Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ c68ea704

History | View | Annotate | Download (9 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
//#define DEBUG_IRQ_COUNT
26
//#define DEBUG_IRQ
27

    
28
#ifdef DEBUG_IRQ
29
#define DPRINTF(fmt, args...) \
30
do { printf("IRQ: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of interrupt controller in sun4m.
37
 *
38
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 *
42
 * There is a system master controller and one for each cpu.
43
 * 
44
 */
45

    
46
#define MAX_CPUS 16
47

    
48
typedef struct SLAVIO_INTCTLState {
49
    uint32_t intreg_pending[MAX_CPUS];
50
    uint32_t intregm_pending;
51
    uint32_t intregm_disabled;
52
    uint32_t target_cpu;
53
#ifdef DEBUG_IRQ_COUNT
54
    uint64_t irq_count[32];
55
#endif
56
} SLAVIO_INTCTLState;
57

    
58
#define INTCTL_MAXADDR 0xf
59
#define INTCTLM_MAXADDR 0xf
60
static void slavio_check_interrupts(void *opaque);
61

    
62
// per-cpu interrupt controller
63
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
64
{
65
    SLAVIO_INTCTLState *s = opaque;
66
    uint32_t saddr;
67
    int cpu;
68

    
69
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
70
    saddr = (addr & INTCTL_MAXADDR) >> 2;
71
    switch (saddr) {
72
    case 0:
73
        return s->intreg_pending[cpu];
74
    default:
75
        break;
76
    }
77
    return 0;
78
}
79

    
80
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
81
{
82
    SLAVIO_INTCTLState *s = opaque;
83
    uint32_t saddr;
84
    int cpu;
85

    
86
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
87
    saddr = (addr & INTCTL_MAXADDR) >> 2;
88
    switch (saddr) {
89
    case 1: // clear pending softints
90
        if (val & 0x4000)
91
            val |= 80000000;
92
        val &= 0xfffe0000;
93
        s->intreg_pending[cpu] &= ~val;
94
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
95
        break;
96
    case 2: // set softint
97
        val &= 0xfffe0000;
98
        s->intreg_pending[cpu] |= val;
99
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
100
        break;
101
    default:
102
        break;
103
    }
104
}
105

    
106
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
107
    slavio_intctl_mem_readl,
108
    slavio_intctl_mem_readl,
109
    slavio_intctl_mem_readl,
110
};
111

    
112
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
113
    slavio_intctl_mem_writel,
114
    slavio_intctl_mem_writel,
115
    slavio_intctl_mem_writel,
116
};
117

    
118
// master system interrupt controller
119
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
120
{
121
    SLAVIO_INTCTLState *s = opaque;
122
    uint32_t saddr;
123

    
124
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
125
    switch (saddr) {
126
    case 0:
127
        return s->intregm_pending & 0x7fffffff;
128
    case 1:
129
        return s->intregm_disabled;
130
    case 4:
131
        return s->target_cpu;
132
    default:
133
        break;
134
    }
135
    return 0;
136
}
137

    
138
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
139
{
140
    SLAVIO_INTCTLState *s = opaque;
141
    uint32_t saddr;
142

    
143
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
144
    switch (saddr) {
145
    case 2: // clear (enable)
146
        // Force clear unused bits
147
        val &= ~0x4fb2007f;
148
        s->intregm_disabled &= ~val;
149
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
150
        slavio_check_interrupts(s);
151
        break;
152
    case 3: // set (disable, clear pending)
153
        // Force clear unused bits
154
        val &= ~0x4fb2007f;
155
        s->intregm_disabled |= val;
156
        s->intregm_pending &= ~val;
157
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
158
        break;
159
    case 4:
160
        s->target_cpu = val & (MAX_CPUS - 1);
161
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
162
        break;
163
    default:
164
        break;
165
    }
166
}
167

    
168
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
169
    slavio_intctlm_mem_readl,
170
    slavio_intctlm_mem_readl,
171
    slavio_intctlm_mem_readl,
172
};
173

    
174
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
175
    slavio_intctlm_mem_writel,
176
    slavio_intctlm_mem_writel,
177
    slavio_intctlm_mem_writel,
178
};
179

    
180
void slavio_pic_info(void *opaque)
181
{
182
    SLAVIO_INTCTLState *s = opaque;
183
    int i;
184

    
185
    for (i = 0; i < MAX_CPUS; i++) {
186
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
187
    }
188
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
189
}
190

    
191
void slavio_irq_info(void *opaque)
192
{
193
#ifndef DEBUG_IRQ_COUNT
194
    term_printf("irq statistic code not compiled.\n");
195
#else
196
    SLAVIO_INTCTLState *s = opaque;
197
    int i;
198
    int64_t count;
199

    
200
    term_printf("IRQ statistics:\n");
201
    for (i = 0; i < 32; i++) {
202
        count = s->irq_count[i];
203
        if (count > 0)
204
            term_printf("%2d: %lld\n", i, count);
205
    }
206
#endif
207
}
208

    
209
static const uint32_t intbit_to_level[32] = {
210
    2, 3, 5, 7, 9, 11, 0, 14,        3, 5, 7, 9, 11, 13, 12, 12,
211
    6, 0, 4, 10, 8, 0, 11, 0,        0, 0, 0, 0, 15, 0, 15, 0,
212
};
213

    
214
static void slavio_check_interrupts(void *opaque)
215
{
216
    CPUState *env;
217
    SLAVIO_INTCTLState *s = opaque;
218
    uint32_t pending = s->intregm_pending;
219
    unsigned int i, max = 0;
220

    
221
    pending &= ~s->intregm_disabled;
222

    
223
    if (pending && !(s->intregm_disabled & 0x80000000)) {
224
        for (i = 0; i < 32; i++) {
225
            if (pending & (1 << i)) {
226
                if (max < intbit_to_level[i])
227
                    max = intbit_to_level[i];
228
            }
229
        }
230
        env = first_cpu;
231
        if (env->interrupt_index == 0) {
232
            DPRINTF("Triggered pil %d\n", max);
233
#ifdef DEBUG_IRQ_COUNT
234
            s->irq_count[max]++;
235
#endif
236
            env->interrupt_index = TT_EXTINT | max;
237
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
238
        }
239
        else
240
            DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index);
241
    }
242
    else
243
        DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
244
}
245

    
246
/*
247
 * "irq" here is the bit number in the system interrupt register to
248
 * separate serial and keyboard interrupts sharing a level.
249
 */
250
void slavio_pic_set_irq(void *opaque, int irq, int level)
251
{
252
    SLAVIO_INTCTLState *s = opaque;
253

    
254
    DPRINTF("Set irq %d level %d\n", irq, level);
255
    if (irq < 32) {
256
        uint32_t mask = 1 << irq;
257
        uint32_t pil = intbit_to_level[irq];
258
        if (pil > 0) {
259
            if (level) {
260
                s->intregm_pending |= mask;
261
                s->intreg_pending[s->target_cpu] |= 1 << pil;
262
            }
263
            else {
264
                s->intregm_pending &= ~mask;
265
                s->intreg_pending[s->target_cpu] &= ~(1 << pil);
266
            }
267
        }
268
    }
269
    slavio_check_interrupts(s);
270
}
271

    
272
static void slavio_intctl_save(QEMUFile *f, void *opaque)
273
{
274
    SLAVIO_INTCTLState *s = opaque;
275
    int i;
276
    
277
    for (i = 0; i < MAX_CPUS; i++) {
278
        qemu_put_be32s(f, &s->intreg_pending[i]);
279
    }
280
    qemu_put_be32s(f, &s->intregm_pending);
281
    qemu_put_be32s(f, &s->intregm_disabled);
282
    qemu_put_be32s(f, &s->target_cpu);
283
}
284

    
285
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
286
{
287
    SLAVIO_INTCTLState *s = opaque;
288
    int i;
289

    
290
    if (version_id != 1)
291
        return -EINVAL;
292

    
293
    for (i = 0; i < MAX_CPUS; i++) {
294
        qemu_get_be32s(f, &s->intreg_pending[i]);
295
    }
296
    qemu_get_be32s(f, &s->intregm_pending);
297
    qemu_get_be32s(f, &s->intregm_disabled);
298
    qemu_get_be32s(f, &s->target_cpu);
299
    return 0;
300
}
301

    
302
static void slavio_intctl_reset(void *opaque)
303
{
304
    SLAVIO_INTCTLState *s = opaque;
305
    int i;
306

    
307
    for (i = 0; i < MAX_CPUS; i++) {
308
        s->intreg_pending[i] = 0;
309
    }
310
    s->intregm_disabled = ~0xffb2007f;
311
    s->intregm_pending = 0;
312
    s->target_cpu = 0;
313
}
314

    
315
void *slavio_intctl_init(uint32_t addr, uint32_t addrg)
316
{
317
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
318
    SLAVIO_INTCTLState *s;
319

    
320
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
321
    if (!s)
322
        return NULL;
323

    
324
    for (i = 0; i < MAX_CPUS; i++) {
325
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
326
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
327
    }
328

    
329
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
330
    cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
331

    
332
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
333
    qemu_register_reset(slavio_intctl_reset, s);
334
    slavio_intctl_reset(s);
335
    return s;
336
}
337