Statistics
| Branch: | Revision:

root / hw / musicpal.c @ c60e08d9

History | View | Annotate | Download (39.8 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_ETH_BASE             0x80008000
24
#define MP_ETH_SIZE             0x00001000
25

    
26
#define MP_UART1_BASE           0x8000C840
27
#define MP_UART2_BASE           0x8000C940
28

    
29
#define MP_FLASHCFG_BASE        0x90006000
30
#define MP_FLASHCFG_SIZE        0x00001000
31

    
32
#define MP_AUDIO_BASE           0x90007000
33
#define MP_AUDIO_SIZE           0x00001000
34

    
35
#define MP_PIC_BASE             0x90008000
36
#define MP_PIC_SIZE             0x00001000
37

    
38
#define MP_PIT_BASE             0x90009000
39
#define MP_PIT_SIZE             0x00001000
40

    
41
#define MP_LCD_BASE             0x9000c000
42
#define MP_LCD_SIZE             0x00001000
43

    
44
#define MP_SRAM_BASE            0xC0000000
45
#define MP_SRAM_SIZE            0x00020000
46

    
47
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
48
#define MP_FLASH_SIZE_MAX       32*1024*1024
49

    
50
#define MP_TIMER1_IRQ           4
51
/* ... */
52
#define MP_TIMER4_IRQ           7
53
#define MP_EHCI_IRQ             8
54
#define MP_ETH_IRQ              9
55
#define MP_UART1_IRQ            11
56
#define MP_UART2_IRQ            11
57
#define MP_GPIO_IRQ             12
58
#define MP_RTC_IRQ              28
59
#define MP_AUDIO_IRQ            30
60

    
61
static uint32_t gpio_in_state = 0xffffffff;
62
static uint32_t gpio_isr;
63
static uint32_t gpio_out_state;
64
static ram_addr_t sram_off;
65

    
66
/* Address conversion helpers */
67
static void *target2host_addr(uint32_t addr)
68
{
69
    if (addr < MP_SRAM_BASE) {
70
        if (addr >= MP_RAM_DEFAULT_SIZE)
71
            return NULL;
72
        return (void *)(phys_ram_base + addr);
73
    } else {
74
        if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
75
            return NULL;
76
        return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
77
    }
78
}
79

    
80
static uint32_t host2target_addr(void *addr)
81
{
82
    if (addr < ((void *)phys_ram_base) + sram_off)
83
        return (unsigned long)addr - (unsigned long)phys_ram_base;
84
    else
85
        return (unsigned long)addr - (unsigned long)phys_ram_base -
86
            sram_off + MP_SRAM_BASE;
87
}
88

    
89

    
90
typedef enum i2c_state {
91
    STOPPED = 0,
92
    INITIALIZING,
93
    SENDING_BIT7,
94
    SENDING_BIT6,
95
    SENDING_BIT5,
96
    SENDING_BIT4,
97
    SENDING_BIT3,
98
    SENDING_BIT2,
99
    SENDING_BIT1,
100
    SENDING_BIT0,
101
    WAITING_FOR_ACK,
102
    RECEIVING_BIT7,
103
    RECEIVING_BIT6,
104
    RECEIVING_BIT5,
105
    RECEIVING_BIT4,
106
    RECEIVING_BIT3,
107
    RECEIVING_BIT2,
108
    RECEIVING_BIT1,
109
    RECEIVING_BIT0,
110
    SENDING_ACK
111
} i2c_state;
112

    
113
typedef struct i2c_interface {
114
    i2c_bus *bus;
115
    i2c_state state;
116
    int last_data;
117
    int last_clock;
118
    uint8_t buffer;
119
    int current_addr;
120
} i2c_interface;
121

    
122
static void i2c_enter_stop(i2c_interface *i2c)
123
{
124
    if (i2c->current_addr >= 0)
125
        i2c_end_transfer(i2c->bus);
126
    i2c->current_addr = -1;
127
    i2c->state = STOPPED;
128
}
129

    
130
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
131
{
132
    if (!i2c)
133
        return;
134

    
135
    switch (i2c->state) {
136
    case STOPPED:
137
        if (data == 0 && i2c->last_data == 1 && clock == 1)
138
            i2c->state = INITIALIZING;
139
        break;
140

    
141
    case INITIALIZING:
142
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
143
            i2c->state = SENDING_BIT7;
144
        else
145
            i2c_enter_stop(i2c);
146
        break;
147

    
148
    case SENDING_BIT7 ... SENDING_BIT0:
149
        if (clock == 0 && i2c->last_clock == 1) {
150
            i2c->buffer = (i2c->buffer << 1) | data;
151
            i2c->state++; /* will end up in WAITING_FOR_ACK */
152
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
153
            i2c_enter_stop(i2c);
154
        break;
155

    
156
    case WAITING_FOR_ACK:
157
        if (clock == 0 && i2c->last_clock == 1) {
158
            if (i2c->current_addr < 0) {
159
                i2c->current_addr = i2c->buffer;
160
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
161
                                   i2c->buffer & 1);
162
            } else
163
                i2c_send(i2c->bus, i2c->buffer);
164
            if (i2c->current_addr & 1) {
165
                i2c->state = RECEIVING_BIT7;
166
                i2c->buffer = i2c_recv(i2c->bus);
167
            } else
168
                i2c->state = SENDING_BIT7;
169
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
170
            i2c_enter_stop(i2c);
171
        break;
172

    
173
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
174
        if (clock == 0 && i2c->last_clock == 1) {
175
            i2c->state++; /* will end up in SENDING_ACK */
176
            i2c->buffer <<= 1;
177
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
178
            i2c_enter_stop(i2c);
179
        break;
180

    
181
    case SENDING_ACK:
182
        if (clock == 0 && i2c->last_clock == 1) {
183
            i2c->state = RECEIVING_BIT7;
184
            if (data == 0)
185
                i2c->buffer = i2c_recv(i2c->bus);
186
            else
187
                i2c_nack(i2c->bus);
188
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
189
            i2c_enter_stop(i2c);
190
        break;
191
    }
192

    
193
    i2c->last_data = data;
194
    i2c->last_clock = clock;
195
}
196

    
197
static int i2c_get_data(i2c_interface *i2c)
198
{
199
    if (!i2c)
200
        return 0;
201

    
202
    switch (i2c->state) {
203
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
204
        return (i2c->buffer >> 7);
205

    
206
    case WAITING_FOR_ACK:
207
    default:
208
        return 0;
209
    }
210
}
211

    
212
static i2c_interface *mixer_i2c;
213

    
214
#ifdef HAS_AUDIO
215

    
216
/* Audio register offsets */
217
#define MP_AUDIO_PLAYBACK_MODE  0x00
218
#define MP_AUDIO_CLOCK_DIV      0x18
219
#define MP_AUDIO_IRQ_STATUS     0x20
220
#define MP_AUDIO_IRQ_ENABLE     0x24
221
#define MP_AUDIO_TX_START_LO    0x28
222
#define MP_AUDIO_TX_THRESHOLD   0x2C
223
#define MP_AUDIO_TX_STATUS      0x38
224
#define MP_AUDIO_TX_START_HI    0x40
225

    
226
/* Status register and IRQ enable bits */
227
#define MP_AUDIO_TX_HALF        (1 << 6)
228
#define MP_AUDIO_TX_FULL        (1 << 7)
229

    
230
/* Playback mode bits */
231
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
232
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
233
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
234
#define MP_AUDIO_MONO           (1 << 14)
235

    
236
/* Wolfson 8750 I2C address */
237
#define MP_WM_ADDR              0x34
238

    
239
const char audio_name[] = "mv88w8618";
240

    
241
typedef struct musicpal_audio_state {
242
    uint32_t base;
243
    qemu_irq irq;
244
    uint32_t playback_mode;
245
    uint32_t status;
246
    uint32_t irq_enable;
247
    unsigned long phys_buf;
248
    int8_t *target_buffer;
249
    unsigned int threshold;
250
    unsigned int play_pos;
251
    unsigned int last_free;
252
    uint32_t clock_div;
253
    i2c_slave *wm;
254
} musicpal_audio_state;
255

    
256
static void audio_callback(void *opaque, int free_out, int free_in)
257
{
258
    musicpal_audio_state *s = opaque;
259
    int16_t *codec_buffer;
260
    int8_t *mem_buffer;
261
    int pos, block_size;
262

    
263
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
264
        return;
265

    
266
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
267
        free_out <<= 1;
268

    
269
    if (!(s->playback_mode & MP_AUDIO_MONO))
270
        free_out <<= 1;
271

    
272
    block_size = s->threshold/2;
273
    if (free_out - s->last_free < block_size)
274
        return;
275

    
276
    mem_buffer = s->target_buffer + s->play_pos;
277
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
278
        if (s->playback_mode & MP_AUDIO_MONO) {
279
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
280
            for (pos = 0; pos < block_size; pos += 2) {
281
                *codec_buffer++ = *(int16_t *)mem_buffer;
282
                *codec_buffer++ = *(int16_t *)mem_buffer;
283
                mem_buffer += 2;
284
            }
285
        } else
286
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
287
                   (uint32_t *)mem_buffer, block_size);
288
    } else {
289
        if (s->playback_mode & MP_AUDIO_MONO) {
290
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
291
            for (pos = 0; pos < block_size; pos++) {
292
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
293
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
294
            }
295
        } else {
296
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
297
            for (pos = 0; pos < block_size; pos += 2) {
298
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
299
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
300
            }
301
        }
302
    }
303
    wm8750_dac_commit(s->wm);
304

    
305
    s->last_free = free_out - block_size;
306

    
307
    if (s->play_pos == 0) {
308
        s->status |= MP_AUDIO_TX_HALF;
309
        s->play_pos = block_size;
310
    } else {
311
        s->status |= MP_AUDIO_TX_FULL;
312
        s->play_pos = 0;
313
    }
314

    
315
    if (s->status & s->irq_enable)
316
        qemu_irq_raise(s->irq);
317
}
318

    
319
static void musicpal_audio_clock_update(musicpal_audio_state *s)
320
{
321
    int rate;
322

    
323
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
324
        rate = 24576000 / 64; /* 24.576MHz */
325
    else
326
        rate = 11289600 / 64; /* 11.2896MHz */
327

    
328
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
329

    
330
    wm8750_set_bclk_in(s->wm, rate);
331
}
332

    
333
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
334
{
335
    musicpal_audio_state *s = opaque;
336

    
337
    offset -= s->base;
338
    switch (offset) {
339
    case MP_AUDIO_PLAYBACK_MODE:
340
        return s->playback_mode;
341

    
342
    case MP_AUDIO_CLOCK_DIV:
343
        return s->clock_div;
344

    
345
    case MP_AUDIO_IRQ_STATUS:
346
        return s->status;
347

    
348
    case MP_AUDIO_IRQ_ENABLE:
349
        return s->irq_enable;
350

    
351
    case MP_AUDIO_TX_STATUS:
352
        return s->play_pos >> 2;
353

    
354
    default:
355
        return 0;
356
    }
357
}
358

    
359
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
360
                                 uint32_t value)
361
{
362
    musicpal_audio_state *s = opaque;
363

    
364
    offset -= s->base;
365
    switch (offset) {
366
    case MP_AUDIO_PLAYBACK_MODE:
367
        if (value & MP_AUDIO_PLAYBACK_EN &&
368
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
369
            s->status = 0;
370
            s->last_free = 0;
371
            s->play_pos = 0;
372
        }
373
        s->playback_mode = value;
374
        musicpal_audio_clock_update(s);
375
        break;
376

    
377
    case MP_AUDIO_CLOCK_DIV:
378
        s->clock_div = value;
379
        s->last_free = 0;
380
        s->play_pos = 0;
381
        musicpal_audio_clock_update(s);
382
        break;
383

    
384
    case MP_AUDIO_IRQ_STATUS:
385
        s->status &= ~value;
386
        break;
387

    
388
    case MP_AUDIO_IRQ_ENABLE:
389
        s->irq_enable = value;
390
        if (s->status & s->irq_enable)
391
            qemu_irq_raise(s->irq);
392
        break;
393

    
394
    case MP_AUDIO_TX_START_LO:
395
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
396
        s->target_buffer = target2host_addr(s->phys_buf);
397
        s->play_pos = 0;
398
        s->last_free = 0;
399
        break;
400

    
401
    case MP_AUDIO_TX_THRESHOLD:
402
        s->threshold = (value + 1) * 4;
403
        break;
404

    
405
    case MP_AUDIO_TX_START_HI:
406
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
407
        s->target_buffer = target2host_addr(s->phys_buf);
408
        s->play_pos = 0;
409
        s->last_free = 0;
410
        break;
411
    }
412
}
413

    
414
static void musicpal_audio_reset(void *opaque)
415
{
416
    musicpal_audio_state *s = opaque;
417

    
418
    s->playback_mode = 0;
419
    s->status = 0;
420
    s->irq_enable = 0;
421
}
422

    
423
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
424
    musicpal_audio_read,
425
    musicpal_audio_read,
426
    musicpal_audio_read
427
};
428

    
429
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
430
    musicpal_audio_write,
431
    musicpal_audio_write,
432
    musicpal_audio_write
433
};
434

    
435
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
436
{
437
    AudioState *audio;
438
    musicpal_audio_state *s;
439
    i2c_interface *i2c;
440
    int iomemtype;
441

    
442
    audio = AUD_init();
443
    if (!audio) {
444
        AUD_log(audio_name, "No audio state\n");
445
        return NULL;
446
    }
447

    
448
    s = qemu_mallocz(sizeof(musicpal_audio_state));
449
    if (!s)
450
        return NULL;
451
    s->base = base;
452
    s->irq = irq;
453

    
454
    i2c = qemu_mallocz(sizeof(i2c_interface));
455
    if (!i2c)
456
        return NULL;
457
    i2c->bus = i2c_init_bus();
458
    i2c->current_addr = -1;
459

    
460
    s->wm = wm8750_init(i2c->bus, audio);
461
    if (!s->wm)
462
        return NULL;
463
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
464
    wm8750_data_req_set(s->wm, audio_callback, s);
465

    
466
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
467
                       musicpal_audio_writefn, s);
468
    cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
469

    
470
    qemu_register_reset(musicpal_audio_reset, s);
471

    
472
    return i2c;
473
}
474
#else  /* !HAS_AUDIO */
475
static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
476
{
477
    return NULL;
478
}
479
#endif /* !HAS_AUDIO */
480

    
481
/* Ethernet register offsets */
482
#define MP_ETH_SMIR             0x010
483
#define MP_ETH_PCXR             0x408
484
#define MP_ETH_SDCMR            0x448
485
#define MP_ETH_ICR              0x450
486
#define MP_ETH_IMR              0x458
487
#define MP_ETH_FRDP0            0x480
488
#define MP_ETH_FRDP1            0x484
489
#define MP_ETH_FRDP2            0x488
490
#define MP_ETH_FRDP3            0x48C
491
#define MP_ETH_CRDP0            0x4A0
492
#define MP_ETH_CRDP1            0x4A4
493
#define MP_ETH_CRDP2            0x4A8
494
#define MP_ETH_CRDP3            0x4AC
495
#define MP_ETH_CTDP0            0x4E0
496
#define MP_ETH_CTDP1            0x4E4
497
#define MP_ETH_CTDP2            0x4E8
498
#define MP_ETH_CTDP3            0x4EC
499

    
500
/* MII PHY access */
501
#define MP_ETH_SMIR_DATA        0x0000FFFF
502
#define MP_ETH_SMIR_ADDR        0x03FF0000
503
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
504
#define MP_ETH_SMIR_RDVALID     (1 << 27)
505

    
506
/* PHY registers */
507
#define MP_ETH_PHY1_BMSR        0x00210000
508
#define MP_ETH_PHY1_PHYSID1     0x00410000
509
#define MP_ETH_PHY1_PHYSID2     0x00610000
510

    
511
#define MP_PHY_BMSR_LINK        0x0004
512
#define MP_PHY_BMSR_AUTONEG     0x0008
513

    
514
#define MP_PHY_88E3015          0x01410E20
515

    
516
/* TX descriptor status */
517
#define MP_ETH_TX_OWN           (1 << 31)
518

    
519
/* RX descriptor status */
520
#define MP_ETH_RX_OWN           (1 << 31)
521

    
522
/* Interrupt cause/mask bits */
523
#define MP_ETH_IRQ_RX_BIT       0
524
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
525
#define MP_ETH_IRQ_TXHI_BIT     2
526
#define MP_ETH_IRQ_TXLO_BIT     3
527

    
528
/* Port config bits */
529
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
530

    
531
/* SDMA command bits */
532
#define MP_ETH_CMD_TXHI         (1 << 23)
533
#define MP_ETH_CMD_TXLO         (1 << 22)
534

    
535
typedef struct mv88w8618_tx_desc {
536
    uint32_t cmdstat;
537
    uint16_t res;
538
    uint16_t bytes;
539
    uint32_t buffer;
540
    uint32_t next;
541
} mv88w8618_tx_desc;
542

    
543
typedef struct mv88w8618_rx_desc {
544
    uint32_t cmdstat;
545
    uint16_t bytes;
546
    uint16_t buffer_size;
547
    uint32_t buffer;
548
    uint32_t next;
549
} mv88w8618_rx_desc;
550

    
551
typedef struct mv88w8618_eth_state {
552
    uint32_t base;
553
    qemu_irq irq;
554
    uint32_t smir;
555
    uint32_t icr;
556
    uint32_t imr;
557
    int vlan_header;
558
    mv88w8618_tx_desc *tx_queue[2];
559
    mv88w8618_rx_desc *rx_queue[4];
560
    mv88w8618_rx_desc *frx_queue[4];
561
    mv88w8618_rx_desc *cur_rx[4];
562
    VLANClientState *vc;
563
} mv88w8618_eth_state;
564

    
565
static int eth_can_receive(void *opaque)
566
{
567
    return 1;
568
}
569

    
570
static void eth_receive(void *opaque, const uint8_t *buf, int size)
571
{
572
    mv88w8618_eth_state *s = opaque;
573
    mv88w8618_rx_desc *desc;
574
    int i;
575

    
576
    for (i = 0; i < 4; i++) {
577
        desc = s->cur_rx[i];
578
        if (!desc)
579
            continue;
580
        do {
581
            if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
582
                le16_to_cpu(desc->buffer_size) >= size) {
583
                memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
584
                                        s->vlan_header),
585
                       buf, size);
586
                desc->bytes = cpu_to_le16(size + s->vlan_header);
587
                desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
588
                s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
589

    
590
                s->icr |= MP_ETH_IRQ_RX;
591
                if (s->icr & s->imr)
592
                    qemu_irq_raise(s->irq);
593
                return;
594
            }
595
            desc = target2host_addr(le32_to_cpu(desc->next));
596
        } while (desc != s->rx_queue[i]);
597
    }
598
}
599

    
600
static void eth_send(mv88w8618_eth_state *s, int queue_index)
601
{
602
    mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
603

    
604
    do {
605
        if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
606
            qemu_send_packet(s->vc,
607
                             target2host_addr(le32_to_cpu(desc->buffer)),
608
                             le16_to_cpu(desc->bytes));
609
            desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
610
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
611
        }
612
        desc = target2host_addr(le32_to_cpu(desc->next));
613
    } while (desc != s->tx_queue[queue_index]);
614
}
615

    
616
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
617
{
618
    mv88w8618_eth_state *s = opaque;
619

    
620
    offset -= s->base;
621
    switch (offset) {
622
    case MP_ETH_SMIR:
623
        if (s->smir & MP_ETH_SMIR_OPCODE) {
624
            switch (s->smir & MP_ETH_SMIR_ADDR) {
625
            case MP_ETH_PHY1_BMSR:
626
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
627
                       MP_ETH_SMIR_RDVALID;
628
            case MP_ETH_PHY1_PHYSID1:
629
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
630
            case MP_ETH_PHY1_PHYSID2:
631
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
632
            default:
633
                return MP_ETH_SMIR_RDVALID;
634
            }
635
        }
636
        return 0;
637

    
638
    case MP_ETH_ICR:
639
        return s->icr;
640

    
641
    case MP_ETH_IMR:
642
        return s->imr;
643

    
644
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
645
        return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
646

    
647
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
648
        return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
649

    
650
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
651
        return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
652

    
653
    default:
654
        return 0;
655
    }
656
}
657

    
658
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
659
                                uint32_t value)
660
{
661
    mv88w8618_eth_state *s = opaque;
662

    
663
    offset -= s->base;
664
    switch (offset) {
665
    case MP_ETH_SMIR:
666
        s->smir = value;
667
        break;
668

    
669
    case MP_ETH_PCXR:
670
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
671
        break;
672

    
673
    case MP_ETH_SDCMR:
674
        if (value & MP_ETH_CMD_TXHI)
675
            eth_send(s, 1);
676
        if (value & MP_ETH_CMD_TXLO)
677
            eth_send(s, 0);
678
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
679
            qemu_irq_raise(s->irq);
680
        break;
681

    
682
    case MP_ETH_ICR:
683
        s->icr &= value;
684
        break;
685

    
686
    case MP_ETH_IMR:
687
        s->imr = value;
688
        if (s->icr & s->imr)
689
            qemu_irq_raise(s->irq);
690
        break;
691

    
692
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
693
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
694
        break;
695

    
696
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
697
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
698
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
699
        break;
700

    
701
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
702
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
703
        break;
704
    }
705
}
706

    
707
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
708
    mv88w8618_eth_read,
709
    mv88w8618_eth_read,
710
    mv88w8618_eth_read
711
};
712

    
713
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
714
    mv88w8618_eth_write,
715
    mv88w8618_eth_write,
716
    mv88w8618_eth_write
717
};
718

    
719
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
720
{
721
    mv88w8618_eth_state *s;
722
    int iomemtype;
723

    
724
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
725
    if (!s)
726
        return;
727
    s->base = base;
728
    s->irq = irq;
729
    s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
730
    iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
731
                                       mv88w8618_eth_writefn, s);
732
    cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
733
}
734

    
735
/* LCD register offsets */
736
#define MP_LCD_IRQCTRL          0x180
737
#define MP_LCD_IRQSTAT          0x184
738
#define MP_LCD_SPICTRL          0x1ac
739
#define MP_LCD_INST             0x1bc
740
#define MP_LCD_DATA             0x1c0
741

    
742
/* Mode magics */
743
#define MP_LCD_SPI_DATA         0x00100011
744
#define MP_LCD_SPI_CMD          0x00104011
745
#define MP_LCD_SPI_INVALID      0x00000000
746

    
747
/* Commmands */
748
#define MP_LCD_INST_SETPAGE0    0xB0
749
/* ... */
750
#define MP_LCD_INST_SETPAGE7    0xB7
751

    
752
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
753

    
754
typedef struct musicpal_lcd_state {
755
    uint32_t base;
756
    uint32_t mode;
757
    uint32_t irqctrl;
758
    int page;
759
    int page_off;
760
    DisplayState *ds;
761
    QEMUConsole *console;
762
    uint8_t video_ram[128*64/8];
763
} musicpal_lcd_state;
764

    
765
static uint32_t lcd_brightness;
766

    
767
static uint8_t scale_lcd_color(uint8_t col)
768
{
769
    int tmp = col;
770

    
771
    switch (lcd_brightness) {
772
    case 0x00000007: /* 0 */
773
        return 0;
774

    
775
    case 0x00020000: /* 1 */
776
        return (tmp * 1) / 7;
777

    
778
    case 0x00020001: /* 2 */
779
        return (tmp * 2) / 7;
780

    
781
    case 0x00040000: /* 3 */
782
        return (tmp * 3) / 7;
783

    
784
    case 0x00010006: /* 4 */
785
        return (tmp * 4) / 7;
786

    
787
    case 0x00020005: /* 5 */
788
        return (tmp * 5) / 7;
789

    
790
    case 0x00040003: /* 6 */
791
        return (tmp * 6) / 7;
792

    
793
    case 0x00030004: /* 7 */
794
    default:
795
        return col;
796
    }
797
}
798

    
799
#define SET_LCD_PIXEL(depth, type) \
800
static inline void glue(set_lcd_pixel, depth) \
801
        (musicpal_lcd_state *s, int x, int y, type col) \
802
{ \
803
    int dx, dy; \
804
    type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
805
\
806
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
807
        for (dx = 0; dx < 3; dx++, pixel++) \
808
            *pixel = col; \
809
}
810
SET_LCD_PIXEL(8, uint8_t)
811
SET_LCD_PIXEL(16, uint16_t)
812
SET_LCD_PIXEL(32, uint32_t)
813

    
814
#include "pixel_ops.h"
815

    
816
static void lcd_refresh(void *opaque)
817
{
818
    musicpal_lcd_state *s = opaque;
819
    int x, y, col;
820

    
821
    switch (s->ds->depth) {
822
    case 0:
823
        return;
824
#define LCD_REFRESH(depth, func) \
825
    case depth: \
826
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
827
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
828
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
829
        for (x = 0; x < 128; x++) \
830
            for (y = 0; y < 64; y++) \
831
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
832
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
833
                else \
834
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
835
        break;
836
    LCD_REFRESH(8, rgb_to_pixel8)
837
    LCD_REFRESH(16, rgb_to_pixel16)
838
    LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
839
    default:
840
        cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
841
                  s->ds->depth);
842
    }
843

    
844
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
845
}
846

    
847
static void lcd_invalidate(void *opaque)
848
{
849
}
850

    
851
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
852
{
853
    musicpal_lcd_state *s = opaque;
854

    
855
    offset -= s->base;
856
    switch (offset) {
857
    case MP_LCD_IRQCTRL:
858
        return s->irqctrl;
859

    
860
    default:
861
        return 0;
862
    }
863
}
864

    
865
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
866
                               uint32_t value)
867
{
868
    musicpal_lcd_state *s = opaque;
869

    
870
    offset -= s->base;
871
    switch (offset) {
872
    case MP_LCD_IRQCTRL:
873
        s->irqctrl = value;
874
        break;
875

    
876
    case MP_LCD_SPICTRL:
877
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
878
            s->mode = value;
879
        else
880
            s->mode = MP_LCD_SPI_INVALID;
881
        break;
882

    
883
    case MP_LCD_INST:
884
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
885
            s->page = value - MP_LCD_INST_SETPAGE0;
886
            s->page_off = 0;
887
        }
888
        break;
889

    
890
    case MP_LCD_DATA:
891
        if (s->mode == MP_LCD_SPI_CMD) {
892
            if (value >= MP_LCD_INST_SETPAGE0 &&
893
                value <= MP_LCD_INST_SETPAGE7) {
894
                s->page = value - MP_LCD_INST_SETPAGE0;
895
                s->page_off = 0;
896
            }
897
        } else if (s->mode == MP_LCD_SPI_DATA) {
898
            s->video_ram[s->page*128 + s->page_off] = value;
899
            s->page_off = (s->page_off + 1) & 127;
900
        }
901
        break;
902
    }
903
}
904

    
905
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
906
    musicpal_lcd_read,
907
    musicpal_lcd_read,
908
    musicpal_lcd_read
909
};
910

    
911
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
912
    musicpal_lcd_write,
913
    musicpal_lcd_write,
914
    musicpal_lcd_write
915
};
916

    
917
static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
918
{
919
    musicpal_lcd_state *s;
920
    int iomemtype;
921

    
922
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
923
    if (!s)
924
        return;
925
    s->base = base;
926
    s->ds = ds;
927
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
928
                                       musicpal_lcd_writefn, s);
929
    cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
930

    
931
    s->console = graphic_console_init(ds, lcd_refresh, lcd_invalidate,
932
                                      NULL, NULL, s);
933
    qemu_console_resize(s->console, 128*3, 64*3);
934
}
935

    
936
/* PIC register offsets */
937
#define MP_PIC_STATUS           0x00
938
#define MP_PIC_ENABLE_SET       0x08
939
#define MP_PIC_ENABLE_CLR       0x0C
940

    
941
typedef struct mv88w8618_pic_state
942
{
943
    uint32_t base;
944
    uint32_t level;
945
    uint32_t enabled;
946
    qemu_irq parent_irq;
947
} mv88w8618_pic_state;
948

    
949
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
950
{
951
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
952
}
953

    
954
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
955
{
956
    mv88w8618_pic_state *s = opaque;
957

    
958
    if (level)
959
        s->level |= 1 << irq;
960
    else
961
        s->level &= ~(1 << irq);
962
    mv88w8618_pic_update(s);
963
}
964

    
965
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
966
{
967
    mv88w8618_pic_state *s = opaque;
968

    
969
    offset -= s->base;
970
    switch (offset) {
971
    case MP_PIC_STATUS:
972
        return s->level & s->enabled;
973

    
974
    default:
975
        return 0;
976
    }
977
}
978

    
979
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
980
                                uint32_t value)
981
{
982
    mv88w8618_pic_state *s = opaque;
983

    
984
    offset -= s->base;
985
    switch (offset) {
986
    case MP_PIC_ENABLE_SET:
987
        s->enabled |= value;
988
        break;
989

    
990
    case MP_PIC_ENABLE_CLR:
991
        s->enabled &= ~value;
992
        s->level &= ~value;
993
        break;
994
    }
995
    mv88w8618_pic_update(s);
996
}
997

    
998
static void mv88w8618_pic_reset(void *opaque)
999
{
1000
    mv88w8618_pic_state *s = opaque;
1001

    
1002
    s->level = 0;
1003
    s->enabled = 0;
1004
}
1005

    
1006
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1007
    mv88w8618_pic_read,
1008
    mv88w8618_pic_read,
1009
    mv88w8618_pic_read
1010
};
1011

    
1012
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1013
    mv88w8618_pic_write,
1014
    mv88w8618_pic_write,
1015
    mv88w8618_pic_write
1016
};
1017

    
1018
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1019
{
1020
    mv88w8618_pic_state *s;
1021
    int iomemtype;
1022
    qemu_irq *qi;
1023

    
1024
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1025
    if (!s)
1026
        return NULL;
1027
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1028
    s->base = base;
1029
    s->parent_irq = parent_irq;
1030
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1031
                                       mv88w8618_pic_writefn, s);
1032
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1033

    
1034
    qemu_register_reset(mv88w8618_pic_reset, s);
1035

    
1036
    return qi;
1037
}
1038

    
1039
/* PIT register offsets */
1040
#define MP_PIT_TIMER1_LENGTH    0x00
1041
/* ... */
1042
#define MP_PIT_TIMER4_LENGTH    0x0C
1043
#define MP_PIT_CONTROL          0x10
1044
#define MP_PIT_TIMER1_VALUE     0x14
1045
/* ... */
1046
#define MP_PIT_TIMER4_VALUE     0x20
1047
#define MP_BOARD_RESET          0x34
1048

    
1049
/* Magic board reset value (probably some watchdog behind it) */
1050
#define MP_BOARD_RESET_MAGIC    0x10000
1051

    
1052
typedef struct mv88w8618_timer_state {
1053
    ptimer_state *timer;
1054
    uint32_t limit;
1055
    int freq;
1056
    qemu_irq irq;
1057
} mv88w8618_timer_state;
1058

    
1059
typedef struct mv88w8618_pit_state {
1060
    void *timer[4];
1061
    uint32_t control;
1062
    uint32_t base;
1063
} mv88w8618_pit_state;
1064

    
1065
static void mv88w8618_timer_tick(void *opaque)
1066
{
1067
    mv88w8618_timer_state *s = opaque;
1068

    
1069
    qemu_irq_raise(s->irq);
1070
}
1071

    
1072
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1073
{
1074
    mv88w8618_timer_state *s;
1075
    QEMUBH *bh;
1076

    
1077
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1078
    s->irq = irq;
1079
    s->freq = freq;
1080

    
1081
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1082
    s->timer = ptimer_init(bh);
1083

    
1084
    return s;
1085
}
1086

    
1087
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1088
{
1089
    mv88w8618_pit_state *s = opaque;
1090
    mv88w8618_timer_state *t;
1091

    
1092
    offset -= s->base;
1093
    switch (offset) {
1094
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1095
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1096
        return ptimer_get_count(t->timer);
1097

    
1098
    default:
1099
        return 0;
1100
    }
1101
}
1102

    
1103
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1104
                                uint32_t value)
1105
{
1106
    mv88w8618_pit_state *s = opaque;
1107
    mv88w8618_timer_state *t;
1108
    int i;
1109

    
1110
    offset -= s->base;
1111
    switch (offset) {
1112
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1113
        t = s->timer[offset >> 2];
1114
        t->limit = value;
1115
        ptimer_set_limit(t->timer, t->limit, 1);
1116
        break;
1117

    
1118
    case MP_PIT_CONTROL:
1119
        for (i = 0; i < 4; i++) {
1120
            if (value & 0xf) {
1121
                t = s->timer[i];
1122
                ptimer_set_limit(t->timer, t->limit, 0);
1123
                ptimer_set_freq(t->timer, t->freq);
1124
                ptimer_run(t->timer, 0);
1125
            }
1126
            value >>= 4;
1127
        }
1128
        break;
1129

    
1130
    case MP_BOARD_RESET:
1131
        if (value == MP_BOARD_RESET_MAGIC)
1132
            qemu_system_reset_request();
1133
        break;
1134
    }
1135
}
1136

    
1137
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1138
    mv88w8618_pit_read,
1139
    mv88w8618_pit_read,
1140
    mv88w8618_pit_read
1141
};
1142

    
1143
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1144
    mv88w8618_pit_write,
1145
    mv88w8618_pit_write,
1146
    mv88w8618_pit_write
1147
};
1148

    
1149
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1150
{
1151
    int iomemtype;
1152
    mv88w8618_pit_state *s;
1153

    
1154
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1155
    if (!s)
1156
        return;
1157

    
1158
    s->base = base;
1159
    /* Letting them all run at 1 MHz is likely just a pragmatic
1160
     * simplification. */
1161
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1162
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1163
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1164
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1165

    
1166
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1167
                                       mv88w8618_pit_writefn, s);
1168
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1169
}
1170

    
1171
/* Flash config register offsets */
1172
#define MP_FLASHCFG_CFGR0    0x04
1173

    
1174
typedef struct mv88w8618_flashcfg_state {
1175
    uint32_t base;
1176
    uint32_t cfgr0;
1177
} mv88w8618_flashcfg_state;
1178

    
1179
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1180
                                        target_phys_addr_t offset)
1181
{
1182
    mv88w8618_flashcfg_state *s = opaque;
1183

    
1184
    offset -= s->base;
1185
    switch (offset) {
1186
    case MP_FLASHCFG_CFGR0:
1187
        return s->cfgr0;
1188

    
1189
    default:
1190
        return 0;
1191
    }
1192
}
1193

    
1194
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1195
                                     uint32_t value)
1196
{
1197
    mv88w8618_flashcfg_state *s = opaque;
1198

    
1199
    offset -= s->base;
1200
    switch (offset) {
1201
    case MP_FLASHCFG_CFGR0:
1202
        s->cfgr0 = value;
1203
        break;
1204
    }
1205
}
1206

    
1207
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1208
    mv88w8618_flashcfg_read,
1209
    mv88w8618_flashcfg_read,
1210
    mv88w8618_flashcfg_read
1211
};
1212

    
1213
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1214
    mv88w8618_flashcfg_write,
1215
    mv88w8618_flashcfg_write,
1216
    mv88w8618_flashcfg_write
1217
};
1218

    
1219
static void mv88w8618_flashcfg_init(uint32_t base)
1220
{
1221
    int iomemtype;
1222
    mv88w8618_flashcfg_state *s;
1223

    
1224
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1225
    if (!s)
1226
        return;
1227

    
1228
    s->base = base;
1229
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1230
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1231
                       mv88w8618_flashcfg_writefn, s);
1232
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1233
}
1234

    
1235
/* Various registers in the 0x80000000 domain */
1236
#define MP_BOARD_REVISION       0x2018
1237

    
1238
#define MP_WLAN_MAGIC1          0xc11c
1239
#define MP_WLAN_MAGIC2          0xc124
1240

    
1241
#define MP_GPIO_OE_LO           0xd008
1242
#define MP_GPIO_OUT_LO          0xd00c
1243
#define MP_GPIO_IN_LO           0xd010
1244
#define MP_GPIO_ISR_LO          0xd020
1245
#define MP_GPIO_OE_HI           0xd508
1246
#define MP_GPIO_OUT_HI          0xd50c
1247
#define MP_GPIO_IN_HI           0xd510
1248
#define MP_GPIO_ISR_HI          0xd520
1249

    
1250
/* GPIO bits & masks */
1251
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1252
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1253
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1254
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1255
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1256
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1257
#define MP_GPIO_BTN_MENU        (1 << 20)
1258
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1259
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1260
#define MP_GPIO_I2C_DATA_BIT    29
1261
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1262
#define MP_GPIO_I2C_CLOCK_BIT   30
1263

    
1264
/* LCD brightness bits in GPIO_OE_HI */
1265
#define MP_OE_LCD_BRIGHTNESS    0x0007
1266

    
1267
static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1268
{
1269
    offset -= 0x80000000;
1270
    switch (offset) {
1271
    case MP_BOARD_REVISION:
1272
        return 0x0031;
1273

    
1274
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1275
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1276

    
1277
    case MP_GPIO_OUT_LO:
1278
        return gpio_out_state & 0xFFFF;
1279
    case MP_GPIO_OUT_HI:
1280
        return gpio_out_state >> 16;
1281

    
1282
    case MP_GPIO_IN_LO:
1283
        return gpio_in_state & 0xFFFF;
1284
    case MP_GPIO_IN_HI:
1285
        /* Update received I2C data */
1286
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1287
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1288
        return gpio_in_state >> 16;
1289

    
1290
    case MP_GPIO_ISR_LO:
1291
        return gpio_isr & 0xFFFF;
1292
    case MP_GPIO_ISR_HI:
1293
        return gpio_isr >> 16;
1294

    
1295
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1296
     * from the original Freecom firmware. */
1297
    case MP_WLAN_MAGIC1:
1298
        return ~3;
1299
    case MP_WLAN_MAGIC2:
1300
        return -1;
1301

    
1302
    default:
1303
        return 0;
1304
    }
1305
}
1306

    
1307
static void musicpal_write(void *opaque, target_phys_addr_t offset,
1308
                           uint32_t value)
1309
{
1310
    offset -= 0x80000000;
1311
    switch (offset) {
1312
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1313
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1314
                         (value & MP_OE_LCD_BRIGHTNESS);
1315
        break;
1316

    
1317
    case MP_GPIO_OUT_LO:
1318
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1319
        break;
1320
    case MP_GPIO_OUT_HI:
1321
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1322
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1323
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1324
        i2c_state_update(mixer_i2c,
1325
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1326
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1327
        break;
1328

    
1329
    }
1330
}
1331

    
1332
/* Keyboard codes & masks */
1333
#define KEY_RELEASED            0x80
1334
#define KEY_CODE                0x7f
1335

    
1336
#define KEYCODE_TAB             0x0f
1337
#define KEYCODE_ENTER           0x1c
1338
#define KEYCODE_F               0x21
1339
#define KEYCODE_M               0x32
1340

    
1341
#define KEYCODE_EXTENDED        0xe0
1342
#define KEYCODE_UP              0x48
1343
#define KEYCODE_DOWN            0x50
1344
#define KEYCODE_LEFT            0x4b
1345
#define KEYCODE_RIGHT           0x4d
1346

    
1347
static void musicpal_key_event(void *opaque, int keycode)
1348
{
1349
    qemu_irq irq = opaque;
1350
    uint32_t event = 0;
1351
    static int kbd_extended;
1352

    
1353
    if (keycode == KEYCODE_EXTENDED) {
1354
        kbd_extended = 1;
1355
        return;
1356
    }
1357

    
1358
    if (kbd_extended)
1359
        switch (keycode & KEY_CODE) {
1360
        case KEYCODE_UP:
1361
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1362
            break;
1363

    
1364
        case KEYCODE_DOWN:
1365
            event = MP_GPIO_WHEEL_NAV;
1366
            break;
1367

    
1368
        case KEYCODE_LEFT:
1369
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1370
            break;
1371

    
1372
        case KEYCODE_RIGHT:
1373
            event = MP_GPIO_WHEEL_VOL;
1374
            break;
1375
        }
1376
    else {
1377
        switch (keycode & KEY_CODE) {
1378
        case KEYCODE_F:
1379
            event = MP_GPIO_BTN_FAVORITS;
1380
            break;
1381

    
1382
        case KEYCODE_TAB:
1383
            event = MP_GPIO_BTN_VOLUME;
1384
            break;
1385

    
1386
        case KEYCODE_ENTER:
1387
            event = MP_GPIO_BTN_NAVIGATION;
1388
            break;
1389

    
1390
        case KEYCODE_M:
1391
            event = MP_GPIO_BTN_MENU;
1392
            break;
1393
        }
1394
        /* Do not repeat already pressed buttons */
1395
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1396
            event = 0;
1397
    }
1398

    
1399
    if (event) {
1400
        if (keycode & KEY_RELEASED) {
1401
            gpio_in_state |= event;
1402
        } else {
1403
            gpio_in_state &= ~event;
1404
            gpio_isr = event;
1405
            qemu_irq_raise(irq);
1406
        }
1407
    }
1408

    
1409
    kbd_extended = 0;
1410
}
1411

    
1412
static CPUReadMemoryFunc *musicpal_readfn[] = {
1413
    musicpal_read,
1414
    musicpal_read,
1415
    musicpal_read,
1416
};
1417

    
1418
static CPUWriteMemoryFunc *musicpal_writefn[] = {
1419
    musicpal_write,
1420
    musicpal_write,
1421
    musicpal_write,
1422
};
1423

    
1424
static struct arm_boot_info musicpal_binfo = {
1425
    .loader_start = 0x0,
1426
    .board_id = 0x20e,
1427
};
1428

    
1429
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1430
               const char *boot_device, DisplayState *ds,
1431
               const char *kernel_filename, const char *kernel_cmdline,
1432
               const char *initrd_filename, const char *cpu_model)
1433
{
1434
    CPUState *env;
1435
    qemu_irq *pic;
1436
    int index;
1437
    int iomemtype;
1438
    unsigned long flash_size;
1439

    
1440
    if (!cpu_model)
1441
        cpu_model = "arm926";
1442

    
1443
    env = cpu_init(cpu_model);
1444
    if (!env) {
1445
        fprintf(stderr, "Unable to find CPU definition\n");
1446
        exit(1);
1447
    }
1448
    pic = arm_pic_init_cpu(env);
1449

    
1450
    /* For now we use a fixed - the original - RAM size */
1451
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1452
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1453

    
1454
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1455
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1456

    
1457
    /* Catch various stuff not handled by separate subsystems */
1458
    iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1459
                                       musicpal_writefn, env);
1460
    cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1461

    
1462
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1463
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1464

    
1465
    if (serial_hds[0])
1466
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1467
                   serial_hds[0], 1);
1468
    if (serial_hds[1])
1469
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1470
                   serial_hds[1], 1);
1471

    
1472
    /* Register flash */
1473
    index = drive_get_index(IF_PFLASH, 0, 0);
1474
    if (index != -1) {
1475
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1476
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1477
            flash_size != 32*1024*1024) {
1478
            fprintf(stderr, "Invalid flash image size\n");
1479
            exit(1);
1480
        }
1481

    
1482
        /*
1483
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1484
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1485
         * image is smaller than 32 MB.
1486
         */
1487
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1488
                              drives_table[index].bdrv, 0x10000,
1489
                              (flash_size + 0xffff) >> 16,
1490
                              MP_FLASH_SIZE_MAX / flash_size,
1491
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1492
                              0x5555, 0x2AAA);
1493
    }
1494
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1495

    
1496
    musicpal_lcd_init(ds, MP_LCD_BASE);
1497

    
1498
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1499

    
1500
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1501

    
1502
    mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1503

    
1504
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1505
    musicpal_binfo.kernel_filename = kernel_filename;
1506
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1507
    musicpal_binfo.initrd_filename = initrd_filename;
1508
    arm_load_kernel(env, &musicpal_binfo);
1509
}
1510

    
1511
QEMUMachine musicpal_machine = {
1512
    "musicpal",
1513
    "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1514
    musicpal_init,
1515
    MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1516
};