Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ c6488268

History | View | Annotate | Download (14.3 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw.h"
27
#include "net.h"
28

    
29
#include "etraxfs_dma.h"
30

    
31
#define D(x)
32

    
33
/* Advertisement control register. */
34
#define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
35
#define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
36
#define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
37
#define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
38

    
39
/* 
40
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
41
 * linux driver (PHYID and Diagnostics reg).
42
 * TODO: Add friendly names for the register nums.
43
 */
44
struct qemu_phy
45
{
46
        uint32_t regs[32];
47

    
48
        unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
49
        void (*write)(struct qemu_phy *phy, unsigned int req, 
50
                      unsigned int data);
51
};
52

    
53
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
54
{
55
        int regnum;
56
        unsigned r = 0;
57

    
58
        regnum = req & 0x1f;
59

    
60
        switch (regnum) {
61
                case 1:
62
                        /* MR1.         */
63
                        /* Speeds and modes.  */
64
                        r |= (1 << 13) | (1 << 14);
65
                        r |= (1 << 11) | (1 << 12);
66
                        r |= (1 << 5); /* Autoneg complete.  */
67
                        r |= (1 << 3); /* Autoneg able.         */
68
                        r |= (1 << 2); /* Link.         */
69
                        break;
70
                case 5:
71
                        /* Link partner ability.
72
                           We are kind; always agree with whatever best mode
73
                           the guest advertises.  */
74
                        r = 1 << 14; /* Success.  */
75
                        /* Copy advertised modes.  */
76
                        r |= phy->regs[4] & (15 << 5);
77
                        /* Autoneg support.  */
78
                        r |= 1;
79
                        break;
80
                case 18:
81
                {
82
                        /* Diagnostics reg.  */
83
                        int duplex = 0;
84
                        int speed_100 = 0;
85

    
86
                        /* Are we advertising 100 half or 100 duplex ? */
87
                        speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
88
                        speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
89

    
90
                        /* Are we advertising 10 duplex or 100 duplex ? */
91
                        duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
92
                        duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
93
                        r = (speed_100 << 10) | (duplex << 11);
94
                }
95
                break;
96

    
97
                default:
98
                        r = phy->regs[regnum];
99
                        break;
100
        }
101
        D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
102
        return r;
103
}
104

    
105
static void 
106
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
107
{
108
        int regnum;
109

    
110
        regnum = req & 0x1f;
111
        D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
112
        switch (regnum) {
113
                default:
114
                        phy->regs[regnum] = data;
115
                        break;
116
        }
117
}
118

    
119
static void 
120
tdk_init(struct qemu_phy *phy)
121
{
122
        phy->regs[0] = 0x3100;
123
        /* PHY Id.  */
124
        phy->regs[2] = 0x0300;
125
        phy->regs[3] = 0xe400;
126
        /* Autonegotiation advertisement reg.  */
127
        phy->regs[4] = 0x01E1;
128

    
129
        phy->read = tdk_read;
130
        phy->write = tdk_write;
131
}
132

    
133
struct qemu_mdio
134
{
135
        /* bus.         */
136
        int mdc;
137
        int mdio;
138

    
139
        /* decoder.  */
140
        enum {
141
                PREAMBLE,
142
                SOF,
143
                OPC,
144
                ADDR,
145
                REQ,
146
                TURNAROUND,
147
                DATA
148
        } state;
149
        unsigned int drive;
150

    
151
        unsigned int cnt;
152
        unsigned int addr;
153
        unsigned int opc;
154
        unsigned int req;
155
        unsigned int data;
156

    
157
        struct qemu_phy *devs[32];
158
};
159

    
160
static void 
161
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
162
{
163
        bus->devs[addr & 0x1f] = phy;
164
}
165

    
166
#ifdef USE_THIS_DEAD_CODE
167
static void 
168
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169
{
170
        bus->devs[addr & 0x1f] = NULL;        
171
}
172
#endif
173

    
174
static void mdio_read_req(struct qemu_mdio *bus)
175
{
176
        struct qemu_phy *phy;
177

    
178
        phy = bus->devs[bus->addr];
179
        if (phy && phy->read)
180
                bus->data = phy->read(phy, bus->req);
181
        else 
182
                bus->data = 0xffff;
183
}
184

    
185
static void mdio_write_req(struct qemu_mdio *bus)
186
{
187
        struct qemu_phy *phy;
188

    
189
        phy = bus->devs[bus->addr];
190
        if (phy && phy->write)
191
                phy->write(phy, bus->req, bus->data);
192
}
193

    
194
static void mdio_cycle(struct qemu_mdio *bus)
195
{
196
        bus->cnt++;
197

    
198
        D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
199
                bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
200
#if 0
201
        if (bus->mdc)
202
                printf("%d", bus->mdio);
203
#endif
204
        switch (bus->state)
205
        {
206
                case PREAMBLE:
207
                        if (bus->mdc) {
208
                                if (bus->cnt >= (32 * 2) && !bus->mdio) {
209
                                        bus->cnt = 0;
210
                                        bus->state = SOF;
211
                                        bus->data = 0;
212
                                }
213
                        }
214
                        break;
215
                case SOF:
216
                        if (bus->mdc) {
217
                                if (bus->mdio != 1)
218
                                        printf("WARNING: no SOF\n");
219
                                if (bus->cnt == 1*2) {
220
                                        bus->cnt = 0;
221
                                        bus->opc = 0;
222
                                        bus->state = OPC;
223
                                }
224
                        }
225
                        break;
226
                case OPC:
227
                        if (bus->mdc) {
228
                                bus->opc <<= 1;
229
                                bus->opc |= bus->mdio & 1;
230
                                if (bus->cnt == 2*2) {
231
                                        bus->cnt = 0;
232
                                        bus->addr = 0;
233
                                        bus->state = ADDR;
234
                                }
235
                        }
236
                        break;
237
                case ADDR:
238
                        if (bus->mdc) {
239
                                bus->addr <<= 1;
240
                                bus->addr |= bus->mdio & 1;
241

    
242
                                if (bus->cnt == 5*2) {
243
                                        bus->cnt = 0;
244
                                        bus->req = 0;
245
                                        bus->state = REQ;
246
                                }
247
                        }
248
                        break;
249
                case REQ:
250
                        if (bus->mdc) {
251
                                bus->req <<= 1;
252
                                bus->req |= bus->mdio & 1;
253
                                if (bus->cnt == 5*2) {
254
                                        bus->cnt = 0;
255
                                        bus->state = TURNAROUND;
256
                                }
257
                        }
258
                        break;
259
                case TURNAROUND:
260
                        if (bus->mdc && bus->cnt == 2*2) {
261
                                bus->mdio = 0;
262
                                bus->cnt = 0;
263

    
264
                                if (bus->opc == 2) {
265
                                        bus->drive = 1;
266
                                        mdio_read_req(bus);
267
                                        bus->mdio = bus->data & 1;
268
                                }
269
                                bus->state = DATA;
270
                        }
271
                        break;
272
                case DATA:                        
273
                        if (!bus->mdc) {
274
                                if (bus->drive) {
275
                                        bus->mdio = !!(bus->data & (1 << 15));
276
                                        bus->data <<= 1;
277
                                }
278
                        } else {
279
                                if (!bus->drive) {
280
                                        bus->data <<= 1;
281
                                        bus->data |= bus->mdio;
282
                                }
283
                                if (bus->cnt == 16 * 2) {
284
                                        bus->cnt = 0;
285
                                        bus->state = PREAMBLE;
286
                                        if (!bus->drive)
287
                                                mdio_write_req(bus);
288
                                        bus->drive = 0;
289
                                }
290
                        }
291
                        break;
292
                default:
293
                        break;
294
        }
295
}
296

    
297
/* ETRAX-FS Ethernet MAC block starts here.  */
298

    
299
#define RW_MA0_LO          0x00
300
#define RW_MA0_HI          0x04
301
#define RW_MA1_LO          0x08
302
#define RW_MA1_HI          0x0c
303
#define RW_GA_LO          0x10
304
#define RW_GA_HI          0x14
305
#define RW_GEN_CTRL          0x18
306
#define RW_REC_CTRL          0x1c
307
#define RW_TR_CTRL          0x20
308
#define RW_CLR_ERR          0x24
309
#define RW_MGM_CTRL          0x28
310
#define R_STAT                  0x2c
311
#define FS_ETH_MAX_REGS          0x5c
312

    
313
struct fs_eth
314
{
315
        CPUState *env;
316
        qemu_irq *irq;
317
        target_phys_addr_t base;
318
        VLANClientState *vc;
319
        int ethregs;
320

    
321
        /* Two addrs in the filter.  */
322
        uint8_t macaddr[2][6];
323
        uint32_t regs[FS_ETH_MAX_REGS];
324

    
325
        unsigned char rx_fifo[1536];
326
        int rx_fifo_len;
327
        int rx_fifo_pos;
328

    
329
        struct etraxfs_dma_client *dma_out;
330
        struct etraxfs_dma_client *dma_in;
331

    
332
        /* MDIO bus.  */
333
        struct qemu_mdio mdio_bus;
334
        unsigned int phyaddr;
335
        int duplex_mismatch;
336

    
337
        /* PHY.         */
338
        struct qemu_phy phy;
339
};
340

    
341
static void eth_validate_duplex(struct fs_eth *eth)
342
{
343
        struct qemu_phy *phy;
344
        unsigned int phy_duplex;
345
        unsigned int mac_duplex;
346
        int new_mm = 0;
347

    
348
        phy = eth->mdio_bus.devs[eth->phyaddr];
349
        phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
350
        mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
351

    
352
        if (mac_duplex != phy_duplex)
353
                new_mm = 1;
354

    
355
        if (eth->regs[RW_GEN_CTRL] & 1) {
356
                if (new_mm != eth->duplex_mismatch) {
357
                        if (new_mm)
358
                                printf("HW: WARNING "
359
                                       "ETH duplex mismatch MAC=%d PHY=%d\n",
360
                                       mac_duplex, phy_duplex);
361
                        else
362
                                printf("HW: ETH duplex ok.\n");
363
                }
364
                eth->duplex_mismatch = new_mm;
365
        }
366
}
367

    
368
static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
369
{
370
        struct fs_eth *eth = opaque;
371
        CPUState *env = eth->env;
372
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
373
                  addr);
374
        return 0;
375
}
376

    
377
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
378
{
379
        struct fs_eth *eth = opaque;
380
        uint32_t r = 0;
381

    
382
        /* Make addr relative to this instances base.  */
383
        addr -= eth->base;
384
        switch (addr) {
385
                case R_STAT:
386
                        /* Attach an MDIO/PHY abstraction.  */
387
                        r = eth->mdio_bus.mdio & 1;
388
                        break;
389
        default:
390
                r = eth->regs[addr];
391
                D(printf ("%s %x\n", __func__, addr));
392
                break;
393
        }
394
        return r;
395
}
396

    
397
static void
398
eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
399
{
400
        struct fs_eth *eth = opaque;
401
        CPUState *env = eth->env;
402
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
403
                  addr);
404
}
405

    
406
static void eth_update_ma(struct fs_eth *eth, int ma)
407
{
408
        int reg;
409
        int i = 0;
410

    
411
        ma &= 1;
412

    
413
        reg = RW_MA0_LO;
414
        if (ma)
415
                reg = RW_MA1_LO;
416

    
417
        eth->macaddr[ma][i++] = eth->regs[reg];
418
        eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
419
        eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
420
        eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
421
        eth->macaddr[ma][i++] = eth->regs[reg + 4];
422
        eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
423

    
424
        D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
425
                 eth->macaddr[ma][0], eth->macaddr[ma][1],
426
                 eth->macaddr[ma][2], eth->macaddr[ma][3],
427
                 eth->macaddr[ma][4], eth->macaddr[ma][5]));
428
}
429

    
430
static void
431
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
432
{
433
        struct fs_eth *eth = opaque;
434

    
435
        /* Make addr relative to this instances base.  */
436
        addr -= eth->base;
437
        switch (addr)
438
        {
439
                case RW_MA0_LO:
440
                        eth->regs[addr] = value;
441
                        eth_update_ma(eth, 0);
442
                        break;
443
                case RW_MA0_HI:
444
                        eth->regs[addr] = value;
445
                        eth_update_ma(eth, 0);
446
                        break;
447
                case RW_MA1_LO:
448
                        eth->regs[addr] = value;
449
                        eth_update_ma(eth, 1);
450
                        break;
451
                case RW_MA1_HI:
452
                        eth->regs[addr] = value;
453
                        eth_update_ma(eth, 1);
454
                        break;
455

    
456
                case RW_MGM_CTRL:
457
                        /* Attach an MDIO/PHY abstraction.  */
458
                        if (value & 2)
459
                                eth->mdio_bus.mdio = value & 1;
460
                        if (eth->mdio_bus.mdc != (value & 4)) {
461
                                mdio_cycle(&eth->mdio_bus);
462
                                eth_validate_duplex(eth);
463
                        }
464
                        eth->mdio_bus.mdc = !!(value & 4);
465
                        break;
466

    
467
                case RW_REC_CTRL:
468
                        eth->regs[addr] = value;
469
                        eth_validate_duplex(eth);
470
                        break;
471

    
472
                default:
473
                        eth->regs[addr] = value;
474
                        D(printf ("%s %x %x\n",
475
                                  __func__, addr, value));
476
                        break;
477
        }
478
}
479

    
480
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
481
   filter dropping group addresses we have not joined.        The filter has 64
482
   bits (m). The has function is a simple nible xor of the group addr.        */
483
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
484
{
485
        unsigned int hsh;
486
        int m_individual = eth->regs[RW_REC_CTRL] & 4;
487
        int match;
488

    
489
        /* First bit on the wire of a MAC address signals multicast or
490
           physical address.  */
491
        if (!m_individual && !sa[0] & 1)
492
                return 0;
493

    
494
        /* Calculate the hash index for the GA registers. */
495
        hsh = 0;
496
        hsh ^= (*sa) & 0x3f;
497
        hsh ^= ((*sa) >> 6) & 0x03;
498
        ++sa;
499
        hsh ^= ((*sa) << 2) & 0x03c;
500
        hsh ^= ((*sa) >> 4) & 0xf;
501
        ++sa;
502
        hsh ^= ((*sa) << 4) & 0x30;
503
        hsh ^= ((*sa) >> 2) & 0x3f;
504
        ++sa;
505
        hsh ^= (*sa) & 0x3f;
506
        hsh ^= ((*sa) >> 6) & 0x03;
507
        ++sa;
508
        hsh ^= ((*sa) << 2) & 0x03c;
509
        hsh ^= ((*sa) >> 4) & 0xf;
510
        ++sa;
511
        hsh ^= ((*sa) << 4) & 0x30;
512
        hsh ^= ((*sa) >> 2) & 0x3f;
513

    
514
        hsh &= 63;
515
        if (hsh > 31)
516
                match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
517
        else
518
                match = eth->regs[RW_GA_LO] & (1 << hsh);
519
        D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
520
                 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
521
        return match;
522
}
523

    
524
static int eth_can_receive(void *opaque)
525
{
526
        struct fs_eth *eth = opaque;
527
        int r;
528

    
529
        r = eth->rx_fifo_len == 0;
530
        if (!r) {
531
                /* TODO: signal fifo overrun.  */
532
                printf("PACKET LOSS!\n");
533
        }
534
        return r;
535
}
536

    
537
static void eth_receive(void *opaque, const uint8_t *buf, int size)
538
{
539
        unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
540
        struct fs_eth *eth = opaque;
541
        int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
542
        int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
543
        int r_bcast = eth->regs[RW_REC_CTRL] & 8;
544

    
545
        if (size < 12)
546
                return;
547

    
548
        D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
549
                 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
550
                 use_ma0, use_ma1, r_bcast));
551
               
552
        /* Does the frame get through the address filters?  */
553
        if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
554
            && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
555
            && (!r_bcast || memcmp(buf, sa_bcast, 6))
556
            && !eth_match_groupaddr(eth, buf))
557
                return;
558

    
559
        if (size > sizeof(eth->rx_fifo)) {
560
                /* TODO: signal error.        */
561
        } else if (eth->rx_fifo_len) {
562
                /* FIFO overrun.  */
563
        } else {
564
                memcpy(eth->rx_fifo, buf, size);
565
                /* +4, HW passes the CRC to sw.         */
566
                eth->rx_fifo_len = size + 4;
567
                eth->rx_fifo_pos = 0;
568
        }
569
}
570

    
571
static void eth_rx_pull(void *opaque)
572
{
573
        struct fs_eth *eth = opaque;
574
        int len;
575
        if (eth->rx_fifo_len) {                
576
                D(printf("%s %d\n", __func__, eth->rx_fifo_len));
577
#if 0
578
                {
579
                        int i;
580
                        for (i = 0; i < 32; i++)
581
                                printf("%2.2x", eth->rx_fifo[i]);
582
                        printf("\n");
583
                }
584
#endif
585
                len = etraxfs_dmac_input(eth->dma_in,
586
                                         eth->rx_fifo + eth->rx_fifo_pos, 
587
                                         eth->rx_fifo_len, 1);
588
                eth->rx_fifo_len -= len;
589
                eth->rx_fifo_pos += len;
590
        }
591
}
592

    
593
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
594
{
595
        struct fs_eth *eth = opaque;
596

    
597
        D(printf("%s buf=%p len=%d\n", __func__, buf, len));
598
        qemu_send_packet(eth->vc, buf, len);
599
        return len;
600
}
601

    
602
static CPUReadMemoryFunc *eth_read[] = {
603
        &eth_rinvalid,
604
        &eth_rinvalid,
605
        &eth_readl,
606
};
607

    
608
static CPUWriteMemoryFunc *eth_write[] = {
609
        &eth_winvalid,
610
        &eth_winvalid,
611
        &eth_writel,
612
};
613

    
614
void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
615
                       qemu_irq *irq, target_phys_addr_t base)
616
{
617
        struct etraxfs_dma_client *dma = NULL;        
618
        struct fs_eth *eth = NULL;
619

    
620
        dma = qemu_mallocz(sizeof *dma * 2);
621
        if (!dma)
622
                return NULL;
623

    
624
        eth = qemu_mallocz(sizeof *eth);
625
        if (!eth)
626
                goto err;
627

    
628
        dma[0].client.push = eth_tx_push;
629
        dma[0].client.opaque = eth;
630
        dma[1].client.opaque = eth;
631
        dma[1].client.pull = eth_rx_pull;
632

    
633
        eth->env = env;
634
        eth->base = base;
635
        eth->irq = irq;
636
        eth->dma_out = dma;
637
        eth->dma_in = dma + 1;
638

    
639
        /* Connect the phy.  */
640
        eth->phyaddr = 1;
641
        tdk_init(&eth->phy);
642
        mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
643

    
644
        eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
645
        cpu_register_physical_memory (base, 0x5c, eth->ethregs);
646

    
647
        eth->vc = qemu_new_vlan_client(nd->vlan, 
648
                                       eth_receive, eth_can_receive, eth);
649

    
650
        return dma;
651
  err:
652
        qemu_free(eth);
653
        qemu_free(dma);
654
        return NULL;
655
}