Statistics
| Branch: | Revision:

root / hw / sun4m.c @ c68ea704

History | View | Annotate | Download (10 kB)

1
/*
2
 * QEMU Sun4m System Emulator
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#define KERNEL_LOAD_ADDR     0x00004000
27
#define CMDLINE_ADDR         0x007ff000
28
#define INITRD_LOAD_ADDR     0x00800000
29
#define PROM_ADDR             0xffd00000
30
#define PROM_FILENAMEB             "proll.bin"
31
#define PROM_FILENAMEE             "proll.elf"
32
#define PHYS_JJ_EEPROM        0x71200000        /* m48t08 */
33
#define PHYS_JJ_IDPROM_OFF        0x1FD8
34
#define PHYS_JJ_EEPROM_SIZE        0x2000
35
// IRQs are not PIL ones, but master interrupt controller register
36
// bits
37
#define PHYS_JJ_IOMMU        0x10000000        /* I/O MMU */
38
#define PHYS_JJ_TCX_FB        0x50000000        /* TCX frame buffer */
39
#define PHYS_JJ_SLAVIO        0x70000000        /* Slavio base */
40
#define PHYS_JJ_ESPDMA  0x78400000      /* ESP DMA controller */
41
#define PHYS_JJ_ESP     0x78800000      /* ESP SCSI */
42
#define PHYS_JJ_ESP_IRQ    18
43
#define PHYS_JJ_LEDMA   0x78400010      /* Lance DMA controller */
44
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
45
#define PHYS_JJ_LE_IRQ     16
46
#define PHYS_JJ_CLOCK        0x71D00000      /* Per-CPU timer/counter, L14 */
47
#define PHYS_JJ_CLOCK_IRQ  7
48
#define PHYS_JJ_CLOCK1        0x71D10000      /* System timer/counter, L10 */
49
#define PHYS_JJ_CLOCK1_IRQ 19
50
#define PHYS_JJ_INTR0        0x71E00000        /* Per-CPU interrupt control registers */
51
#define PHYS_JJ_INTR_G        0x71E10000        /* Master interrupt control registers */
52
#define PHYS_JJ_MS_KBD        0x71000000        /* Mouse and keyboard */
53
#define PHYS_JJ_MS_KBD_IRQ    14
54
#define PHYS_JJ_SER        0x71100000        /* Serial */
55
#define PHYS_JJ_SER_IRQ    15
56
#define PHYS_JJ_FDC        0x71400000        /* Floppy */
57
#define PHYS_JJ_FLOPPY_IRQ 22
58
#define PHYS_JJ_ME_IRQ 30                /* Module error, power fail */
59

    
60
/* TSC handling */
61

    
62
uint64_t cpu_get_tsc()
63
{
64
    return qemu_get_clock(vm_clock);
65
}
66

    
67
int DMA_get_channel_mode (int nchan)
68
{
69
    return 0;
70
}
71
int DMA_read_memory (int nchan, void *buf, int pos, int size)
72
{
73
    return 0;
74
}
75
int DMA_write_memory (int nchan, void *buf, int pos, int size)
76
{
77
    return 0;
78
}
79
void DMA_hold_DREQ (int nchan) {}
80
void DMA_release_DREQ (int nchan) {}
81
void DMA_schedule(int nchan) {}
82
void DMA_run (void) {}
83
void DMA_init (int high_page_enable) {}
84
void DMA_register_channel (int nchan,
85
                           DMA_transfer_handler transfer_handler,
86
                           void *opaque)
87
{
88
}
89

    
90
static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
91
{
92
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
93
    m48t59_write(nvram, addr++, value & 0xff);
94
}
95

    
96
static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
97
{
98
    m48t59_write(nvram, addr++, value >> 24);
99
    m48t59_write(nvram, addr++, (value >> 16) & 0xff);
100
    m48t59_write(nvram, addr++, (value >> 8) & 0xff);
101
    m48t59_write(nvram, addr++, value & 0xff);
102
}
103

    
104
static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
105
                       const unsigned char *str, uint32_t max)
106
{
107
    unsigned int i;
108

    
109
    for (i = 0; i < max && str[i] != '\0'; i++) {
110
        m48t59_write(nvram, addr + i, str[i]);
111
    }
112
    m48t59_write(nvram, addr + max - 1, '\0');
113
}
114

    
115
static m48t59_t *nvram;
116

    
117
extern int nographic;
118

    
119
static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
120
                       int boot_device, uint32_t RAM_size,
121
                       uint32_t kernel_size,
122
                       int width, int height, int depth)
123
{
124
    unsigned char tmp = 0;
125
    int i, j;
126

    
127
    // Try to match PPC NVRAM
128
    nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
129
    nvram_set_lword(nvram,  0x10, 0x00000001); /* structure v1 */
130
    // NVRAM_size, arch not applicable
131
    m48t59_write(nvram, 0x2F, nographic & 0xff);
132
    nvram_set_lword(nvram,  0x30, RAM_size);
133
    m48t59_write(nvram, 0x34, boot_device & 0xff);
134
    nvram_set_lword(nvram,  0x38, KERNEL_LOAD_ADDR);
135
    nvram_set_lword(nvram,  0x3C, kernel_size);
136
    if (cmdline) {
137
        strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
138
        nvram_set_lword(nvram,  0x40, CMDLINE_ADDR);
139
        nvram_set_lword(nvram,  0x44, strlen(cmdline));
140
    }
141
    // initrd_image, initrd_size passed differently
142
    nvram_set_word(nvram,   0x54, width);
143
    nvram_set_word(nvram,   0x56, height);
144
    nvram_set_word(nvram,   0x58, depth);
145

    
146
    // Sun4m specific use
147
    i = 0x1fd8;
148
    m48t59_write(nvram, i++, 0x01);
149
    m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */
150
    j = 0;
151
    m48t59_write(nvram, i++, macaddr[j++]);
152
    m48t59_write(nvram, i++, macaddr[j++]);
153
    m48t59_write(nvram, i++, macaddr[j++]);
154
    m48t59_write(nvram, i++, macaddr[j++]);
155
    m48t59_write(nvram, i++, macaddr[j++]);
156
    m48t59_write(nvram, i, macaddr[j]);
157

    
158
    /* Calculate checksum */
159
    for (i = 0x1fd8; i < 0x1fe7; i++) {
160
        tmp ^= m48t59_read(nvram, i);
161
    }
162
    m48t59_write(nvram, 0x1fe7, tmp);
163
}
164

    
165
static void *slavio_intctl;
166

    
167
void pic_info()
168
{
169
    slavio_pic_info(slavio_intctl);
170
}
171

    
172
void irq_info()
173
{
174
    slavio_irq_info(slavio_intctl);
175
}
176

    
177
void pic_set_irq(int irq, int level)
178
{
179
    slavio_pic_set_irq(slavio_intctl, irq, level);
180
}
181

    
182
static void *tcx;
183

    
184
void vga_update_display()
185
{
186
    tcx_update_display(tcx);
187
}
188

    
189
void vga_invalidate_display()
190
{
191
    tcx_invalidate_display(tcx);
192
}
193

    
194
void vga_screen_dump(const char *filename)
195
{
196
    tcx_screen_dump(tcx, filename);
197
}
198

    
199
static void *iommu;
200

    
201
uint32_t iommu_translate(uint32_t addr)
202
{
203
    return iommu_translate_local(iommu, addr);
204
}
205

    
206
static void *slavio_misc;
207

    
208
void qemu_system_powerdown(void)
209
{
210
    slavio_set_power_fail(slavio_misc, 1);
211
}
212

    
213
static void main_cpu_reset(void *opaque)
214
{
215
    CPUState *env = opaque;
216
    cpu_reset(env);
217
}
218

    
219
/* Sun4m hardware initialisation */
220
static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
221
                       DisplayState *ds, const char **fd_filename, int snapshot,
222
                       const char *kernel_filename, const char *kernel_cmdline,
223
                       const char *initrd_filename)
224
{
225
    CPUState *env;
226
    char buf[1024];
227
    int ret, linux_boot;
228
    unsigned int i;
229
    long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
230

    
231
    linux_boot = (kernel_filename != NULL);
232

    
233
    env = cpu_init();
234
    register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
235
    qemu_register_reset(main_cpu_reset, env);
236

    
237
    /* allocate RAM */
238
    cpu_register_physical_memory(0, ram_size, 0);
239

    
240
    iommu = iommu_init(PHYS_JJ_IOMMU);
241
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
242
    tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
243
    lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
244
    nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8);
245
    slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
246
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
247
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
248
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
249
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
250
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
251
    esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
252
    slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
253

    
254
    prom_offset = ram_size + vram_size;
255

    
256
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
257
    ret = load_elf(buf, phys_ram_base + prom_offset);
258
    if (ret < 0) {
259
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
260
        ret = load_image(buf, phys_ram_base + prom_offset);
261
    }
262
    if (ret < 0) {
263
        fprintf(stderr, "qemu: could not load prom '%s'\n", 
264
                buf);
265
        exit(1);
266
    }
267
    cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK, 
268
                                 prom_offset | IO_MEM_ROM);
269

    
270
    kernel_size = 0;
271
    if (linux_boot) {
272
        kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
273
        if (kernel_size < 0)
274
            kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
275
        if (kernel_size < 0)
276
            kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
277
        if (kernel_size < 0) {
278
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
279
                    kernel_filename);
280
            exit(1);
281
        }
282

    
283
        /* load initrd */
284
        initrd_size = 0;
285
        if (initrd_filename) {
286
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
287
            if (initrd_size < 0) {
288
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
289
                        initrd_filename);
290
                exit(1);
291
            }
292
        }
293
        if (initrd_size > 0) {
294
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
295
                if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
296
                    == 0x48647253) { // HdrS
297
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
298
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
299
                    break;
300
                }
301
            }
302
        }
303
    }
304
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
305
}
306

    
307
QEMUMachine sun4m_machine = {
308
    "sun4m",
309
    "Sun4m platform",
310
    sun4m_init,
311
};