->cpuid_kvm_features & get_para_features(env);
346
#endif
347

    
348
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
349

    
350
    for (i = 0; i <= limit; i++) {
351
        c = &cpuid_data.entries[cpuid_i++];
352

    
353
        switch (i) {
354
        case 2: {
355
            /* Keep reading function 2 till all the input is received */
356
            int times;
357

    
358
            c->function = i;
359
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
360
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
361
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
362
            times = c->eax & 0xff;
363

    
364
            for (j = 1; j < times; ++j) {
365
                c = &cpuid_data.entries[cpuid_i++];
366
                c->function = i;
367
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
368
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
369
            }
370
            break;
371
        }
372
        case 4:
373
        case 0xb:
374
        case 0xd:
375
            for (j = 0; ; j++) {
376
                c->function = i;
377
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
378
                c->index = j;
379
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
380

    
381
                if (i == 4 && c->eax == 0) {
382
                    break;
383
                }
384
                if (i == 0xb && !(c->ecx & 0xff00)) {
385
                    break;
386
                }
387
                if (i == 0xd && c->eax == 0) {
388
                    break;
389
                }
390
                c = &cpuid_data.entries[cpuid_i++];
391
            }
392
            break;
393
        default:
394
            c->function = i;
395
            c->flags = 0;
396
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
397
            break;
398
        }
399
    }
400
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
401

    
402
    for (i = 0x80000000; i <= limit; i++) {
403
        c = &cpuid_data.entries[cpuid_i++];
404

    
405
        c->function = i;
406
        c->flags = 0;
407
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408
    }
409

    
410
    cpuid_data.cpuid.nent = cpuid_i;
411

    
412
#ifdef KVM_CAP_MCE
413
    if (((env->cpuid_version >> 8)&0xF) >= 6
414
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
415
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
416
        uint64_t mcg_cap;
417
        int banks;
418

    
419
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
420
            perror("kvm_get_mce_cap_supported FAILED");
421
        } else {
422
            if (banks > MCE_BANKS_DEF)
423
                banks = MCE_BANKS_DEF;
424
            mcg_cap &= MCE_CAP_DEF;
425
            mcg_cap |= banks;
426
            if (kvm_setup_mce(env, &mcg_cap)) {
427
                perror("kvm_setup_mce FAILED");
428
            } else {
429
                env->mcg_cap = mcg_cap;
430
            }
431
        }
432
    }
433
#endif
434

    
435
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
436
}
437

    
438
void kvm_arch_reset_vcpu(CPUState *env)
439
{
440
    env->exception_injected = -1;
441
    env->interrupt_injected = -1;
442
    env->xcr0 = 1;
443
    if (kvm_irqchip_in_kernel()) {
444
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
445
                                          KVM_MP_STATE_UNINITIALIZED;
446
    } else {
447
        env->mp_state = KVM_MP_STATE_RUNNABLE;
448
    }
449
}
450

    
451
static int kvm_get_supported_msrs(KVMState *s)
452
{
453
    static int kvm_supported_msrs;
454
    int ret = 0;
455

    
456
    /* first time */
457
    if (kvm_supported_msrs == 0) {
458
        struct kvm_msr_list msr_list, *kvm_msr_list;
459

    
460
        kvm_supported_msrs = -1;
461

    
462
        /* Obtain MSR list from KVM.  These are the MSRs that we must
463
         * save/restore */
464
        msr_list.nmsrs = 0;
465
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
466
        if (ret < 0 && ret != -E2BIG) {
467
            return ret;
468
        }
469
        /* Old kernel modules had a bug and could write beyond the provided
470
           memory. Allocate at least a safe amount of 1K. */
471
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
472
                                              msr_list.nmsrs *
473
                                              sizeof(msr_list.indices[0])));
474

    
475
        kvm_msr_list->nmsrs = msr_list.nmsrs;
476
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
477
        if (ret >= 0) {
478
            int i;
479

    
480
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
481
                if (kvm_msr_list->indices[i] == MSR_STAR) {
482
                    has_msr_star = true;
483
                    continue;
484
                }
485
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
486
                    has_msr_hsave_pa = true;
487
                    continue;
488
                }
489
            }
490
        }
491

    
492
        free(kvm_msr_list);
493
    }
494

    
495
    return ret;
496
}
497

    
498
int kvm_arch_init(KVMState *s)
499
{
500
    uint64_t identity_base = 0xfffbc000;
501
    int ret;
502
    struct utsname utsname;
503

    
504
    ret = kvm_get_supported_msrs(s);
505
    if (ret < 0) {
506
        return ret;
507
    }
508

    
509
    uname(&utsname);
510
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
511

    
512
    /*
513
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
514
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
515
     * Since these must be part of guest physical memory, we need to allocate
516
     * them, both by setting their start addresses in the kernel and by
517
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
518
     *
519
     * Older KVM versions may not support setting the identity map base. In
520
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
521
     * size.
522
     */
523
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
524
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
525
        /* Allows up to 16M BIOSes. */
526
        identity_base = 0xfeffc000;
527

    
528
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
529
        if (ret < 0) {
530
            return ret;
531
        }
532
    }
533
#endif
534
    /* Set TSS base one page after EPT identity map. */
535
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
536
    if (ret < 0) {
537
        return ret;
538
    }
539

    
540
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
541
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
542
    if (ret < 0) {
543
        fprintf(stderr, "e820_add_entry() table is full\n");
544
        return ret;
545
    }
546

    
547
    return 0;
548
}
549

    
550
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
551
{
552
    lhs->selector = rhs->selector;
553
    lhs->base = rhs->base;
554
    lhs->limit = rhs->limit;
555
    lhs->type = 3;
556
    lhs->present = 1;
557
    lhs->dpl = 3;
558
    lhs->db = 0;
559
    lhs->s = 1;
560
    lhs->l = 0;
561
    lhs->g = 0;
562
    lhs->avl = 0;
563
    lhs->unusable = 0;
564
}
565

    
566
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
567
{
568
    unsigned flags = rhs->flags;
569
    lhs->selector = rhs->selector;
570
    lhs->base = rhs->base;
571
    lhs->limit = rhs->limit;
572
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
573
    lhs->present = (flags & DESC_P_MASK) != 0;
574
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
575
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
576
    lhs->s = (flags & DESC_S_MASK) != 0;
577
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
578
    lhs->g = (flags & DESC_G_MASK) != 0;
579
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
580
    lhs->unusable = 0;
581
}
582

    
583
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
584
{
585
    lhs->selector = rhs->selector;
586
    lhs->base = rhs->base;
587
    lhs->limit = rhs->limit;
588
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
589
                 (rhs->present * DESC_P_MASK) |
590
                 (rhs->dpl << DESC_DPL_SHIFT) |
591
                 (rhs->db << DESC_B_SHIFT) |
592
                 (rhs->s * DESC_S_MASK) |
593
                 (rhs->l << DESC_L_SHIFT) |
594
                 (rhs->g * DESC_G_MASK) |
595
                 (rhs->avl * DESC_AVL_MASK);
596
}
597

    
598
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
599
{
600
    if (set) {
601
        *kvm_reg = *qemu_reg;
602
    } else {
603
        *qemu_reg = *kvm_reg;
604
    }
605
}
606

    
607
static int kvm_getput_regs(CPUState *env, int set)
608
{
609
    struct kvm_regs regs;
610
    int ret = 0;
611

    
612
    if (!set) {
613
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
614
        if (ret < 0) {
615
            return ret;
616
        }
617
    }
618

    
619
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
620
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
621
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
622
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
623
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
624
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
625
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
626
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
627
#ifdef TARGET_X86_64
628
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
629
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
630
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
631
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
632
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
633
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
634
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
635
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
636
#endif
637

    
638
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
639
    kvm_getput_reg(&regs.rip, &env->eip, set);
640

    
641
    if (set) {
642
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
643
    }
644

    
645
    return ret;
646
}
647

    
648
static int kvm_put_fpu(CPUState *env)
649
{
650
    struct kvm_fpu fpu;
651
    int i;
652

    
653
    memset(&fpu, 0, sizeof fpu);
654
    fpu.fsw = env->fpus & ~(7 << 11);
655
    fpu.fsw |= (env->fpstt & 7) << 11;
656
    fpu.fcw = env->fpuc;
657
    for (i = 0; i < 8; ++i) {
658
        fpu.ftwx |= (!env->fptags[i]) << i;
659
    }
660
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
661
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
662
    fpu.mxcsr = env->mxcsr;
663

    
664
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
665
}
666

    
667
#ifdef KVM_CAP_XSAVE
668
#define XSAVE_CWD_RIP     2
669
#define XSAVE_CWD_RDP     4
670
#define XSAVE_MXCSR       6
671
#define XSAVE_ST_SPACE    8
672
#define XSAVE_XMM_SPACE   40
673
#define XSAVE_XSTATE_BV   128
674
#define XSAVE_YMMH_SPACE  144
675
#endif
676

    
677
static int kvm_put_xsave(CPUState *env)
678
{
679
#ifdef KVM_CAP_XSAVE
680
    int i, r;
681
    struct kvm_xsave* xsave;
682
    uint16_t cwd, swd, twd, fop;
683

    
684
    if (!kvm_has_xsave()) {
685
        return kvm_put_fpu(env);
686
    }
687

    
688
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
689
    memset(xsave, 0, sizeof(struct kvm_xsave));
690
    cwd = swd = twd = fop = 0;
691
    swd = env->fpus & ~(7 << 11);
692
    swd |= (env->fpstt & 7) << 11;
693
    cwd = env->fpuc;
694
    for (i = 0; i < 8; ++i) {
695
        twd |= (!env->fptags[i]) << i;
696
    }
697
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
698
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
699
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
700
            sizeof env->fpregs);
701
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
702
            sizeof env->xmm_regs);
703
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
704
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
705
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
706
            sizeof env->ymmh_regs);
707
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
708
    qemu_free(xsave);
709
    return r;
710
#else
711
    return kvm_put_fpu(env);
712
#endif
713
}
714

    
715
static int kvm_put_xcrs(CPUState *env)
716
{
717
#ifdef KVM_CAP_XCRS
718
    struct kvm_xcrs xcrs;
719

    
720
    if (!kvm_has_xcrs()) {
721
        return 0;
722
    }
723

    
724
    xcrs.nr_xcrs = 1;
725
    xcrs.flags = 0;
726
    xcrs.xcrs[0].xcr = 0;
727
    xcrs.xcrs[0].value = env->xcr0;
728
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
729
#else
730
    return 0;
731
#endif
732
}
733

    
734
static int kvm_put_sregs(CPUState *env)
735
{
736
    struct kvm_sregs sregs;
737

    
738
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
739
    if (env->interrupt_injected >= 0) {
740
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
741
                (uint64_t)1 << (env->interrupt_injected % 64);
742
    }
743

    
744
    if ((env->eflags & VM_MASK)) {
745
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
746
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
747
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
748
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
749
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
750
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
751
    } else {
752
        set_seg(&sregs.cs, &env->segs[R_CS]);
753
        set_seg(&sregs.ds, &env->segs[R_DS]);
754
        set_seg(&sregs.es, &env->segs[R_ES]);
755
        set_seg(&sregs.fs, &env->segs[R_FS]);
756
        set_seg(&sregs.gs, &env->segs[R_GS]);
757
        set_seg(&sregs.ss, &env->segs[R_SS]);
758
    }
759

    
760
    set_seg(&sregs.tr, &env->tr);
761
    set_seg(&sregs.ldt, &env->ldt);
762

    
763
    sregs.idt.limit = env->idt.limit;
764
    sregs.idt.base = env->idt.base;
765
    sregs.gdt.limit = env->gdt.limit;
766
    sregs.gdt.base = env->gdt.base;
767

    
768
    sregs.cr0 = env->cr[0];
769
    sregs.cr2 = env->cr[2];
770
    sregs.cr3 = env->cr[3];
771
    sregs.cr4 = env->cr[4];
772

    
773
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
774
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
775

    
776
    sregs.efer = env->efer;
777

    
778
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
779
}
780

    
781
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
782
                              uint32_t index, uint64_t value)
783
{
784
    entry->index = index;
785
    entry->data = value;
786
}
787

    
788
static int kvm_put_msrs(CPUState *env, int level)
789
{
790
    struct {
791
        struct kvm_msrs info;
792
        struct kvm_msr_entry entries[100];
793
    } msr_data;
794
    struct kvm_msr_entry *msrs = msr_data.entries;
795
    int n = 0;
796

    
797
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
798
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
799
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
800
    if (has_msr_star) {
801
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
802
    }
803
    if (has_msr_hsave_pa) {
804
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
805
    }
806
#ifdef TARGET_X86_64
807
    if (lm_capable_kernel) {
808
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
809
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
810
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
811
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
812
    }
813
#endif
814
    if (level == KVM_PUT_FULL_STATE) {
815
        /*
816
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
817
         * writeback. Until this is fixed, we only write the offset to SMP
818
         * guests after migration, desynchronizing the VCPUs, but avoiding
819
         * huge jump-backs that would occur without any writeback at all.
820
         */
821
        if (smp_cpus == 1 || env->tsc != 0) {
822
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
823
        }
824
    }
825
    /*
826
     * The following paravirtual MSRs have side effects on the guest or are
827
     * too heavy for normal writeback. Limit them to reset or full state
828
     * updates.
829
     */
830
    if (level >= KVM_PUT_RESET_STATE) {
831
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
832
                          env->system_time_msr);
833
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
834
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
835
        if (has_msr_async_pf_en) {
836
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
837
                              env->async_pf_en_msr);
838
        }
839
#endif
840
    }
841
#ifdef KVM_CAP_MCE
842
    if (env->mcg_cap) {
843
        int i;
844

    
845
        if (level == KVM_PUT_RESET_STATE) {
846
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
847
        } else if (level == KVM_PUT_FULL_STATE) {
848
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
850
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
851
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
852
            }
853
        }
854
    }
855
#endif
856

    
857
    msr_data.info.nmsrs = n;
858

    
859
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
860

    
861
}
862

    
863

    
864
static int kvm_get_fpu(CPUState *env)
865
{
866
    struct kvm_fpu fpu;
867
    int i, ret;
868

    
869
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
870
    if (ret < 0) {
871
        return ret;
872
    }
873

    
874
    env->fpstt = (fpu.fsw >> 11) & 7;
875
    env->fpus = fpu.fsw;
876
    env->fpuc = fpu.fcw;
877
    for (i = 0; i < 8; ++i) {
878
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
879
    }
880
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
881
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
882
    env->mxcsr = fpu.mxcsr;
883

    
884
    return 0;
885
}
886

    
887
static int kvm_get_xsave(CPUState *env)
888
{
889
#ifdef KVM_CAP_XSAVE
890
    struct kvm_xsave* xsave;
891
    int ret, i;
892
    uint16_t cwd, swd, twd, fop;
893

    
894
    if (!kvm_has_xsave()) {
895
        return kvm_get_fpu(env);
896
    }
897

    
898
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
899
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
900
    if (ret < 0) {
901
        qemu_free(xsave);
902
        return ret;
903
    }
904

    
905
    cwd = (uint16_t)xsave->region[0];
906
    swd = (uint16_t)(xsave->region[0] >> 16);
907
    twd = (uint16_t)xsave->region[1];
908
    fop = (uint16_t)(xsave->region[1] >> 16);
909
    env->fpstt = (swd >> 11) & 7;
910
    env->fpus = swd;
911
    env->fpuc = cwd;
912
    for (i = 0; i < 8; ++i) {
913
        env->fptags[i] = !((twd >> i) & 1);
914
    }
915
    env->mxcsr = xsave->region[XSAVE_MXCSR];
916
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
917
            sizeof env->fpregs);
918
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
919
            sizeof env->xmm_regs);
920
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
921
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
922
            sizeof env->ymmh_regs);
923
    qemu_free(xsave);
924
    return 0;
925
#else
926
    return kvm_get_fpu(env);
927
#endif
928
}
929

    
930
static int kvm_get_xcrs(CPUState *env)
931
{
932
#ifdef KVM_CAP_XCRS
933
    int i, ret;
934
    struct kvm_xcrs xcrs;
935

    
936
    if (!kvm_has_xcrs()) {
937
        return 0;
938
    }
939

    
940
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
941
    if (ret < 0) {
942
        return ret;
943
    }
944

    
945
    for (i = 0; i < xcrs.nr_xcrs; i++) {
946
        /* Only support xcr0 now */
947
        if (xcrs.xcrs[0].xcr == 0) {
948
            env->xcr0 = xcrs.xcrs[0].value;
949
            break;
950
        }
951
    }
952
    return 0;
953
#else
954
    return 0;
955
#endif
956
}
957

    
958
static int kvm_get_sregs(CPUState *env)
959
{
960
    struct kvm_sregs sregs;
961
    uint32_t hflags;
962
    int bit, i, ret;
963

    
964
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
965
    if (ret < 0) {
966
        return ret;
967
    }
968

    
969
    /* There can only be one pending IRQ set in the bitmap at a time, so try
970
       to find it and save its number instead (-1 for none). */
971
    env->interrupt_injected = -1;
972
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
973
        if (sregs.interrupt_bitmap[i]) {
974
            bit = ctz64(sregs.interrupt_bitmap[i]);
975
            env->interrupt_injected = i * 64 + bit;
976
            break;
977
        }
978
    }
979

    
980
    get_seg(&env->segs[R_CS], &sregs.cs);
981
    get_seg(&env->segs[R_DS], &sregs.ds);
982
    get_seg(&env->segs[R_ES], &sregs.es);
983
    get_seg(&env->segs[R_FS], &sregs.fs);
984
    get_seg(&env->segs[R_GS], &sregs.gs);
985
    get_seg(&env->segs[R_SS], &sregs.ss);
986

    
987
    get_seg(&env->tr, &sregs.tr);
988
    get_seg(&env->ldt, &sregs.ldt);
989

    
990
    env->idt.limit = sregs.idt.limit;
991
    env->idt.base = sregs.idt.base;
992
    env->gdt.limit = sregs.gdt.limit;
993
    env->gdt.base = sregs.gdt.base;
994

    
995
    env->cr[0] = sregs.cr0;
996
    env->cr[2] = sregs.cr2;
997
    env->cr[3] = sregs.cr3;
998
    env->cr[4] = sregs.cr4;
999

    
1000
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1001

    
1002
    env->efer = sregs.efer;
1003
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1004

    
1005
#define HFLAG_COPY_MASK \
1006
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1007
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1008
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1009
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1010

    
1011
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1012
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1013
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1014
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1015
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1016
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1017
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1018

    
1019
    if (env->efer & MSR_EFER_LMA) {
1020
        hflags |= HF_LMA_MASK;
1021
    }
1022

    
1023
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1024
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1025
    } else {
1026
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1027
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1028
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1029
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1030
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1031
            !(hflags & HF_CS32_MASK)) {
1032
            hflags |= HF_ADDSEG_MASK;
1033
        } else {
1034
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1035
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1036
        }
1037
    }
1038
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1039

    
1040
    return 0;
1041
}
1042

    
1043
static int kvm_get_msrs(CPUState *env)
1044
{
1045
    struct {
1046
        struct kvm_msrs info;
1047
        struct kvm_msr_entry entries[100];
1048
    } msr_data;
1049
    struct kvm_msr_entry *msrs = msr_data.entries;
1050
    int ret, i, n;
1051

    
1052
    n = 0;
1053
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1054
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1055
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1056
    if (has_msr_star) {
1057
        msrs[n++].index = MSR_STAR;
1058
    }
1059
    if (has_msr_hsave_pa) {
1060
        msrs[n++].index = MSR_VM_HSAVE_PA;
1061
    }
1062
    msrs[n++].index = MSR_IA32_TSC;
1063
#ifdef TARGET_X86_64
1064
    if (lm_capable_kernel) {
1065
        msrs[n++].index = MSR_CSTAR;
1066
        msrs[n++].index = MSR_KERNELGSBASE;
1067
        msrs[n++].index = MSR_FMASK;
1068
        msrs[n++].index = MSR_LSTAR;
1069
    }
1070
#endif
1071
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1072
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1073
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1074
    if (has_msr_async_pf_en) {
1075
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1076
    }
1077
#endif
1078

    
1079
#ifdef KVM_CAP_MCE
1080
    if (env->mcg_cap) {
1081
        msrs[n++].index = MSR_MCG_STATUS;
1082
        msrs[n++].index = MSR_MCG_CTL;
1083
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1084
            msrs[n++].index = MSR_MC0_CTL + i;
1085
        }
1086
    }
1087
#endif
1088

    
1089
    msr_data.info.nmsrs = n;
1090
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1091
    if (ret < 0) {
1092
        return ret;
1093
    }
1094

    
1095
    for (i = 0; i < ret; i++) {
1096
        switch (msrs[i].index) {
1097
        case MSR_IA32_SYSENTER_CS:
1098
            env->sysenter_cs = msrs[i].data;
1099
            break;
1100
        case MSR_IA32_SYSENTER_ESP:
1101
            env->sysenter_esp = msrs[i].data;
1102
            break;
1103
        case MSR_IA32_SYSENTER_EIP:
1104
            env->sysenter_eip = msrs[i].data;
1105
            break;
1106
        case MSR_STAR:
1107
            env->star = msrs[i].data;
1108
            break;
1109
#ifdef TARGET_X86_64
1110
        case MSR_CSTAR:
1111
            env->cstar = msrs[i].data;
1112
            break;
1113
        case MSR_KERNELGSBASE:
1114
            env->kernelgsbase = msrs[i].data;
1115
            break;
1116
        case MSR_FMASK:
1117
            env->fmask = msrs[i].data;
1118
            break;
1119
        case MSR_LSTAR:
1120
            env->lstar = msrs[i].data;
1121
            break;
1122
#endif
1123
        case MSR_IA32_TSC:
1124
            env->tsc = msrs[i].data;
1125
            break;
1126
        case MSR_VM_HSAVE_PA:
1127
            env->vm_hsave = msrs[i].data;
1128
            break;
1129
        case MSR_KVM_SYSTEM_TIME:
1130
            env->system_time_msr = msrs[i].data;
1131
            break;
1132
        case MSR_KVM_WALL_CLOCK:
1133
            env->wall_clock_msr = msrs[i].data;
1134
            break;
1135
#ifdef KVM_CAP_MCE
1136
        case MSR_MCG_STATUS:
1137
            env->mcg_status = msrs[i].data;
1138
            break;
1139
        case MSR_MCG_CTL:
1140
            env->mcg_ctl = msrs[i].data;
1141
            break;
1142
#endif
1143
        default:
1144
#ifdef KVM_CAP_MCE
1145
            if (msrs[i].index >= MSR_MC0_CTL &&
1146
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1147
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1148
            }
1149
#endif
1150
            break;
1151
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1152
        case MSR_KVM_ASYNC_PF_EN:
1153
            env->async_pf_en_msr = msrs[i].data;
1154
            break;
1155
#endif
1156
        }
1157
    }
1158

    
1159
    return 0;
1160
}
1161

    
1162
static int kvm_put_mp_state(CPUState *env)
1163
{
1164
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1165

    
1166
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1167
}
1168

    
1169
static int kvm_get_mp_state(CPUState *env)
1170
{
1171
    struct kvm_mp_state mp_state;
1172
    int ret;
1173

    
1174
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1175
    if (ret < 0) {
1176
        return ret;
1177
    }
1178
    env->mp_state = mp_state.mp_state;
1179
    if (kvm_irqchip_in_kernel()) {
1180
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1181
    }
1182
    return 0;
1183
}
1184

    
1185
static int kvm_put_vcpu_events(CPUState *env, int level)
1186
{
1187
#ifdef KVM_CAP_VCPU_EVENTS
1188
    struct kvm_vcpu_events events;
1189

    
1190
    if (!kvm_has_vcpu_events()) {
1191
        return 0;
1192
    }
1193

    
1194
    events.exception.injected = (env->exception_injected >= 0);
1195
    events.exception.nr = env->exception_injected;
1196
    events.exception.has_error_code = env->has_error_code;
1197
    events.exception.error_code = env->error_code;
1198

    
1199
    events.interrupt.injected = (env->interrupt_injected >= 0);
1200
    events.interrupt.nr = env->interrupt_injected;
1201
    events.interrupt.soft = env->soft_interrupt;
1202

    
1203
    events.nmi.injected = env->nmi_injected;
1204
    events.nmi.pending = env->nmi_pending;
1205
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1206

    
1207
    events.sipi_vector = env->sipi_vector;
1208

    
1209
    events.flags = 0;
1210
    if (level >= KVM_PUT_RESET_STATE) {
1211
        events.flags |=
1212
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1213
    }
1214

    
1215
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1216
#else
1217
    return 0;
1218
#endif
1219
}
1220

    
1221
static int kvm_get_vcpu_events(CPUState *env)
1222
{
1223
#ifdef KVM_CAP_VCPU_EVENTS
1224
    struct kvm_vcpu_events events;
1225
    int ret;
1226

    
1227
    if (!kvm_has_vcpu_events()) {
1228
        return 0;
1229
    }
1230

    
1231
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1232
    if (ret < 0) {
1233
       return ret;
1234
    }
1235
    env->exception_injected =
1236
       events.exception.injected ? events.exception.nr : -1;
1237
    env->has_error_code = events.exception.has_error_code;
1238
    env->error_code = events.exception.error_code;
1239

    
1240
    env->interrupt_injected =
1241
        events.interrupt.injected ? events.interrupt.nr : -1;
1242
    env->soft_interrupt = events.interrupt.soft;
1243

    
1244
    env->nmi_injected = events.nmi.injected;
1245
    env->nmi_pending = events.nmi.pending;
1246
    if (events.nmi.masked) {
1247
        env->hflags2 |= HF2_NMI_MASK;
1248
    } else {
1249
        env->hflags2 &= ~HF2_NMI_MASK;
1250
    }
1251

    
1252
    env->sipi_vector = events.sipi_vector;
1253
#endif
1254

    
1255
    return 0;
1256
}
1257

    
1258
static int kvm_guest_debug_workarounds(CPUState *env)
1259
{
1260
    int ret = 0;
1261
#ifdef KVM_CAP_SET_GUEST_DEBUG
1262
    unsigned long reinject_trap = 0;
1263

    
1264
    if (!kvm_has_vcpu_events()) {
1265
        if (env->exception_injected == 1) {
1266
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1267
        } else if (env->exception_injected == 3) {
1268
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1269
        }
1270
        env->exception_injected = -1;
1271
    }
1272

    
1273
    /*
1274
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1275
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1276
     * by updating the debug state once again if single-stepping is on.
1277
     * Another reason to call kvm_update_guest_debug here is a pending debug
1278
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1279
     * reinject them via SET_GUEST_DEBUG.
1280
     */
1281
    if (reinject_trap ||
1282
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1283
        ret = kvm_update_guest_debug(env, reinject_trap);
1284
    }
1285
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1286
    return ret;
1287
}
1288

    
1289
static int kvm_put_debugregs(CPUState *env)
1290
{
1291
#ifdef KVM_CAP_DEBUGREGS
1292
    struct kvm_debugregs dbgregs;
1293
    int i;
1294

    
1295
    if (!kvm_has_debugregs()) {
1296
        return 0;
1297
    }
1298

    
1299
    for (i = 0; i < 4; i++) {
1300
        dbgregs.db[i] = env->dr[i];
1301
    }
1302
    dbgregs.dr6 = env->dr[6];
1303
    dbgregs.dr7 = env->dr[7];
1304
    dbgregs.flags = 0;
1305

    
1306
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1307
#else
1308
    return 0;
1309
#endif
1310
}
1311

    
1312
static int kvm_get_debugregs(CPUState *env)
1313
{
1314
#ifdef KVM_CAP_DEBUGREGS
1315
    struct kvm_debugregs dbgregs;
1316
    int i, ret;
1317

    
1318
    if (!kvm_has_debugregs()) {
1319
        return 0;
1320
    }
1321

    
1322
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1323
    if (ret < 0) {
1324
        return ret;
1325
    }
1326
    for (i = 0; i < 4; i++) {
1327
        env->dr[i] = dbgregs.db[i];
1328
    }
1329
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1330
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1331
#endif
1332

    
1333
    return 0;
1334
}
1335

    
1336
int kvm_arch_put_registers(CPUState *env, int level)
1337
{
1338
    int ret;
1339

    
1340
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1341

    
1342
    ret = kvm_getput_regs(env, 1);
1343
    if (ret < 0) {
1344
        return ret;
1345
    }
1346
    ret = kvm_put_xsave(env);
1347
    if (ret < 0) {
1348
        return ret;
1349
    }
1350
    ret = kvm_put_xcrs(env);
1351
    if (ret < 0) {
1352
        return ret;
1353
    }
1354
    ret = kvm_put_sregs(env);
1355
    if (ret < 0) {
1356
        return ret;
1357
    }
1358
    ret = kvm_put_msrs(env, level);
1359
    if (ret < 0) {
1360
        return ret;
1361
    }
1362
    if (level >= KVM_PUT_RESET_STATE) {
1363
        ret = kvm_put_mp_state(env);
1364
        if (ret < 0) {
1365
            return ret;
1366
        }
1367
    }
1368
    ret = kvm_put_vcpu_events(env, level);
1369
    if (ret < 0) {
1370
        return ret;
1371
    }
1372
    ret = kvm_put_debugregs(env);
1373
    if (ret < 0) {
1374
        return ret;
1375
    }
1376
    /* must be last */
1377
    ret = kvm_guest_debug_workarounds(env);
1378
    if (ret < 0) {
1379
        return ret;
1380
    }
1381
    return 0;
1382
}
1383

    
1384
int kvm_arch_get_registers(CPUState *env)
1385
{
1386
    int ret;
1387

    
1388
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1389

    
1390
    ret = kvm_getput_regs(env, 0);
1391
    if (ret < 0) {
1392
        return ret;
1393
    }
1394
    ret = kvm_get_xsave(env);
1395
    if (ret < 0) {
1396
        return ret;
1397
    }
1398
    ret = kvm_get_xcrs(env);
1399
    if (ret < 0) {
1400
        return ret;
1401
    }
1402
    ret = kvm_get_sregs(env);
1403
    if (ret < 0) {
1404
        return ret;
1405
    }
1406
    ret = kvm_get_msrs(env);
1407
    if (ret < 0) {
1408
        return ret;
1409
    }
1410
    ret = kvm_get_mp_state(env);
1411
    if (ret < 0) {
1412
        return ret;
1413
    }
1414
    ret = kvm_get_vcpu_events(env);
1415
    if (ret < 0) {
1416
        return ret;
1417
    }
1418
    ret = kvm_get_debugregs(env);
1419
    if (ret < 0) {
1420
        return ret;
1421
    }
1422
    return 0;
1423
}
1424

    
1425
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1426
{
1427
    /* Inject NMI */
1428
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1429
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1430
        DPRINTF("injected NMI\n");
1431
        kvm_vcpu_ioctl(env, KVM_NMI);
1432
    }
1433

    
1434
    /* Try to inject an interrupt if the guest can accept it */
1435
    if (run->ready_for_interrupt_injection &&
1436
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1437
        (env->eflags & IF_MASK)) {
1438
        int irq;
1439

    
1440
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1441
        irq = cpu_get_pic_interrupt(env);
1442
        if (irq >= 0) {
1443
            struct kvm_interrupt intr;
1444
            intr.irq = irq;
1445
            /* FIXME: errors */
1446
            DPRINTF("injected interrupt %d\n", irq);
1447
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1448
        }
1449
    }
1450

    
1451
    /* If we have an interrupt but the guest is not ready to receive an
1452
     * interrupt, request an interrupt window exit.  This will
1453
     * cause a return to userspace as soon as the guest is ready to
1454
     * receive interrupts. */
1455
    if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1456
        run->request_interrupt_window = 1;
1457
    } else {
1458
        run->request_interrupt_window = 0;
1459
    }
1460

    
1461
    DPRINTF("setting tpr\n");
1462
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1463

    
1464
    return 0;
1465
}
1466

    
1467
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1468
{
1469
    if (run->if_flag) {
1470
        env->eflags |= IF_MASK;
1471
    } else {
1472
        env->eflags &= ~IF_MASK;
1473
    }
1474
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1475
    cpu_set_apic_base(env->apic_state, run->apic_base);
1476

    
1477
    return 0;
1478
}
1479

    
1480
int kvm_arch_process_irqchip_events(CPUState *env)
1481
{
1482
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1483
        kvm_cpu_synchronize_state(env);
1484
        do_cpu_init(env);
1485
        env->exception_index = EXCP_HALTED;
1486
    }
1487

    
1488
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1489
        kvm_cpu_synchronize_state(env);
1490
        do_cpu_sipi(env);
1491
    }
1492

    
1493
    return env->halted;
1494
}
1495

    
1496
static int kvm_handle_halt(CPUState *env)
1497
{
1498
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1499
          (env->eflags & IF_MASK)) &&
1500
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1501
        env->halted = 1;
1502
        env->exception_index = EXCP_HLT;
1503
        return 0;
1504
    }
1505

    
1506
    return 1;
1507
}
1508

    
1509
static bool host_supports_vmx(void)
1510
{
1511
    uint32_t ecx, unused;
1512

    
1513
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1514
    return ecx & CPUID_EXT_VMX;
1515
}
1516

    
1517
#define VMX_INVALID_GUEST_STATE 0x80000021
1518

    
1519
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1520
{
1521
    uint64_t code;
1522
    int ret = 0;
1523

    
1524
    switch (run->exit_reason) {
1525
    case KVM_EXIT_HLT:
1526
        DPRINTF("handle_hlt\n");
1527
        ret = kvm_handle_halt(env);
1528
        break;
1529
    case KVM_EXIT_SET_TPR:
1530
        ret = 1;
1531
        break;
1532
    case KVM_EXIT_FAIL_ENTRY:
1533
        code = run->fail_entry.hardware_entry_failure_reason;
1534
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1535
                code);
1536
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1537
            fprintf(stderr,
1538
                    "\nIf you're runnning a guest on an Intel machine without "
1539
                        "unrestricted mode\n"
1540
                    "support, the failure can be most likely due to the guest "
1541
                        "entering an invalid\n"
1542
                    "state for Intel VT. For example, the guest maybe running "
1543
                        "in big real mode\n"
1544
                    "which is not supported on less recent Intel processors."
1545
                        "\n\n");
1546
        }
1547
        ret = -1;
1548
        break;
1549
    case KVM_EXIT_EXCEPTION:
1550
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1551
                run->ex.exception, run->ex.error_code);
1552
        ret = -1;
1553
        break;
1554
    default:
1555
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1556
        ret = -1;
1557
        break;
1558
    }
1559

    
1560
    return ret;
1561
}
1562

    
1563
#ifdef KVM_CAP_SET_GUEST_DEBUG
1564
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1565
{
1566
    static const uint8_t int3 = 0xcc;
1567

    
1568
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1569
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1570
        return -EINVAL;
1571
    }
1572
    return 0;
1573
}
1574

    
1575
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1576
{
1577
    uint8_t int3;
1578

    
1579
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1580
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1581
        return -EINVAL;
1582
    }
1583
    return 0;
1584
}
1585

    
1586
static struct {
1587
    target_ulong addr;
1588
    int len;
1589
    int type;
1590
} hw_breakpoint[4];
1591

    
1592
static int nb_hw_breakpoint;
1593

    
1594
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1595
{
1596
    int n;
1597

    
1598
    for (n = 0; n < nb_hw_breakpoint; n++) {
1599
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1600
            (hw_breakpoint[n].len == len || len == -1)) {
1601
            return n;
1602
        }
1603
    }
1604
    return -1;
1605
}
1606

    
1607
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1608
                                  target_ulong len, int type)
1609
{
1610
    switch (type) {
1611
    case GDB_BREAKPOINT_HW:
1612
        len = 1;
1613
        break;
1614
    case GDB_WATCHPOINT_WRITE:
1615
    case GDB_WATCHPOINT_ACCESS:
1616
        switch (len) {
1617
        case 1:
1618
            break;
1619
        case 2:
1620
        case 4:
1621
        case 8:
1622
            if (addr & (len - 1)) {
1623
                return -EINVAL;
1624
            }
1625
            break;
1626
        default:
1627
            return -EINVAL;
1628
        }
1629
        break;
1630
    default:
1631
        return -ENOSYS;
1632
    }
1633

    
1634
    if (nb_hw_breakpoint == 4) {
1635
        return -ENOBUFS;
1636
    }
1637
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1638
        return -EEXIST;
1639
    }
1640
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1641
    hw_breakpoint[nb_hw_breakpoint].len = len;
1642
    hw_breakpoint[nb_hw_breakpoint].type = type;
1643
    nb_hw_breakpoint++;
1644

    
1645
    return 0;
1646
}
1647

    
1648
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1649
                                  target_ulong len, int type)
1650
{
1651
    int n;
1652

    
1653
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1654
    if (n < 0) {
1655
        return -ENOENT;
1656
    }
1657
    nb_hw_breakpoint--;
1658
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1659

    
1660
    return 0;
1661
}
1662

    
1663
void kvm_arch_remove_all_hw_breakpoints(void)
1664
{
1665
    nb_hw_breakpoint = 0;
1666
}
1667

    
1668
static CPUWatchpoint hw_watchpoint;
1669

    
1670
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1671
{
1672
    int handle = 0;
1673
    int n;
1674

    
1675
    if (arch_info->exception == 1) {
1676
        if (arch_info->dr6 & (1 << 14)) {
1677
            if (cpu_single_env->singlestep_enabled) {
1678
                handle = 1;
1679
            }
1680
        } else {
1681
            for (n = 0; n < 4; n++) {
1682
                if (arch_info->dr6 & (1 << n)) {
1683
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1684
                    case 0x0:
1685
                        handle = 1;
1686
                        break;
1687
                    case 0x1:
1688
                        handle = 1;
1689
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1690
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1691
                        hw_watchpoint.flags = BP_MEM_WRITE;
1692
                        break;
1693
                    case 0x3:
1694
                        handle = 1;
1695
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1696
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1697
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1698
                        break;
1699
                    }
1700
                }
1701
            }
1702
        }
1703
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1704
        handle = 1;
1705
    }
1706
    if (!handle) {
1707
        cpu_synchronize_state(cpu_single_env);
1708
        assert(cpu_single_env->exception_injected == -1);
1709

    
1710
        cpu_single_env->exception_injected = arch_info->exception;
1711
        cpu_single_env->has_error_code = 0;
1712
    }
1713

    
1714
    return handle;
1715
}
1716

    
1717
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1718
{
1719
    const uint8_t type_code[] = {
1720
        [GDB_BREAKPOINT_HW] = 0x0,
1721
        [GDB_WATCHPOINT_WRITE] = 0x1,
1722
        [GDB_WATCHPOINT_ACCESS] = 0x3
1723
    };
1724
    const uint8_t len_code[] = {
1725
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1726
    };
1727
    int n;
1728

    
1729
    if (kvm_sw_breakpoints_active(env)) {
1730
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1731
    }
1732
    if (nb_hw_breakpoint > 0) {
1733
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1734
        dbg->arch.debugreg[7] = 0x0600;
1735
        for (n = 0; n < nb_hw_breakpoint; n++) {
1736
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1737
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1738
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1739
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1740
        }
1741
    }
1742
}
1743
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1744

    
1745
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1746
{
1747
    return !(env->cr[0] & CR0_PE_MASK) ||
1748
           ((env->segs[R_CS].selector  & 3) != 3);
1749
}
1750

    
1751
static void hardware_memory_error(void)
1752
{
1753
    fprintf(stderr, "Hardware memory error!\n");
1754
    exit(1);
1755
}
1756

    
1757
#ifdef KVM_CAP_MCE
1758
static void kvm_mce_broadcast_rest(CPUState *env)
1759
{
1760
    struct kvm_x86_mce mce = {
1761
        .bank = 1,
1762
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1763
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1764
        .addr = 0,
1765
        .misc = 0,
1766
    };
1767
    CPUState *cenv;
1768

    
1769
    /* Broadcast MCA signal for processor version 06H_EH and above */
1770
    if (cpu_x86_support_mca_broadcast(env)) {
1771
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1772
            if (cenv == env) {
1773
                continue;
1774
            }
1775
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1776
        }
1777
    }
1778
}
1779

    
1780
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1781
{
1782
    struct kvm_x86_mce mce = {
1783
        .bank = 9,
1784
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1785
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1786
                  | MCI_STATUS_AR | 0x134,
1787
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1788
        .addr = paddr,
1789
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1790
    };
1791
    int r;
1792

    
1793
    r = kvm_set_mce(env, &mce);
1794
    if (r < 0) {
1795
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1796
        abort();
1797
    }
1798
    kvm_mce_broadcast_rest(env);
1799
}
1800

    
1801
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1802
{
1803
    struct kvm_x86_mce mce = {
1804
        .bank = 9,
1805
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807
                  | 0xc0,
1808
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1809
        .addr = paddr,
1810
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1811
    };
1812
    int r;
1813

    
1814
    r = kvm_set_mce(env, &mce);
1815
    if (r < 0) {
1816
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817
        abort();
1818
    }
1819
    kvm_mce_broadcast_rest(env);
1820
}
1821

    
1822
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1823
{
1824
    struct kvm_x86_mce mce = {
1825
        .bank = 9,
1826
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828
                  | 0xc0,
1829
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830
        .addr = paddr,
1831
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1832
    };
1833

    
1834
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1835
    kvm_mce_broadcast_rest(env);
1836
}
1837

    
1838
#endif
1839

    
1840
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1841
{
1842
#if defined(KVM_CAP_MCE)
1843
    void *vaddr;
1844
    ram_addr_t ram_addr;
1845
    target_phys_addr_t paddr;
1846

    
1847
    if ((env->mcg_cap & MCG_SER_P) && addr
1848
        && (code == BUS_MCEERR_AR
1849
            || code == BUS_MCEERR_AO)) {
1850
        vaddr = (void *)addr;
1851
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1852
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1853
            fprintf(stderr, "Hardware memory error for memory used by "
1854
                    "QEMU itself instead of guest system!\n");
1855
            /* Hope we are lucky for AO MCE */
1856
            if (code == BUS_MCEERR_AO) {
1857
                return 0;
1858
            } else {
1859
                hardware_memory_error();
1860
            }
1861
        }
1862

    
1863
        if (code == BUS_MCEERR_AR) {
1864
            /* Fake an Intel architectural Data Load SRAR UCR */
1865
            kvm_mce_inj_srar_dataload(env, paddr);
1866
        } else {
1867
            /*
1868
             * If there is an MCE excpetion being processed, ignore
1869
             * this SRAO MCE
1870
             */
1871
            if (!kvm_mce_in_progress(env)) {
1872
                /* Fake an Intel architectural Memory scrubbing UCR */
1873
                kvm_mce_inj_srao_memscrub(env, paddr);
1874
            }
1875
        }
1876
    } else
1877
#endif
1878
    {
1879
        if (code == BUS_MCEERR_AO) {
1880
            return 0;
1881
        } else if (code == BUS_MCEERR_AR) {
1882
            hardware_memory_error();
1883
        } else {
1884
            return 1;
1885
        }
1886
    }
1887
    return 0;
1888
}
1889

    
1890
int kvm_on_sigbus(int code, void *addr)
1891
{
1892
#if defined(KVM_CAP_MCE)
1893
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1894
        void *vaddr;
1895
        ram_addr_t ram_addr;
1896
        target_phys_addr_t paddr;
1897

    
1898
        /* Hope we are lucky for AO MCE */
1899
        vaddr = addr;
1900
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1901
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1902
            fprintf(stderr, "Hardware memory error for memory used by "
1903
                    "QEMU itself instead of guest system!: %p\n", addr);
1904
            return 0;
1905
        }
1906
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1907
    } else
1908
#endif
1909
    {
1910
        if (code == BUS_MCEERR_AO) {
1911
            return 0;
1912
        } else if (code == BUS_MCEERR_AR) {
1913
            hardware_memory_error();
1914
        } else {
1915
            return 1;
1916
        }
1917
    }
1918
    return 0;
1919
}